- home
- Advanced Search
- Energy Research
- 11. Sustainability
- IT
- DE
- EU
- Energy Research
- 11. Sustainability
- IT
- DE
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Angela Santangelo; Da Yan; Xiaohang Feng; Simona Tondelli;handle: 11585/631408
Abstract The central role of occupants for achieving energy savings in residential buildings is increasingly recognised. Simulation programmes able to take into account occupant behaviour are considered to be powerful tools for bridging the gap between the predicted and the actual energy consumption for new buildings. Nevertheless, the majority of residential buildings that will constitute the housing stock in 2050 have already been built today, therefore occupant behaviour and building simulation tools need to be fully exploited for supporting the renovation of existing housing stock. The aim of this paper is to explore the role of occupant behaviour modelling in supporting decision-makers dealing with the design of renovation strategies for residential buildings. An Italian multi-family public housing building is assumed as case study to estimate the influence of three dimensions linked with occupant behaviour – management of the thermostat, management of the heating system, variation of building characteristics – on energy heating consumption. The results show that, while the occupant behaviour influences the heating loads up to 1/3 in case of high level of building retrofit, the less the building is renovated, the higher is the behavioural impact in absolute terms of energy reduction. Therefore, in order to be effective, renovation strategies are required to design appropriate informative instruments at an early stage to support behaviour changes towards responsible energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Angela Santangelo; Da Yan; Xiaohang Feng; Simona Tondelli;handle: 11585/631408
Abstract The central role of occupants for achieving energy savings in residential buildings is increasingly recognised. Simulation programmes able to take into account occupant behaviour are considered to be powerful tools for bridging the gap between the predicted and the actual energy consumption for new buildings. Nevertheless, the majority of residential buildings that will constitute the housing stock in 2050 have already been built today, therefore occupant behaviour and building simulation tools need to be fully exploited for supporting the renovation of existing housing stock. The aim of this paper is to explore the role of occupant behaviour modelling in supporting decision-makers dealing with the design of renovation strategies for residential buildings. An Italian multi-family public housing building is assumed as case study to estimate the influence of three dimensions linked with occupant behaviour – management of the thermostat, management of the heating system, variation of building characteristics – on energy heating consumption. The results show that, while the occupant behaviour influences the heating loads up to 1/3 in case of high level of building retrofit, the less the building is renovated, the higher is the behavioural impact in absolute terms of energy reduction. Therefore, in order to be effective, renovation strategies are required to design appropriate informative instruments at an early stage to support behaviour changes towards responsible energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Italy, SwitzerlandPublisher:Elsevier BV Lobaccaro G.; Croce S.; Lindkvist C.; Munari Probst M. C.; Scognamiglio A.; Dahlberg J.; Lundgren M.; Wall M.;handle: 11250/2635473 , 11577/3371722
Abstract This work, framed in the IEA SHC Task 51 “Solar Energy in Urban Planning”, presents an illustrative perspective of solar energy in urban planning through the analysis of 34 international case studies conducted in 10 countries. The aim here is to examine challenges, barriers and opportunities for active solar systems and passive solar strategies by taking into consideration interrelated technical and non-technical aspects in ongoing and completed projects. It focuses on exposing potential pitfalls and illustrating lessons learned in case studies divided into three categories: (i) existing urban areas, (ii) new urban areas, and (iii) solar landscapes. The analysis has yielded insights into the solar energy strategy adoption, the evaluation of solar energy production, solar irradiation and daylighting, and the architectural quality, sensitivity and visibility of the solar systems for urban planning. The outcomes have implications to stimulate successful practices in implementing solar strategies in urban planning and facilitating their replicability worldwide by avoiding common mistakes.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Italy, SwitzerlandPublisher:Elsevier BV Lobaccaro G.; Croce S.; Lindkvist C.; Munari Probst M. C.; Scognamiglio A.; Dahlberg J.; Lundgren M.; Wall M.;handle: 11250/2635473 , 11577/3371722
Abstract This work, framed in the IEA SHC Task 51 “Solar Energy in Urban Planning”, presents an illustrative perspective of solar energy in urban planning through the analysis of 34 international case studies conducted in 10 countries. The aim here is to examine challenges, barriers and opportunities for active solar systems and passive solar strategies by taking into consideration interrelated technical and non-technical aspects in ongoing and completed projects. It focuses on exposing potential pitfalls and illustrating lessons learned in case studies divided into three categories: (i) existing urban areas, (ii) new urban areas, and (iii) solar landscapes. The analysis has yielded insights into the solar energy strategy adoption, the evaluation of solar energy production, solar irradiation and daylighting, and the architectural quality, sensitivity and visibility of the solar systems for urban planning. The outcomes have implications to stimulate successful practices in implementing solar strategies in urban planning and facilitating their replicability worldwide by avoiding common mistakes.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 Portugal Funded by:EC | BAMBEC| BAMBAuthors: Bragança, L.;handle: 1822/59319
The SBE19 Brussels - BAMB-CIRCPATH "Building as Material Banks - A Pathway for a Circular held in Brussels on 5 to 7 of February 2019, is an initiative of the Consortium of the H2020 BAMB Project together with the Sustainable Built Environment (SBE) series of conferences. Being within the SBE series, this event gathers the support of CIB International Council for Research and Innovation in Building and Construction, iiSBE International Initiative for a Sustainable Built Environment, the United Nations Environment Programme, and FIDIC International Federation of Consulting Engineers. The goal of this series of regional and international conferences is to disseminate innovative policies and developments in the field of sustainable urban environment to a broad international audience of specialists in policy, design, construction and operation of buildings and related infrastructure. info:eu-repo/semantics/publishedVersion
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 61visibility views 61 download downloads 19 Powered bymore_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 Portugal Funded by:EC | BAMBEC| BAMBAuthors: Bragança, L.;handle: 1822/59319
The SBE19 Brussels - BAMB-CIRCPATH "Building as Material Banks - A Pathway for a Circular held in Brussels on 5 to 7 of February 2019, is an initiative of the Consortium of the H2020 BAMB Project together with the Sustainable Built Environment (SBE) series of conferences. Being within the SBE series, this event gathers the support of CIB International Council for Research and Innovation in Building and Construction, iiSBE International Initiative for a Sustainable Built Environment, the United Nations Environment Programme, and FIDIC International Federation of Consulting Engineers. The goal of this series of regional and international conferences is to disseminate innovative policies and developments in the field of sustainable urban environment to a broad international audience of specialists in policy, design, construction and operation of buildings and related infrastructure. info:eu-repo/semantics/publishedVersion
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 61visibility views 61 download downloads 19 Powered bymore_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Ricciardi P.; Belloni E.; Merli F.; Buratti C.;doi: 10.3390/app11020494
handle: 11391/1492585
Recycled waste materials obtained from industrial and agricultural processes are becoming promising thermal and acoustic insulating solutions in building applications; their use can play an important role in the environmental impact reduction. The aim of the present paper is the evaluation of the thermal performance of recycled waste panels consisting of cork scraps, rice husk, coffee chaff, and end-life granulated tires, glued in different weight ratios and pressed. Six panels obtained from the mixing of these waste materials were fabricated and analyzed. In particular, the scope is the selection of the best compromise solutions from the thermal and environmental points of view. To this aim, thermal resistances were measured in laboratory and a Life Cycle Assessment (LCA) analysis was carried out for each panel; a cross-comparative examination was performed in order to optimize their properties and find the best panels solutions to be assembled in the future. Life Cycle Analysis was carried out in terms of primary Embodied Energy and Greenhouse Gas Emissions, considering a ‘‘cradle-to-gate” approach. The obtained thermal conductivities varied in the 0.055 to 0.135 W/mK range, in the same order of magnitude of many traditional systems. The best thermal results were obtained for the panels made of granulated cork, rice husk, and coffee chaff in this order. The rubber granulate showed higher values of the thermal conductivity (about 0.15 W/mK); a very interesting combined solution was the panel composed of cork (60%), rice husk (20%), and coffee chaff (20%), with a thermal conductivity of 0.08 W/mK and a Global Warming Potential of only 2.6 kg CO2eq/m2. Considering the Embodied Energy (CED), the best solution is a panel composed of 56% of cork and 44% of coffee chaff (minimum CED and thermal conductivity).
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/2/494/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11020494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/2/494/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11020494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Ricciardi P.; Belloni E.; Merli F.; Buratti C.;doi: 10.3390/app11020494
handle: 11391/1492585
Recycled waste materials obtained from industrial and agricultural processes are becoming promising thermal and acoustic insulating solutions in building applications; their use can play an important role in the environmental impact reduction. The aim of the present paper is the evaluation of the thermal performance of recycled waste panels consisting of cork scraps, rice husk, coffee chaff, and end-life granulated tires, glued in different weight ratios and pressed. Six panels obtained from the mixing of these waste materials were fabricated and analyzed. In particular, the scope is the selection of the best compromise solutions from the thermal and environmental points of view. To this aim, thermal resistances were measured in laboratory and a Life Cycle Assessment (LCA) analysis was carried out for each panel; a cross-comparative examination was performed in order to optimize their properties and find the best panels solutions to be assembled in the future. Life Cycle Analysis was carried out in terms of primary Embodied Energy and Greenhouse Gas Emissions, considering a ‘‘cradle-to-gate” approach. The obtained thermal conductivities varied in the 0.055 to 0.135 W/mK range, in the same order of magnitude of many traditional systems. The best thermal results were obtained for the panels made of granulated cork, rice husk, and coffee chaff in this order. The rubber granulate showed higher values of the thermal conductivity (about 0.15 W/mK); a very interesting combined solution was the panel composed of cork (60%), rice husk (20%), and coffee chaff (20%), with a thermal conductivity of 0.08 W/mK and a Global Warming Potential of only 2.6 kg CO2eq/m2. Considering the Embodied Energy (CED), the best solution is a panel composed of 56% of cork and 44% of coffee chaff (minimum CED and thermal conductivity).
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/2/494/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11020494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/2/494/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11020494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Authors: Ma, J.; Li, Q.; Kühn, M.; Nakaten, N.;Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Authors: Ma, J.; Li, Q.; Kühn, M.; Nakaten, N.;Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Italy, NetherlandsPublisher:MDPI AG Authors: Mohsen H. Farhangi; Margherita E. Turvani; Arnold van der Valk; Gerrit J. Carsjens;doi: 10.3390/su12103955
handle: 11578/282976
The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social–technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Italy, NetherlandsPublisher:MDPI AG Authors: Mohsen H. Farhangi; Margherita E. Turvani; Arnold van der Valk; Gerrit J. Carsjens;doi: 10.3390/su12103955
handle: 11578/282976
The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social–technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2021Publisher:Elsevier BV Authors: Inderst, Roman; Thomas, Stefan;handle: 10419/253668
The failure to fully internalize externalities from production and consumption, including on future generations, is supposed to be at the core of the perceived failure to ensure (ecological) sustainability within the realm of antitrust enforcement. While some argue that sustainability should constitute a goal in itself that must be balanced against economic efficiency in antitrust analysis, we instead want to explore whether and how sustainability can be incorporated into a consumer welfare approach. We make a key distinction between what we term an individualistic and a collective consumer welfare analysis. Within an individualistic consumer welfare analysis, consumers’ willingness-to-pay is measured ceteris paribus, holding other consumers’ choices fixed. In a collective consumer welfare analysis, consumers may express their willingness-to-pay also for the choices of others and, thereby, also for the reduction of externalities on themselves. Borrowing from environmental and resource economics, we also discuss more indirect ways of incorporating such externalities. And we critically assess the possibility of ‘laundering’ consumers’ sustainability preferences in the light of supposed biases and cognitive limitations. Finally, we relate our analysis to the Draft Horizontal Guidelines of the European Commission, published in March 2022. antitrust, consumer welfare, conjoint analysis, contingent valuation, Draft EU Horizontal Guidelines, environmental economics, externalities, laundering preferences, sustainability, willingness-to-pay
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2021Publisher:Elsevier BV Authors: Inderst, Roman; Thomas, Stefan;handle: 10419/253668
The failure to fully internalize externalities from production and consumption, including on future generations, is supposed to be at the core of the perceived failure to ensure (ecological) sustainability within the realm of antitrust enforcement. While some argue that sustainability should constitute a goal in itself that must be balanced against economic efficiency in antitrust analysis, we instead want to explore whether and how sustainability can be incorporated into a consumer welfare approach. We make a key distinction between what we term an individualistic and a collective consumer welfare analysis. Within an individualistic consumer welfare analysis, consumers’ willingness-to-pay is measured ceteris paribus, holding other consumers’ choices fixed. In a collective consumer welfare analysis, consumers may express their willingness-to-pay also for the choices of others and, thereby, also for the reduction of externalities on themselves. Borrowing from environmental and resource economics, we also discuss more indirect ways of incorporating such externalities. And we critically assess the possibility of ‘laundering’ consumers’ sustainability preferences in the light of supposed biases and cognitive limitations. Finally, we relate our analysis to the Draft Horizontal Guidelines of the European Commission, published in March 2022. antitrust, consumer welfare, conjoint analysis, contingent valuation, Draft EU Horizontal Guidelines, environmental economics, externalities, laundering preferences, sustainability, willingness-to-pay
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Nicolae Scarlat; Jean-Franc¸ois Dallemand; Manjola Banja;According to the renewable energy directive 2009/28/EC, the European Union Member States should increase by 2020 the use of renewable energy to 20% of gross final energy consumption and to reach a mandatory share of 10% renewable energy in the transport sector. This study aims to quantify the impact of 2020 bioenergy targets on the land use in the EU, based on the projections of the National Renewable Action Plans in four scenarios: Scenario 1. Bioenergy targets according to NREAPs; Scenario 2. Bioenergy targets according to NREAPs, no second generation biofuels; Scenario 3. Bioenergy targets according to NREAPs, reduced import of biofuels and bioliquids; Scenario 4. Bioenergy targets according to NREAPs, high imports of biofuels and bioliquids. This study also considers the credit for co-products generated from biofuel production. The analysis reveals that the land used in the EU for bioenergy would range between 13.5 Mha and 25.2 Mha in 2020. This represent between 12.2% and 22.5% of the total arable land used and 7.3% and 13.5% of the Utilised Agricultural Area (UAA). In the NREAPS scenario, about 17.4 Mha would be used for bioenergy production, representing 15.7% of arable land and 9.4% of UAA. The increased demand from biofuels would lead to an increased generation of co-products, replacing conventional fodder for animal feed. Considering the co-products, the land used for bioenergy would range between 8.8 Mha and 15.0 Mha in 2020 in the various scenarios. This represent between 7.9% and 13.3% of the total arable land used in the EU and 4.7% and 8.0% of the UAA. In the NREAPS scenario, when co-products are considered, about 10.3 Mha would be used for biofuels, bioliquids and bioenergy production, representing 9.3% of arable land and 5.6% of agricultural land. This study further provides detailed data on the impact on land use in each Member State.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Angela Santangelo; Da Yan; Xiaohang Feng; Simona Tondelli;handle: 11585/631408
Abstract The central role of occupants for achieving energy savings in residential buildings is increasingly recognised. Simulation programmes able to take into account occupant behaviour are considered to be powerful tools for bridging the gap between the predicted and the actual energy consumption for new buildings. Nevertheless, the majority of residential buildings that will constitute the housing stock in 2050 have already been built today, therefore occupant behaviour and building simulation tools need to be fully exploited for supporting the renovation of existing housing stock. The aim of this paper is to explore the role of occupant behaviour modelling in supporting decision-makers dealing with the design of renovation strategies for residential buildings. An Italian multi-family public housing building is assumed as case study to estimate the influence of three dimensions linked with occupant behaviour – management of the thermostat, management of the heating system, variation of building characteristics – on energy heating consumption. The results show that, while the occupant behaviour influences the heating loads up to 1/3 in case of high level of building retrofit, the less the building is renovated, the higher is the behavioural impact in absolute terms of energy reduction. Therefore, in order to be effective, renovation strategies are required to design appropriate informative instruments at an early stage to support behaviour changes towards responsible energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Angela Santangelo; Da Yan; Xiaohang Feng; Simona Tondelli;handle: 11585/631408
Abstract The central role of occupants for achieving energy savings in residential buildings is increasingly recognised. Simulation programmes able to take into account occupant behaviour are considered to be powerful tools for bridging the gap between the predicted and the actual energy consumption for new buildings. Nevertheless, the majority of residential buildings that will constitute the housing stock in 2050 have already been built today, therefore occupant behaviour and building simulation tools need to be fully exploited for supporting the renovation of existing housing stock. The aim of this paper is to explore the role of occupant behaviour modelling in supporting decision-makers dealing with the design of renovation strategies for residential buildings. An Italian multi-family public housing building is assumed as case study to estimate the influence of three dimensions linked with occupant behaviour – management of the thermostat, management of the heating system, variation of building characteristics – on energy heating consumption. The results show that, while the occupant behaviour influences the heating loads up to 1/3 in case of high level of building retrofit, the less the building is renovated, the higher is the behavioural impact in absolute terms of energy reduction. Therefore, in order to be effective, renovation strategies are required to design appropriate informative instruments at an early stage to support behaviour changes towards responsible energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Italy, SwitzerlandPublisher:Elsevier BV Lobaccaro G.; Croce S.; Lindkvist C.; Munari Probst M. C.; Scognamiglio A.; Dahlberg J.; Lundgren M.; Wall M.;handle: 11250/2635473 , 11577/3371722
Abstract This work, framed in the IEA SHC Task 51 “Solar Energy in Urban Planning”, presents an illustrative perspective of solar energy in urban planning through the analysis of 34 international case studies conducted in 10 countries. The aim here is to examine challenges, barriers and opportunities for active solar systems and passive solar strategies by taking into consideration interrelated technical and non-technical aspects in ongoing and completed projects. It focuses on exposing potential pitfalls and illustrating lessons learned in case studies divided into three categories: (i) existing urban areas, (ii) new urban areas, and (iii) solar landscapes. The analysis has yielded insights into the solar energy strategy adoption, the evaluation of solar energy production, solar irradiation and daylighting, and the architectural quality, sensitivity and visibility of the solar systems for urban planning. The outcomes have implications to stimulate successful practices in implementing solar strategies in urban planning and facilitating their replicability worldwide by avoiding common mistakes.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Italy, SwitzerlandPublisher:Elsevier BV Lobaccaro G.; Croce S.; Lindkvist C.; Munari Probst M. C.; Scognamiglio A.; Dahlberg J.; Lundgren M.; Wall M.;handle: 11250/2635473 , 11577/3371722
Abstract This work, framed in the IEA SHC Task 51 “Solar Energy in Urban Planning”, presents an illustrative perspective of solar energy in urban planning through the analysis of 34 international case studies conducted in 10 countries. The aim here is to examine challenges, barriers and opportunities for active solar systems and passive solar strategies by taking into consideration interrelated technical and non-technical aspects in ongoing and completed projects. It focuses on exposing potential pitfalls and illustrating lessons learned in case studies divided into three categories: (i) existing urban areas, (ii) new urban areas, and (iii) solar landscapes. The analysis has yielded insights into the solar energy strategy adoption, the evaluation of solar energy production, solar irradiation and daylighting, and the architectural quality, sensitivity and visibility of the solar systems for urban planning. The outcomes have implications to stimulate successful practices in implementing solar strategies in urban planning and facilitating their replicability worldwide by avoiding common mistakes.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 93 citations 93 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.03.041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 Portugal Funded by:EC | BAMBEC| BAMBAuthors: Bragança, L.;handle: 1822/59319
The SBE19 Brussels - BAMB-CIRCPATH "Building as Material Banks - A Pathway for a Circular held in Brussels on 5 to 7 of February 2019, is an initiative of the Consortium of the H2020 BAMB Project together with the Sustainable Built Environment (SBE) series of conferences. Being within the SBE series, this event gathers the support of CIB International Council for Research and Innovation in Building and Construction, iiSBE International Initiative for a Sustainable Built Environment, the United Nations Environment Programme, and FIDIC International Federation of Consulting Engineers. The goal of this series of regional and international conferences is to disseminate innovative policies and developments in the field of sustainable urban environment to a broad international audience of specialists in policy, design, construction and operation of buildings and related infrastructure. info:eu-repo/semantics/publishedVersion
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 61visibility views 61 download downloads 19 Powered bymore_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019 Portugal Funded by:EC | BAMBEC| BAMBAuthors: Bragança, L.;handle: 1822/59319
The SBE19 Brussels - BAMB-CIRCPATH "Building as Material Banks - A Pathway for a Circular held in Brussels on 5 to 7 of February 2019, is an initiative of the Consortium of the H2020 BAMB Project together with the Sustainable Built Environment (SBE) series of conferences. Being within the SBE series, this event gathers the support of CIB International Council for Research and Innovation in Building and Construction, iiSBE International Initiative for a Sustainable Built Environment, the United Nations Environment Programme, and FIDIC International Federation of Consulting Engineers. The goal of this series of regional and international conferences is to disseminate innovative policies and developments in the field of sustainable urban environment to a broad international audience of specialists in policy, design, construction and operation of buildings and related infrastructure. info:eu-repo/semantics/publishedVersion
Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 61visibility views 61 download downloads 19 Powered bymore_vert Universidade do Minh... arrow_drop_down Universidade do Minho: RepositoriUMConference object . 2019Data sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2019Data sources: Universidade do Minho: RepositoriUMadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=1822/59319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.; Blair, M.; Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Исследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Ricciardi P.; Belloni E.; Merli F.; Buratti C.;doi: 10.3390/app11020494
handle: 11391/1492585
Recycled waste materials obtained from industrial and agricultural processes are becoming promising thermal and acoustic insulating solutions in building applications; their use can play an important role in the environmental impact reduction. The aim of the present paper is the evaluation of the thermal performance of recycled waste panels consisting of cork scraps, rice husk, coffee chaff, and end-life granulated tires, glued in different weight ratios and pressed. Six panels obtained from the mixing of these waste materials were fabricated and analyzed. In particular, the scope is the selection of the best compromise solutions from the thermal and environmental points of view. To this aim, thermal resistances were measured in laboratory and a Life Cycle Assessment (LCA) analysis was carried out for each panel; a cross-comparative examination was performed in order to optimize their properties and find the best panels solutions to be assembled in the future. Life Cycle Analysis was carried out in terms of primary Embodied Energy and Greenhouse Gas Emissions, considering a ‘‘cradle-to-gate” approach. The obtained thermal conductivities varied in the 0.055 to 0.135 W/mK range, in the same order of magnitude of many traditional systems. The best thermal results were obtained for the panels made of granulated cork, rice husk, and coffee chaff in this order. The rubber granulate showed higher values of the thermal conductivity (about 0.15 W/mK); a very interesting combined solution was the panel composed of cork (60%), rice husk (20%), and coffee chaff (20%), with a thermal conductivity of 0.08 W/mK and a Global Warming Potential of only 2.6 kg CO2eq/m2. Considering the Embodied Energy (CED), the best solution is a panel composed of 56% of cork and 44% of coffee chaff (minimum CED and thermal conductivity).
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/2/494/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11020494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/2/494/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11020494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Authors: Ricciardi P.; Belloni E.; Merli F.; Buratti C.;doi: 10.3390/app11020494
handle: 11391/1492585
Recycled waste materials obtained from industrial and agricultural processes are becoming promising thermal and acoustic insulating solutions in building applications; their use can play an important role in the environmental impact reduction. The aim of the present paper is the evaluation of the thermal performance of recycled waste panels consisting of cork scraps, rice husk, coffee chaff, and end-life granulated tires, glued in different weight ratios and pressed. Six panels obtained from the mixing of these waste materials were fabricated and analyzed. In particular, the scope is the selection of the best compromise solutions from the thermal and environmental points of view. To this aim, thermal resistances were measured in laboratory and a Life Cycle Assessment (LCA) analysis was carried out for each panel; a cross-comparative examination was performed in order to optimize their properties and find the best panels solutions to be assembled in the future. Life Cycle Analysis was carried out in terms of primary Embodied Energy and Greenhouse Gas Emissions, considering a ‘‘cradle-to-gate” approach. The obtained thermal conductivities varied in the 0.055 to 0.135 W/mK range, in the same order of magnitude of many traditional systems. The best thermal results were obtained for the panels made of granulated cork, rice husk, and coffee chaff in this order. The rubber granulate showed higher values of the thermal conductivity (about 0.15 W/mK); a very interesting combined solution was the panel composed of cork (60%), rice husk (20%), and coffee chaff (20%), with a thermal conductivity of 0.08 W/mK and a Global Warming Potential of only 2.6 kg CO2eq/m2. Considering the Embodied Energy (CED), the best solution is a panel composed of 56% of cork and 44% of coffee chaff (minimum CED and thermal conductivity).
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/2/494/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11020494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3417/11/2/494/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app11020494&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Authors: Ma, J.; Li, Q.; Kühn, M.; Nakaten, N.;Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Authors: Ma, J.; Li, Q.; Kühn, M.; Nakaten, N.;Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Italy, NetherlandsPublisher:MDPI AG Authors: Mohsen H. Farhangi; Margherita E. Turvani; Arnold van der Valk; Gerrit J. Carsjens;doi: 10.3390/su12103955
handle: 11578/282976
The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social–technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, Italy, NetherlandsPublisher:MDPI AG Authors: Mohsen H. Farhangi; Margherita E. Turvani; Arnold van der Valk; Gerrit J. Carsjens;doi: 10.3390/su12103955
handle: 11578/282976
The agriculture and horticulture sector in the Netherlands is one of the most productive in the world. Although the sector is one of the most advanced and intense agricultural production systems worldwide, it faces challenges, such as climate change and environmental and social unsustainability of industrial production. To overcome these challenges, alternative food production initiatives have emerged, especially in large cities such as Amsterdam. Some initiatives involve producing food in the urban environment, supported by new technologies and practices, so-called high-tech urban agriculture (HTUA). These initiatives make cultivation of plants inside and on top of buildings possible and increase green spaces in urban areas. The emerging agricultural technologies are creating new business environments that are shape d by technology developers (e.g., suppliers of horticultural light emitting diodes (LED) and control environment systems) and developers of alternative food production practices (e.g., HTUA start-ups). However, research shows that the uptake of these technological innovations in urban planning processes is problematic. Therefore, this research analyzes the barriers that local government planners and HTUA developers are facing in the embedding of HTUA in urban planning processes, using the city of Amsterdam as a case study. This study draws on actor-network theory (ANT) to analyze the interactions between planners, technologies, technology developers and developers of alternative food production practices. Several concepts of ANT are integrated into a multi-level perspective on sustainability transitions (MLP) to create a new theoretical framework that can explain how interactions between technologies and planning actors transform the incumbent social–technical regime. The configuration of interactions between social and material entities in technology development and adoption processes in Amsterdam is analyzed through the lens of this theoretical framework. The data in this study were gathered by tracing actors and their connections by using ethnographic research methods. In the course of the integration of new technologies into urban planning practices, gaps between technologies, technology developers, and planning actors have been identified. The results of this study show a lacking connection between planning actors and technology developers, although planning actors do interact with developers of alternative food production practices. These interactions are influenced by agency of artefacts such as visualizations of the future projects. The paper concludes that for the utilization of emerging technologies for sustainability transition of cities, the existing gap between technology developers and planning actors needs to be bridged through the integration of technology development visions in urban agendas and planning processes.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/10/3955/pdfData sources: Multidisciplinary Digital Publishing InstituteWageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12103955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2021Publisher:Elsevier BV Authors: Inderst, Roman; Thomas, Stefan;handle: 10419/253668
The failure to fully internalize externalities from production and consumption, including on future generations, is supposed to be at the core of the perceived failure to ensure (ecological) sustainability within the realm of antitrust enforcement. While some argue that sustainability should constitute a goal in itself that must be balanced against economic efficiency in antitrust analysis, we instead want to explore whether and how sustainability can be incorporated into a consumer welfare approach. We make a key distinction between what we term an individualistic and a collective consumer welfare analysis. Within an individualistic consumer welfare analysis, consumers’ willingness-to-pay is measured ceteris paribus, holding other consumers’ choices fixed. In a collective consumer welfare analysis, consumers may express their willingness-to-pay also for the choices of others and, thereby, also for the reduction of externalities on themselves. Borrowing from environmental and resource economics, we also discuss more indirect ways of incorporating such externalities. And we critically assess the possibility of ‘laundering’ consumers’ sustainability preferences in the light of supposed biases and cognitive limitations. Finally, we relate our analysis to the Draft Horizontal Guidelines of the European Commission, published in March 2022. antitrust, consumer welfare, conjoint analysis, contingent valuation, Draft EU Horizontal Guidelines, environmental economics, externalities, laundering preferences, sustainability, willingness-to-pay
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2021Publisher:Elsevier BV Authors: Inderst, Roman; Thomas, Stefan;handle: 10419/253668
The failure to fully internalize externalities from production and consumption, including on future generations, is supposed to be at the core of the perceived failure to ensure (ecological) sustainability within the realm of antitrust enforcement. While some argue that sustainability should constitute a goal in itself that must be balanced against economic efficiency in antitrust analysis, we instead want to explore whether and how sustainability can be incorporated into a consumer welfare approach. We make a key distinction between what we term an individualistic and a collective consumer welfare analysis. Within an individualistic consumer welfare analysis, consumers’ willingness-to-pay is measured ceteris paribus, holding other consumers’ choices fixed. In a collective consumer welfare analysis, consumers may express their willingness-to-pay also for the choices of others and, thereby, also for the reduction of externalities on themselves. Borrowing from environmental and resource economics, we also discuss more indirect ways of incorporating such externalities. And we critically assess the possibility of ‘laundering’ consumers’ sustainability preferences in the light of supposed biases and cognitive limitations. Finally, we relate our analysis to the Draft Horizontal Guidelines of the European Commission, published in March 2022. antitrust, consumer welfare, conjoint analysis, contingent valuation, Draft EU Horizontal Guidelines, environmental economics, externalities, laundering preferences, sustainability, willingness-to-pay
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.3896243&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu