- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 6. Clean water
- IT
- CA
- Energy Procedia
- Energy Research
- 7. Clean energy
- 6. Clean water
- IT
- CA
- Energy Procedia
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Bianchi, M.; Branchini, L.; Pascale, A. De; Melino, F.; Ottaviano, S.; Peretto, A.; TORRICELLI, NOEMI; Zampieri, G.;handle: 11585/664347
Abstract In the electricity production sector, geothermal energy is considered a reliable energy source because of its independence of seasonal, climatic and geographical conditions. Low-temperature geothermal wells present a huge potential of exploitation, as the development of binary cycles and the technological improvement in drilling make this heat source a competitive solution for electricity generated distribution and self-consumption. The Organic Rankine Cycle (ORC) is currently the best solution to convert heat into electricity using low enthalpy heat sources. The ORC technology is already mature and widespread for medium and large-scale power plants, applying for geothermal, solar, biomass or waste heat recovery exploitation. Micro-scale ORC applications are still not diffused in the market: the system layout, the working fluid selection and the expander architecture can significantly vary depending on the specific realization requirements, thus a standard configuration has not established yet. In this paper, a particular case study of a micro-ORC power system using a geothermal well is presented. The application in analysis is a plug-and-play ORC facility, currently installed and operating in a pool centre. The system layout and the main components are described. The heat source is a geothermal well, which continuously supplies (by pressure difference) liquid water at a temperature lower than 60 °C to a binary Rankine cycle working with R134a. The ORC system is driven by a prototypal radial-piston expander and adopts an external-gear feed pump and a recuperative cycle. It is developed for working continuously, delivering the generated electricity directly into the grid. The facility is provided with temperature, pressure and electric power sensors for monitoring the operation and for a preliminary evaluation of the performance. The global efficiency of expander and feed pump and the ORC net efficiency have been evaluated at the regular working conditions of the geothermal well, showing values equal to, respectively, 53 %, 41 % and 4.4 %.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Bruno R; ARCURI, Natale; Carpino C.;handle: 20.500.11770/145116
AbstractA parametric analysis for an innovative prototype of passive building, located in south Italy and for residential use, has been conducted to evaluate the thermal energy requirements for heating and cooling applications. The investigation was addressed by considering also the aspect of sustainability, by employing natural materials such as dry sand and wood fibre, and the correspondent effects on the energy performances of the envelope. These materials are usually available on site; they increase the building thermal capacity, which represents a crucial aspect for hot climates, and finally could even be reused after building disposal. The construction system based on the completely dry assembling technique makes the exploitation of the mentioned materials possible. The results of the parametric study were obtained by means of the Design Builder dynamic software, by investigating the glazed surfaces, the control of solar radiation and the exploitation of nocturnal free-cooling. A parametric study allowed for optimization of the envelope, by respecting the limit values of 15 kWh/m2 suggested by the standard passivhaus in its extended formulation for warm climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 Norway, Italy, ItalyPublisher:Elsevier BV Authors: BIANCO, LORENZA; Goia, Francesco; SERRA, VALENTINA; Zinzi, Michele;handle: 11250/2479584 , 11583/2627283 , 20.500.12079/5990
AbstractSwitchable windows are glazing technologies that exhibit dynamic optical properties and may thus be used to improve the energy performance of buildings. A window system based on a thermotropic glass pane was tested both in the laboratory and by means of an outdoor test cell facility.In this paper the full optical and thermal characterization of this glazing technology is presented. Experiments and data analysis led to the characterization of the behaviour of the thermotropic glazing both when this technology is used alone (single glass pane) and when it is integrated in a multilayer fenestration (a triple glazed unit).
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: CASASSO, ALESSANDRO; SETHI, RAJANDREA;handle: 11583/2627157
AbstractThe efficiency of Geothermal Heat Pumps (GHPs) strongly depends on the site-specific parameters of the ground, which should therefore be mapped for the rational planning of shallow geothermal installations. In this paper, a case study is presented for the potentiality assessment of low enthalpy geothermal energy in the Province of Cuneo, a district of 6900 km2 in Piedmont, NW Italy. The available information on the geology, stratigraphy, hydrogeology, climate etc. were processed and mapped, and conclusions were drawn on the geothermal suitability and productivity of different areas of the territory surveyed.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Di Somma, Marialaura; Yan, Bing; Bianco, Nicola; Graditi, Giorgio; Luh, Peter B.; Mongibello, Luigi; Naso, Vincenzo;handle: 11588/756827 , 20.500.12079/4838
Abstract In recent years, Distributed Energy Systems (DESs) have been recognized as a good option for sustainable development of future energy systems. With growing environmental concerns, design optimization of DESs through economic assessments only is not sufficient. To achieve long-run sustainability of energy supply, the key idea of this paper is to investigate exergy assessments in DES design optimization to attain rational use of energy resources while considering energy qualities of supply and demand. By using low-temperature sources for low-quality thermal demand, the waste of high-quality energy can be reduced, and the overall exergy efficiency can be increased. Based on a pre-established superstructure, the aim is to determine numbers and sizes of energy devices in the DES and the corresponding operation strategies. A multi-objective linear problem is formulated to reduce the total annual cost and increase the overall exergy efficiency. The Pareto frontier is found to provide different design options for planners based on economic and sustainability priorities, through minimizing a weighted-sum of the total annual cost and primary exergy input, by using branch-and-cut. Numerical results demonstrate that different optimized DES configurations can be found according to the two objectives. Moreover, results also show that the total annual cost and primary exergy input are reduced by 20% - 30% as compared with conventional energy supply systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Peter L. Douglas; Ali Elkamel; Eric Croiset; Murlidhar Gupta; Guillermo Ordorica-Garcia;AbstractThe forecasted energy production of oil sands operations in Alberta in the year 2030 were optimised under CO2 emissions constraints, using a mixed integer linear optimisation model. The model features a variety of technologies (with and without CO2 capture), including coal and natural gas power plants, IGCC, and oxyfuel plants. Hydrogen production technologies are steam methane reforming and coal gasification. The optimization is executed at increasing CO2 emissions reduction levels, yielding unique infrastructures that satisfy the energy demands of the oil sands industry at minimal cost. The economic and environmental impacts of the optimally chosen technologies on the forecasted operations of the oil sands industry in 2030 are thus determined.The maximum CO2 emissions reduction attainable by using CCS in the oil sands industry in 2030 is 39% with respect to a business-as-usual baseline. This CO2 reduction results in an energy cost increase of roughly 20% for synthetic crude and 2% for bitumen production. CO2 reductions ranging from 0–35% can be attained by optimising the energy infrastructures, yielding energy production cost reductions between 9%–18%. The maximum CO2 intensity reduction is 46% for synthetic crude and less than 3% for bitumen. Energy conversion and CO2 capture account for the bulk of the energy costs for synthetic crude whereas transport and storage combined contribute between 2.6% and 5% over the entire range of CO2 reductions.The optimal energy production technologies are strongly dependent on the CO2 reduction targets. Power production without capture, predominantly NGCC and supercritical coal technology, is optimal at CO2 reduction levels of up to 30%. At higher CO2 reductions, only NGCC with capture and Oxyfuel plants are optimal. H2 production via coal gasification is optimal for CO2 reduction levels of 35% and lower. Above 35% reduction, steam methane reforming with capture is the dominant technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.02.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.02.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Reinhold Spörl; Günter Scheffknecht; Jörg Maier;AbstractThis article summarizes scientific knowledge and practical experiences on the release and capture of SO2 and SO3 with a special focus on the implications of oxy-fuel combustion conditions on sulphur emission behaviour. Results, obtained at the experimental, 500 kWth atmospheric, pulverized fuel combustion rig (KSVA) of the IFK regarding sulphur oxide (SO2/SO3) emissions and capture behaviour are presented. The experimental plant was operated with pre-dried sulphur rich lignite in air and oxy-fuel combustion mode. The following issues are highlighted in particular:•General and transient behaviour of SO2 emissions under air and oxy-fuel combustion conditions SO3•separation behavior of the ESP under oxy-fuel conditions•Differences of ESP ash qualities from air and oxy-fuel operation
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2018 Italy, United KingdomPublisher:Elsevier BV Authors: Yan X.; Fleming J.; Lot R.;handle: 11577/3322479
Abstract Due to the ability to obtain energy from direct connection to the electricity grid, plug-in hybrid electric vehicles benefit both society and drivers environmentally and economically by reducing energy consumption and emissions. To extend the travel range, existing studies focus mostly on optimizing the power split of the internal combustion engine and battery without considering the impact of the transmission system. This paper deals with the optimization of a continuously variable transmission (CVT) operation for a parallel pre-transmission hybrid powertrain. The novelty of this paper is that the operation of both engine and CVT transmission are optimized together, resulting in a better fuel efficiency. Simulation work has been carried out to compare the performance of the optimized CVT transmission with a fixed transmission, showing that the fuel consumption is reduced and hence the range is increased for the optimized CVT, which makes the engine to operate in higher efficiency points. A key advantage of the formulation proposed is that the result of the optimization process may be expressed in terms of a 2D map that for any pair of vehicle speed and traction force gives the optimal value of the CVT transmission ratio. Such a map may be easily implemented in real vehicular applications.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Archivio istituzionale della ricerca - Università di PadovaConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Archivio istituzionale della ricerca - Università di PadovaConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Asmae Berrada; Asmae Berrada; Khalid Loudiyi;Abstract Energy storage is widely believed as a solution to the high integration of renewable energy technologies. As more renewable energy systems are deployed, there will be an increasing need for more energy storage. So far, pumped hydro storage (PHS) is considered the most significantly used storage technology. Investors are looking for systems able to overcome PHS drawbacks. As an alternative to PHS, gravity energy storage is a system that is currently under development. This technology is based on PHS working principle. The modeling and simulation of this system is the subject of this paper. This work focuses on the hydraulic dynamics of the system. Since gravity energy storage requires complex fluid and structural systems, a mathematical model has been developed using Simulink to investigate the system performance. The proposed model has been validated experimentally. The results obtained from the performed simulation allow for the identification of important parameters such as duty cycle time, piston position, chambers pressure and volume, as well as quantification of the system power and capacity. It is demonstrated that the simulated model can successfully mimic the operation of a real model with relatively small errors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Steve Whittaker; Ben Rostron;AbstractIn July 2000, the IEA-GHG Weyburn CO2 monitoring and storage project was initiated to study the geological storage of CO2 as part of an EOR project planned for the Weyburn Field in Saskatchewan, Canada. Over the period 2000-present, a diverse group of researchers have worked on: assessing the integrity of the geosphere encompassing the Weyburn oil pool for effective long-term storage of CO2; monitoring the movement of the injected CO2, and assessing the risk of migration of CO2 from the injection zone to the surface. Learnings from 10+ years of hydrogeological investigations include: (i) low flow rates and favourable flow directions indicate the Weyburn reservoir is an excellent place to store CO2; (ii) shallow groundwater monitoring reveals no significant changes in water chemistry that can be attributed to storage operations (interactions); and (iii) co-ordination and integration of multiple hydrogeological research programs on the same site can be rewarding but challenging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Bianchi, M.; Branchini, L.; Pascale, A. De; Melino, F.; Ottaviano, S.; Peretto, A.; TORRICELLI, NOEMI; Zampieri, G.;handle: 11585/664347
Abstract In the electricity production sector, geothermal energy is considered a reliable energy source because of its independence of seasonal, climatic and geographical conditions. Low-temperature geothermal wells present a huge potential of exploitation, as the development of binary cycles and the technological improvement in drilling make this heat source a competitive solution for electricity generated distribution and self-consumption. The Organic Rankine Cycle (ORC) is currently the best solution to convert heat into electricity using low enthalpy heat sources. The ORC technology is already mature and widespread for medium and large-scale power plants, applying for geothermal, solar, biomass or waste heat recovery exploitation. Micro-scale ORC applications are still not diffused in the market: the system layout, the working fluid selection and the expander architecture can significantly vary depending on the specific realization requirements, thus a standard configuration has not established yet. In this paper, a particular case study of a micro-ORC power system using a geothermal well is presented. The application in analysis is a plug-and-play ORC facility, currently installed and operating in a pool centre. The system layout and the main components are described. The heat source is a geothermal well, which continuously supplies (by pressure difference) liquid water at a temperature lower than 60 °C to a binary Rankine cycle working with R134a. The ORC system is driven by a prototypal radial-piston expander and adopts an external-gear feed pump and a recuperative cycle. It is developed for working continuously, delivering the generated electricity directly into the grid. The facility is provided with temperature, pressure and electric power sensors for monitoring the operation and for a preliminary evaluation of the performance. The global efficiency of expander and feed pump and the ORC net efficiency have been evaluated at the regular working conditions of the geothermal well, showing values equal to, respectively, 53 %, 41 % and 4.4 %.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Alma Mater Studiorum Università di BolognaArticle . 2018License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.08.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: Bruno R; ARCURI, Natale; Carpino C.;handle: 20.500.11770/145116
AbstractA parametric analysis for an innovative prototype of passive building, located in south Italy and for residential use, has been conducted to evaluate the thermal energy requirements for heating and cooling applications. The investigation was addressed by considering also the aspect of sustainability, by employing natural materials such as dry sand and wood fibre, and the correspondent effects on the energy performances of the envelope. These materials are usually available on site; they increase the building thermal capacity, which represents a crucial aspect for hot climates, and finally could even be reused after building disposal. The construction system based on the completely dry assembling technique makes the exploitation of the mentioned materials possible. The results of the parametric study were obtained by means of the Design Builder dynamic software, by investigating the glazed surfaces, the control of solar radiation and the exploitation of nocturnal free-cooling. A parametric study allowed for optimization of the envelope, by respecting the limit values of 15 kWh/m2 suggested by the standard passivhaus in its extended formulation for warm climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.866&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2015 Norway, Italy, ItalyPublisher:Elsevier BV Authors: BIANCO, LORENZA; Goia, Francesco; SERRA, VALENTINA; Zinzi, Michele;handle: 11250/2479584 , 11583/2627283 , 20.500.12079/5990
AbstractSwitchable windows are glazing technologies that exhibit dynamic optical properties and may thus be used to improve the energy performance of buildings. A window system based on a thermotropic glass pane was tested both in the laboratory and by means of an outdoor test cell facility.In this paper the full optical and thermal characterization of this glazing technology is presented. Experiments and data analysis led to the characterization of the behaviour of the thermotropic glazing both when this technology is used alone (single glass pane) and when it is integrated in a multilayer fenestration (a triple glazed unit).
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BY NC NDData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:Elsevier BV Authors: CASASSO, ALESSANDRO; SETHI, RAJANDREA;handle: 11583/2627157
AbstractThe efficiency of Geothermal Heat Pumps (GHPs) strongly depends on the site-specific parameters of the ground, which should therefore be mapped for the rational planning of shallow geothermal installations. In this paper, a case study is presented for the potentiality assessment of low enthalpy geothermal energy in the Province of Cuneo, a district of 6900 km2 in Piedmont, NW Italy. The available information on the geology, stratigraphy, hydrogeology, climate etc. were processed and mapped, and conclusions were drawn on the geothermal suitability and productivity of different areas of the territory surveyed.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2015License: CC BYFull-Text: https://iris.polito.it/bitstream/11583/2627157/1/Casasso%20and%20Sethi%202015_IBPC2015.pdfData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2015.11.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2017 ItalyPublisher:Elsevier BV Di Somma, Marialaura; Yan, Bing; Bianco, Nicola; Graditi, Giorgio; Luh, Peter B.; Mongibello, Luigi; Naso, Vincenzo;handle: 11588/756827 , 20.500.12079/4838
Abstract In recent years, Distributed Energy Systems (DESs) have been recognized as a good option for sustainable development of future energy systems. With growing environmental concerns, design optimization of DESs through economic assessments only is not sufficient. To achieve long-run sustainability of energy supply, the key idea of this paper is to investigate exergy assessments in DES design optimization to attain rational use of energy resources while considering energy qualities of supply and demand. By using low-temperature sources for low-quality thermal demand, the waste of high-quality energy can be reduced, and the overall exergy efficiency can be increased. Based on a pre-established superstructure, the aim is to determine numbers and sizes of energy devices in the DES and the corresponding operation strategies. A multi-objective linear problem is formulated to reduce the total annual cost and increase the overall exergy efficiency. The Pareto frontier is found to provide different design options for planners based on economic and sustainability priorities, through minimizing a weighted-sum of the total annual cost and primary exergy input, by using branch-and-cut. Numerical results demonstrate that different optimized DES configurations can be found according to the two objectives. Moreover, results also show that the total annual cost and primary exergy input are reduced by 20% - 30% as compared with conventional energy supply systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.03.706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Peter L. Douglas; Ali Elkamel; Eric Croiset; Murlidhar Gupta; Guillermo Ordorica-Garcia;AbstractThe forecasted energy production of oil sands operations in Alberta in the year 2030 were optimised under CO2 emissions constraints, using a mixed integer linear optimisation model. The model features a variety of technologies (with and without CO2 capture), including coal and natural gas power plants, IGCC, and oxyfuel plants. Hydrogen production technologies are steam methane reforming and coal gasification. The optimization is executed at increasing CO2 emissions reduction levels, yielding unique infrastructures that satisfy the energy demands of the oil sands industry at minimal cost. The economic and environmental impacts of the optimally chosen technologies on the forecasted operations of the oil sands industry in 2030 are thus determined.The maximum CO2 emissions reduction attainable by using CCS in the oil sands industry in 2030 is 39% with respect to a business-as-usual baseline. This CO2 reduction results in an energy cost increase of roughly 20% for synthetic crude and 2% for bitumen production. CO2 reductions ranging from 0–35% can be attained by optimising the energy infrastructures, yielding energy production cost reductions between 9%–18%. The maximum CO2 intensity reduction is 46% for synthetic crude and less than 3% for bitumen. Energy conversion and CO2 capture account for the bulk of the energy costs for synthetic crude whereas transport and storage combined contribute between 2.6% and 5% over the entire range of CO2 reductions.The optimal energy production technologies are strongly dependent on the CO2 reduction targets. Power production without capture, predominantly NGCC and supercritical coal technology, is optimal at CO2 reduction levels of up to 30%. At higher CO2 reductions, only NGCC with capture and Oxyfuel plants are optimal. H2 production via coal gasification is optimal for CO2 reduction levels of 35% and lower. Above 35% reduction, steam methane reforming with capture is the dominant technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.02.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2009.02.203&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Reinhold Spörl; Günter Scheffknecht; Jörg Maier;AbstractThis article summarizes scientific knowledge and practical experiences on the release and capture of SO2 and SO3 with a special focus on the implications of oxy-fuel combustion conditions on sulphur emission behaviour. Results, obtained at the experimental, 500 kWth atmospheric, pulverized fuel combustion rig (KSVA) of the IFK regarding sulphur oxide (SO2/SO3) emissions and capture behaviour are presented. The experimental plant was operated with pre-dried sulphur rich lignite in air and oxy-fuel combustion mode. The following issues are highlighted in particular:•General and transient behaviour of SO2 emissions under air and oxy-fuel combustion conditions SO3•separation behavior of the ESP under oxy-fuel conditions•Differences of ESP ash qualities from air and oxy-fuel operation
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2013.06.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2018 Italy, United KingdomPublisher:Elsevier BV Authors: Yan X.; Fleming J.; Lot R.;handle: 11577/3322479
Abstract Due to the ability to obtain energy from direct connection to the electricity grid, plug-in hybrid electric vehicles benefit both society and drivers environmentally and economically by reducing energy consumption and emissions. To extend the travel range, existing studies focus mostly on optimizing the power split of the internal combustion engine and battery without considering the impact of the transmission system. This paper deals with the optimization of a continuously variable transmission (CVT) operation for a parallel pre-transmission hybrid powertrain. The novelty of this paper is that the operation of both engine and CVT transmission are optimized together, resulting in a better fuel efficiency. Simulation work has been carried out to compare the performance of the optimized CVT transmission with a fixed transmission, showing that the fuel consumption is reduced and hence the range is increased for the optimized CVT, which makes the engine to operate in higher efficiency points. A key advantage of the formulation proposed is that the result of the optimization process may be expressed in terms of a 2D map that for any pair of vehicle speed and traction force gives the optimal value of the CVT transmission ratio. Such a map may be easily implemented in real vehicular applications.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Archivio istituzionale della ricerca - Università di PadovaConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Archivio istituzionale della ricerca - Università di PadovaConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2018.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Asmae Berrada; Asmae Berrada; Khalid Loudiyi;Abstract Energy storage is widely believed as a solution to the high integration of renewable energy technologies. As more renewable energy systems are deployed, there will be an increasing need for more energy storage. So far, pumped hydro storage (PHS) is considered the most significantly used storage technology. Investors are looking for systems able to overcome PHS drawbacks. As an alternative to PHS, gravity energy storage is a system that is currently under development. This technology is based on PHS working principle. The modeling and simulation of this system is the subject of this paper. This work focuses on the hydraulic dynamics of the system. Since gravity energy storage requires complex fluid and structural systems, a mathematical model has been developed using Simulink to investigate the system performance. The proposed model has been validated experimentally. The results obtained from the performed simulation allow for the identification of important parameters such as duty cycle time, piston position, chambers pressure and volume, as well as quantification of the system power and capacity. It is demonstrated that the simulated model can successfully mimic the operation of a real model with relatively small errors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 20 citations 20 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Steve Whittaker; Ben Rostron;AbstractIn July 2000, the IEA-GHG Weyburn CO2 monitoring and storage project was initiated to study the geological storage of CO2 as part of an EOR project planned for the Weyburn Field in Saskatchewan, Canada. Over the period 2000-present, a diverse group of researchers have worked on: assessing the integrity of the geosphere encompassing the Weyburn oil pool for effective long-term storage of CO2; monitoring the movement of the injected CO2, and assessing the risk of migration of CO2 from the injection zone to the surface. Learnings from 10+ years of hydrogeological investigations include: (i) low flow rates and favourable flow directions indicate the Weyburn reservoir is an excellent place to store CO2; (ii) shallow groundwater monitoring reveals no significant changes in water chemistry that can be attributed to storage operations (interactions); and (iii) co-ordination and integration of multiple hydrogeological research programs on the same site can be rewarding but challenging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2011.02.294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu