- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Embargo
- IT
- BE
- Energy Research
- Open Access
- Closed Access
- Embargo
- IT
- BE
Research data keyboard_double_arrow_right Dataset 2022Publisher:SCAR - Microbial Antarctic Resource System Barret, Maialen; Thalasso, Frederic; Gandois, Laure; Cruz, Klara Martinez; Jaureguy, Armando Sepulveda; Lavergne, Céline; Teisserenc, Roman; Polette Aguilar; Gerardo-Nieto, Oscar; Etchebehere, Claudia; Martins, Bruna; Fochesatto, Javier; Tananaev, Nikita; Svenning, Mette; Seppey, Christophe; Tveit, Alexander; Chamy, Rolando; Astorga-España, Maria Soledad; Mansilla, Andres; Van De Putte, Anton; Sweetlove, Maxime; Murray, Alison; Cabrol, Léa;doi: 10.15468/hhkhz2
Methane emissions from aquatic and terrestrial ecosystems play a crucial role in global warming, which is particularly affecting high-latitude ecosystems. As major contributors to methane emissions in natural environments, the microbial communities involved in methane production and oxidation deserve a special attention. Microbial diversity and activity are expected to be strongly affected by the already observed (and further predicted) temperature increase in high-latitude ecosystems, eventually resulting in disrupted feedback methane emissions. The METHANOBASE project has been designed to investigate the intricate relations between microbial diversity and methane emissions in Arctic, Subarctic and Subantarctic ecosystems, under natural (baseline) conditions and in response to simulated temperature increments. We report here a small subunit ribosomal RNA (16S rRNA) analysis of lake, peatland and mineral soil ecosystems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/hhkhz2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/hhkhz2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:Zenodo Funded by:EC | ECLAIRE, EC | ANIMALCHANGEEC| ECLAIRE ,EC| ANIMALCHANGELeip, Adrian; Billen, Gilles; Garnier, Josette; Lassaletta, Luis; Reis, Stefan; Simpson, David; Sutton, Mark A.; de Vries, Wim; Weiss, Franz; Westhoek, Henk;doi: 10.5281/zenodo.58514
Table S1-1 Quantification of GHG and Nr flow intensities [kg CO2eq (kg product)-1 yr-1] or [g N (kg product)-1 yr-1] with the CAPRI N-LCA model for six main livestock products (BEEF: beef, PORK: pork, EGGS: eggs, POUM: poultry meat; DAIR: milk and dairy products, SGMP: meat from sheep and goats) and six main vegetable food groups (POTA: potatoes, SUGB: sugar beet before processing, OILP: oil seeds before processing; CERR: cereals, LEGU: leguminous crops) as well as other crops (OCRP) and aggregated livestock (ANIMP) and vegetable (CROPP) food. Table S2-1 Quantification of the main N budget flows in the EU25 agriculture sector
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.58514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.58514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Capozzi, Vincenzo; Serrapica, Francesco; Rocco, Armando; Annella, Clizia; Budillon, Giorgio;This database includes a large collection of quality-controlled and homogenized historical snow records measured in the 1951-2001 period in the Central and Southern Apennine Mountains (Italy). Such data have been manually digitized from the Hydrological Yearbooks of the Italian National Hydrological and Mareographic Service (hereafter, NHMS), the institution that managed the hydro-meteorological data collection in Italy from 1917 to 2002. More specifically, the rescued dataset includes the monthly observations of three different variables: · The snow cover duration (SCD), which is defined as total number of days in a given month with snow depth on the ground >=1 cm. This variable is available for 110 stations between 288 and 1430 m above the sea level (ASL). · The number of days with snowfall (NDS), which is total number of days in a given month on which the accumulated snowfall (i.e. the amount of fresh snow with respect to the previous observations) is at least 1 cm. This variable is available for 114 stations between 288 and 1430 m ASL. · The height of new snow (HN), which is defined as the monthly amount of fresh snow (expressed in cm). The monthly value is intended as the sum of daily HN data observed in a determined month. This variable is available for 120 stations between 288 and 1750 m ASL. Note that for HN variable, the data availability is restricted to the period 1971-2001. The considered dataset has been subjected to an accurate quality control consisting of several statistical tests: the gross error test, which flags the data that are above or below acceptable physical limits, the consistency test, which involves an inter-variable check, and the tolerance test, which is focused on the outlier detection. In addition, the homogeneity of the rescued time series has been checked using Climatol method (Guijarro, 2018). The latter is based on the Standard Normal Homogeneity Test (Alexandersson, 1986) for the identification of the breaks and on a linear regression approach for the adjustments (Easterling and Peterson, 1995). Climatol has been also employed for the filling of missing values. The database is structured into three different folders (one for each variable). In a determined folder, the user finds two files, one containing the main information regarding the available stations (code, station name, latitude and longitude (in decimal degrees) and altitude ASL (in m)), the other one the monthly time series for the considered variable. Note that the original data sources of this database, the Hydrological Yearbooks of the NHMS, are freely accessible in printed version (i.e. as scanned images in portable document format) through the Italian Institute for Environmental Protection and Research (ISPRA) website (http://www.bio.isprambiente.it/annalipdf). Additional information about the data rescue processing can be found in the preprint “Historical snowfall measurements in the Central and Southern Apennine Mountains: climatology, variability and trend”, open for discussion in The Cryosphere journal (https://doi.org/10.5194/egusphere-2024-1056). References Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, 1986. Easterling, D. R. and Peterson, T.C.: A new method for detecting and adjusting for undocumented discontinuities in climatological time series, International Journal Climatol.,15, 369–377, https://doi.org/10.1002/joc.3370150403, 1995. Guijarro, J. A.: Homogenization of climatic series with Climatol, Climatol manual, https://www.climatol.eu/homog_climatolen.pdf (last access: 15 February 2024), 2018.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12699506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12699506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 19 Nov 2015Publisher:Dryad Dinh, Khuong Van; Janssens, Lizanne; Therry, Lieven; Gyulavári, Hajnalka Anna; Bervoets, Lieven; Stoks, Robby;doi: 10.5061/dryad.cb978
Many species are too slow to track their poleward moving climate niche under global warming. Pesticide exposure may contribute to this by reducing population growth and impairing flight ability. Moreover, edge populations at the moving range front may be more vulnerable to pesticides because of the rapid evolution of traits to enhance their rate of spread that shunt energy away from detoxification and repair. We exposed replicated edge and core populations of the poleward moving damselfly Coenagrion scitulum to the pesticide esfenvalerate at low and high densities. Exposure to esfenvalerate had strong negative effects on survival, growth rate and development time in the larval stage and negatively affected flight-related adult traits (mass at emergence, flight muscle mass and fat content) across metamorphosis. Pesticide effects did not differ between edge and core populations, except that at the high concentration the pesticide-induced mortality was 17% stronger in edge populations. Pesticide exposure may therefore slow down the range expansion by lowering population growth rates, especially because edge populations suffered a higher mortality, and by negatively affecting dispersal ability by impairing flight-related traits. These results emphasize the need for direct conservation efforts toward leading-edge populations for facilitating future range shifts under global warming. MAIN DATAEVA-2015-167-OA DATA.xlsSUPPLEMENTARY DATA FOR APPENDICES (BIOTIC AND ABIOTIC PARAMETERS)EVA-2015-167-OA DATA FOR APPENDICES (BIOTIC AND ABIOTIC PARAMETERS).xls
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cb978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cb978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Lovato, Tomas; Peano, Daniele;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CMCC-CM2-SR5 climate model, released in 2016, includes the following components: aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), seaIce: CICE4.0. The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MPC-. GTEC| MPC-. GTBastero, Josué Borrajo; Figueroa, Iago Cupeiro; Picard, Damien; Helsen, Lieve; Laverge, Jelle;The dataset consists of the building energy simulation data for three case-study buildings (Infrax office building (BE); Ter Potterie elderly home (BE) and Haus M multi-family building (CH)). For these buildings, HVAC-concepts were simulated: the hybridGEOTABS-MPC concept (not for Haus M), hybridGEOTABS-RBC baseline concept and nonGEOTABS-RBC concept. The dataset includes the hourly time series for a one year simulation for the major outputs of the BES-model. The results are reported in hybridGEOTABS deliverable D4.9. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723649
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4721415&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4721415&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | C123EC| C123Authors: Motte, Jordy; Alvarenga, Rodrigo A. F.; Thybaut, Joris W.; Dewulf, Jo;Supplementary material for the associated publication.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8298236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8298236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:EC | ADAPTEC| ADAPTAuthors: João Soares; Fernando Lezama; Tiago Pinto; Hugo Morais;doi: 10.1155/2018/6562876
Editorial Complex Optimization and Simulation in Power Systems
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2018/6562876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 57 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2018/6562876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Firenze University Press Authors: Simona Mannucci; Michele Morganti;The complex interaction between city and climate crisis is converting design-based disciplines from deterministic to flexible approaches. In this regard, Decision-Making Under Deep Uncertainty (DMDU) methods and operational strategies can be valuable support mechanisms to cope with the emerging climate fragilities of urban systems. In light of recent advances in the field of adaptive approaches, this paper discusses key concepts, current limitations and the potential to introduce the DMDU in the method and practices of regenerative design. Our critical discussion aims to restore the designer’s role within the DMDU and to reduce current and future climate fragilities in European cities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36253/techne-12136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36253/techne-12136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Patrizia Simeoni; Gellio Ciotti; Antonella Meneghetti; Mattia Cottes;Abstract To achieve the EU climate and energy objectives, a transition towards a future sustainable energy system is needed. The integration of the huge potential for industrial waste heat recovery into smart energy system represents a main opportunity to accomplish these goals. To successfully implement this strategy, all the several stakeholders' conflicting objectives should be considered. In this paper an evolutionary multi-objective optimization model is developed to perform a sustainability evaluation of an energy system involving an industrial facility as the waste heat source and the neighbourhood as district heating network end users. An Italian case study of heat recovery from a steel casting facility shows how the model allows to properly select the district heating network set of users to fully exploit the available waste energy. Design directions such as the thermal energy storage capacity can be also provided. Moreover, the model enables the analysis of the trade-off between the stakeholders’ different perspectives, allowing to identify possible win-win solutions for both the industrial sector and the citizenship.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.03.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.03.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:SCAR - Microbial Antarctic Resource System Barret, Maialen; Thalasso, Frederic; Gandois, Laure; Cruz, Klara Martinez; Jaureguy, Armando Sepulveda; Lavergne, Céline; Teisserenc, Roman; Polette Aguilar; Gerardo-Nieto, Oscar; Etchebehere, Claudia; Martins, Bruna; Fochesatto, Javier; Tananaev, Nikita; Svenning, Mette; Seppey, Christophe; Tveit, Alexander; Chamy, Rolando; Astorga-España, Maria Soledad; Mansilla, Andres; Van De Putte, Anton; Sweetlove, Maxime; Murray, Alison; Cabrol, Léa;doi: 10.15468/hhkhz2
Methane emissions from aquatic and terrestrial ecosystems play a crucial role in global warming, which is particularly affecting high-latitude ecosystems. As major contributors to methane emissions in natural environments, the microbial communities involved in methane production and oxidation deserve a special attention. Microbial diversity and activity are expected to be strongly affected by the already observed (and further predicted) temperature increase in high-latitude ecosystems, eventually resulting in disrupted feedback methane emissions. The METHANOBASE project has been designed to investigate the intricate relations between microbial diversity and methane emissions in Arctic, Subarctic and Subantarctic ecosystems, under natural (baseline) conditions and in response to simulated temperature increments. We report here a small subunit ribosomal RNA (16S rRNA) analysis of lake, peatland and mineral soil ecosystems.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/hhkhz2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15468/hhkhz2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Publisher:Zenodo Funded by:EC | ECLAIRE, EC | ANIMALCHANGEEC| ECLAIRE ,EC| ANIMALCHANGELeip, Adrian; Billen, Gilles; Garnier, Josette; Lassaletta, Luis; Reis, Stefan; Simpson, David; Sutton, Mark A.; de Vries, Wim; Weiss, Franz; Westhoek, Henk;doi: 10.5281/zenodo.58514
Table S1-1 Quantification of GHG and Nr flow intensities [kg CO2eq (kg product)-1 yr-1] or [g N (kg product)-1 yr-1] with the CAPRI N-LCA model for six main livestock products (BEEF: beef, PORK: pork, EGGS: eggs, POUM: poultry meat; DAIR: milk and dairy products, SGMP: meat from sheep and goats) and six main vegetable food groups (POTA: potatoes, SUGB: sugar beet before processing, OILP: oil seeds before processing; CERR: cereals, LEGU: leguminous crops) as well as other crops (OCRP) and aggregated livestock (ANIMP) and vegetable (CROPP) food. Table S2-1 Quantification of the main N budget flows in the EU25 agriculture sector
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.58514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.58514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Capozzi, Vincenzo; Serrapica, Francesco; Rocco, Armando; Annella, Clizia; Budillon, Giorgio;This database includes a large collection of quality-controlled and homogenized historical snow records measured in the 1951-2001 period in the Central and Southern Apennine Mountains (Italy). Such data have been manually digitized from the Hydrological Yearbooks of the Italian National Hydrological and Mareographic Service (hereafter, NHMS), the institution that managed the hydro-meteorological data collection in Italy from 1917 to 2002. More specifically, the rescued dataset includes the monthly observations of three different variables: · The snow cover duration (SCD), which is defined as total number of days in a given month with snow depth on the ground >=1 cm. This variable is available for 110 stations between 288 and 1430 m above the sea level (ASL). · The number of days with snowfall (NDS), which is total number of days in a given month on which the accumulated snowfall (i.e. the amount of fresh snow with respect to the previous observations) is at least 1 cm. This variable is available for 114 stations between 288 and 1430 m ASL. · The height of new snow (HN), which is defined as the monthly amount of fresh snow (expressed in cm). The monthly value is intended as the sum of daily HN data observed in a determined month. This variable is available for 120 stations between 288 and 1750 m ASL. Note that for HN variable, the data availability is restricted to the period 1971-2001. The considered dataset has been subjected to an accurate quality control consisting of several statistical tests: the gross error test, which flags the data that are above or below acceptable physical limits, the consistency test, which involves an inter-variable check, and the tolerance test, which is focused on the outlier detection. In addition, the homogeneity of the rescued time series has been checked using Climatol method (Guijarro, 2018). The latter is based on the Standard Normal Homogeneity Test (Alexandersson, 1986) for the identification of the breaks and on a linear regression approach for the adjustments (Easterling and Peterson, 1995). Climatol has been also employed for the filling of missing values. The database is structured into three different folders (one for each variable). In a determined folder, the user finds two files, one containing the main information regarding the available stations (code, station name, latitude and longitude (in decimal degrees) and altitude ASL (in m)), the other one the monthly time series for the considered variable. Note that the original data sources of this database, the Hydrological Yearbooks of the NHMS, are freely accessible in printed version (i.e. as scanned images in portable document format) through the Italian Institute for Environmental Protection and Research (ISPRA) website (http://www.bio.isprambiente.it/annalipdf). Additional information about the data rescue processing can be found in the preprint “Historical snowfall measurements in the Central and Southern Apennine Mountains: climatology, variability and trend”, open for discussion in The Cryosphere journal (https://doi.org/10.5194/egusphere-2024-1056). References Alexandersson, H.: A homogeneity test applied to precipitation data, J. Climatol., 6, 661–675, 1986. Easterling, D. R. and Peterson, T.C.: A new method for detecting and adjusting for undocumented discontinuities in climatological time series, International Journal Climatol.,15, 369–377, https://doi.org/10.1002/joc.3370150403, 1995. Guijarro, J. A.: Homogenization of climatic series with Climatol, Climatol manual, https://www.climatol.eu/homog_climatolen.pdf (last access: 15 February 2024), 2018.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12699506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.12699506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 19 Nov 2015Publisher:Dryad Dinh, Khuong Van; Janssens, Lizanne; Therry, Lieven; Gyulavári, Hajnalka Anna; Bervoets, Lieven; Stoks, Robby;doi: 10.5061/dryad.cb978
Many species are too slow to track their poleward moving climate niche under global warming. Pesticide exposure may contribute to this by reducing population growth and impairing flight ability. Moreover, edge populations at the moving range front may be more vulnerable to pesticides because of the rapid evolution of traits to enhance their rate of spread that shunt energy away from detoxification and repair. We exposed replicated edge and core populations of the poleward moving damselfly Coenagrion scitulum to the pesticide esfenvalerate at low and high densities. Exposure to esfenvalerate had strong negative effects on survival, growth rate and development time in the larval stage and negatively affected flight-related adult traits (mass at emergence, flight muscle mass and fat content) across metamorphosis. Pesticide effects did not differ between edge and core populations, except that at the high concentration the pesticide-induced mortality was 17% stronger in edge populations. Pesticide exposure may therefore slow down the range expansion by lowering population growth rates, especially because edge populations suffered a higher mortality, and by negatively affecting dispersal ability by impairing flight-related traits. These results emphasize the need for direct conservation efforts toward leading-edge populations for facilitating future range shifts under global warming. MAIN DATAEVA-2015-167-OA DATA.xlsSUPPLEMENTARY DATA FOR APPENDICES (BIOTIC AND ABIOTIC PARAMETERS)EVA-2015-167-OA DATA FOR APPENDICES (BIOTIC AND ABIOTIC PARAMETERS).xls
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cb978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 13visibility views 13 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.cb978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Lovato, Tomas; Peano, Daniele;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CMCC-CM2-SR5 climate model, released in 2016, includes the following components: aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), seaIce: CICE4.0. The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MPC-. GTEC| MPC-. GTBastero, Josué Borrajo; Figueroa, Iago Cupeiro; Picard, Damien; Helsen, Lieve; Laverge, Jelle;The dataset consists of the building energy simulation data for three case-study buildings (Infrax office building (BE); Ter Potterie elderly home (BE) and Haus M multi-family building (CH)). For these buildings, HVAC-concepts were simulated: the hybridGEOTABS-MPC concept (not for Haus M), hybridGEOTABS-RBC baseline concept and nonGEOTABS-RBC concept. The dataset includes the hourly time series for a one year simulation for the major outputs of the BES-model. The results are reported in hybridGEOTABS deliverable D4.9. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723649
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4721415&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4721415&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | C123EC| C123Authors: Motte, Jordy; Alvarenga, Rodrigo A. F.; Thybaut, Joris W.; Dewulf, Jo;Supplementary material for the associated publication.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8298236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8298236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Funded by:EC | ADAPTEC| ADAPTAuthors: João Soares; Fernando Lezama; Tiago Pinto; Hugo Morais;doi: 10.1155/2018/6562876
Editorial Complex Optimization and Simulation in Power Systems
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2018/6562876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 39visibility views 39 download downloads 57 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2018/6562876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Firenze University Press Authors: Simona Mannucci; Michele Morganti;The complex interaction between city and climate crisis is converting design-based disciplines from deterministic to flexible approaches. In this regard, Decision-Making Under Deep Uncertainty (DMDU) methods and operational strategies can be valuable support mechanisms to cope with the emerging climate fragilities of urban systems. In light of recent advances in the field of adaptive approaches, this paper discusses key concepts, current limitations and the potential to introduce the DMDU in the method and practices of regenerative design. Our critical discussion aims to restore the designer’s role within the DMDU and to reduce current and future climate fragilities in European cities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36253/techne-12136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36253/techne-12136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Patrizia Simeoni; Gellio Ciotti; Antonella Meneghetti; Mattia Cottes;Abstract To achieve the EU climate and energy objectives, a transition towards a future sustainable energy system is needed. The integration of the huge potential for industrial waste heat recovery into smart energy system represents a main opportunity to accomplish these goals. To successfully implement this strategy, all the several stakeholders' conflicting objectives should be considered. In this paper an evolutionary multi-objective optimization model is developed to perform a sustainability evaluation of an energy system involving an industrial facility as the waste heat source and the neighbourhood as district heating network end users. An Italian case study of heat recovery from a steel casting facility shows how the model allows to properly select the district heating network set of users to fully exploit the available waste energy. Design directions such as the thermal energy storage capacity can be also provided. Moreover, the model enables the analysis of the trade-off between the stakeholders’ different perspectives, allowing to identify possible win-win solutions for both the industrial sector and the citizenship.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.03.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.03.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu