- home
- Advanced Search
- Energy Research
- IT
- Energy and Built Environment
- Energy Research
- IT
- Energy and Built Environment
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:Elsevier BV Aste, N.; Adhikari, R. S.; Buzzetti, M.; Del Pero, C.; Huerto-Cardenas, H. E.; Leonforte, F.; Miglioli, A.;handle: 11311/1166950
The nZEB objectives have raised the standard of building performance and changed the way in which buildings are designed and used. Although energy dynamic simulation tools are potentially the most suitable way for accurately evaluating and forecasting the thermal performance, they need several data inputs and user's knowledge that can affect the reliability of the results. It is precisely these two aspects that proved to be particularly critical, since the reliability of the ICT calculation tools has been widely proven in recent time.However, in order to foster credibility in sustainable architecture, bridging the gap between predicted and measured performance is pivotal to boost the building market towards energy efficiency and provide reliable data to inhabitant, investors and policy maker.The present research aims to identify and quantify the main factors that affect the energy performance gap through a detailed energy analysis carried out on a case study, which can be considered one of the first nearly zero energy residential complex built in Italy. Based on the analysis, the study identifies the main causes of the deviation between the calculated and measured data and demonstrates how it is possible to achieve very reliable models and, therefore, real buildings.Although the procedure traces a classic model calibration scheme, actually it consists of a verification of possible downstream errors mainly due to human factors, such as the provision of incorrect technical data or inappropriate operation.Some observations on the technical, management and regulatory gaps that may generate these errors are reported at the end of the study, together with practical suggestions that can provide effective solutions.
RE.PUBLIC@POLIMI Res... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:Elsevier BV Authors: Besagni G.; Borgarello M.;handle: 11311/1166293
A precise understanding of the relationships between the household characteristics and the residential energy consumption is needed to support the implementation of effective top-bottom energy strategies and to improve the prediction of forecasting models. This paper contributes to the present-day discussion and analyses the building factors, socio-demographic variables and appliances contributing to high-energy expenditures (viz., electrical energy expenditure, thermal energy expenditure and total energy expenditure) in the Italian households. The proposed study builds on an earlier work proposed by the authors, which identified the determinants of the household energy expenditures, based on a nationally representative survey (the “household Budget Survey: microdata for research purposes - 2015″ performed by the Italian National Institute of Statistics). In particular, the present paper completes and extends the previous research by applying the odds-ratio analysis to the previously identified determinants, in order to identify the factors that led to high electricity consumption (viz., electrical energy expenditure, thermal energy expenditure and total energy expenditure). In conclusion, this paper aims to providing a more precise understanding of the factors that certainly affect the energy expenditure.
RE.PUBLIC@POLIMI Res... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV De Antonellis S.; Colombo L. P. M.; Castellazzi P.; Rossetti A.; Marocco L.;handle: 11311/1259274
Nowadays a major energy transition aimed at cutting CO2 emissions has begun, with the ambitious goal of drastically reducing the dependence on fossil fuels and promoting the use of renewable energy sources. In this context, energy storage systems play a key role in ensuring a stable, secure and time-aligned energy availability. Open sorption thermal energy storages (TESs) can contribute to such transition, since they are simple and cheap devices able to provide a hot airflow with a high energy density and to store energy for long time. In this work, open sorption TES systems operated with Zeolite13X are investigated with a focus on the integration in practical applications. First, the experimental analysis and modelling of the sole TES system is described. Then, the integration of the TES at system level is carried out. The analysis evidences that a significant reduction of storage capacity occurs if air humidification is necessary before the adsorption process or afterwards to keep adequate indoor comfort conditions for the occupants. For the exemplary case study considered, an energy density of 150 kWhm−3 can drop to 40 kWhm−3 in case of complete compensation of the adsorbed water through a humidifier. This paper provides useful guidelines for evaluating the performance of a TES integrated system in terms of specific energy and efficiency. It also identifies applications involving high latent loads (e.g., swimming pools, locker rooms) or for which low relative air humidity is required (e.g. interior of vehicles to prevent condensation on windows) as particularly beneficial for using a TES system.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:Elsevier BV Authors: Miglioli, Alessandro; Aste, Niccolò; Del Pero, Claudio; Leonforte, Fabrizio;handle: 11311/1206546
Abstract The photovoltaic-thermal collector is one of the most interesting technology for solar energy conversion, combining electric and thermal energy production in a single device. Vapour-compression heat pump is already considered the most suitable clean technology for buildings thermal energy needs. The combination of these two technologies in an integrated ”photovoltaic-thermal solar-assisted heat pump” (PVT-SAHP) system allows reaching a high fraction of the building thermal needs covered by renewable energy sources and to improve the performances of both the photovoltaic-thermal collector and the heat pump. The first is cooled down increasing its energy conversion efficiency, while providing low-temperature thermal energy to the second, which benefits from a higher evaporation temperature. The review study presents the state-of-art of photovoltaic-thermal solar-assisted heat pump systems intended to cover thermal energy needs in buildings, with a particular focus on the integration methodologies, the possible configurations, the use of different sources and the design of sub-system components. These issues are addressed by much scientific research, to improve the reliability and applicability of this technology, as an option for the building decarbonization. This study aims to present PVT-SAHP systems in an organic and critical way to propose a useful tool for future research developments. More in detail, the work highlights the fact that the integration of photovoltaic-thermal collectors as evaporator of the heat pump in direct-expansion systems allows the highest heat recovery and performances. However, the distinction of the two circuits lead to more reliable, flexible and robust systems, especially when combined with a second heat source, being able to cover both heating and cooling needs. The implementation of real-time control strategy, as well as the continuous development of the compressor and refrigerant industries is positively influencing this technology, which is receiving more and more attention from scientific research as a suitable solution for nearly zero energy buildings.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Funded by:EC | GEO4CIVHICEC| GEO4CIVHICCarnieletto, Laura; Di Bella, Antonino; Quaggiotto, Davide; Emmi, Giuseppe; Bernardi, Adriana; De Carli, Michele;handle: 10278/5019837 , 11577/3468473
According to the recent policies regarding energy use in buildings and the need of retrofit strategies, the aim of this work is to support policies concerning the installation of ground source heat exchangers in urban and historical areas, raising the awareness on the potential energy saving achievable with optimal sizing and limited impact on the urban environment. Archetypes have been developed distinguishing among existing and historic buildings, focusing on single-family terrace houses, which are the typical residential buildings in European historic centres.A methodology for the optimal sizing of ground source heat pumps, eventually considering dual-source system or air system has been developed combining simulations of a photovoltaic system to estimate the self-sufficiency and the self-consumption for five orientations of the building. Extreme results have been obtained for warm climates, with negligible heating energy demand and possibly free cooling systems rather than traditional cooling systems needed in wintertime. Penalty temperature was acceptable despite unbalanced energy demands. With proper inclination, photovoltaic systems could provide up to 40% of self-sufficiency share also in northern climates. An energy - economic analysis was carried out obtaining a variety of cases representing a general overview of the European building stock and the potential benefits achievable in terms of renewable energy share, energy savings and economic investments needed to be extended to simulations at urban scale.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2023License: CC BY NC NDEnergy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnergy and Built EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2023License: CC BY NC NDEnergy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnergy and Built EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:Elsevier BV Aste, N.; Adhikari, R. S.; Buzzetti, M.; Del Pero, C.; Huerto-Cardenas, H. E.; Leonforte, F.; Miglioli, A.;handle: 11311/1166950
The nZEB objectives have raised the standard of building performance and changed the way in which buildings are designed and used. Although energy dynamic simulation tools are potentially the most suitable way for accurately evaluating and forecasting the thermal performance, they need several data inputs and user's knowledge that can affect the reliability of the results. It is precisely these two aspects that proved to be particularly critical, since the reliability of the ICT calculation tools has been widely proven in recent time.However, in order to foster credibility in sustainable architecture, bridging the gap between predicted and measured performance is pivotal to boost the building market towards energy efficiency and provide reliable data to inhabitant, investors and policy maker.The present research aims to identify and quantify the main factors that affect the energy performance gap through a detailed energy analysis carried out on a case study, which can be considered one of the first nearly zero energy residential complex built in Italy. Based on the analysis, the study identifies the main causes of the deviation between the calculated and measured data and demonstrates how it is possible to achieve very reliable models and, therefore, real buildings.Although the procedure traces a classic model calibration scheme, actually it consists of a verification of possible downstream errors mainly due to human factors, such as the provision of incorrect technical data or inappropriate operation.Some observations on the technical, management and regulatory gaps that may generate these errors are reported at the end of the study, together with practical suggestions that can provide effective solutions.
RE.PUBLIC@POLIMI Res... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 ItalyPublisher:Elsevier BV Authors: Besagni G.; Borgarello M.;handle: 11311/1166293
A precise understanding of the relationships between the household characteristics and the residential energy consumption is needed to support the implementation of effective top-bottom energy strategies and to improve the prediction of forecasting models. This paper contributes to the present-day discussion and analyses the building factors, socio-demographic variables and appliances contributing to high-energy expenditures (viz., electrical energy expenditure, thermal energy expenditure and total energy expenditure) in the Italian households. The proposed study builds on an earlier work proposed by the authors, which identified the determinants of the household energy expenditures, based on a nationally representative survey (the “household Budget Survey: microdata for research purposes - 2015″ performed by the Italian National Institute of Statistics). In particular, the present paper completes and extends the previous research by applying the odds-ratio analysis to the previously identified determinants, in order to identify the factors that led to high electricity consumption (viz., electrical energy expenditure, thermal energy expenditure and total energy expenditure). In conclusion, this paper aims to providing a more precise understanding of the factors that certainly affect the energy expenditure.
RE.PUBLIC@POLIMI Res... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert RE.PUBLIC@POLIMI Res... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV De Antonellis S.; Colombo L. P. M.; Castellazzi P.; Rossetti A.; Marocco L.;handle: 11311/1259274
Nowadays a major energy transition aimed at cutting CO2 emissions has begun, with the ambitious goal of drastically reducing the dependence on fossil fuels and promoting the use of renewable energy sources. In this context, energy storage systems play a key role in ensuring a stable, secure and time-aligned energy availability. Open sorption thermal energy storages (TESs) can contribute to such transition, since they are simple and cheap devices able to provide a hot airflow with a high energy density and to store energy for long time. In this work, open sorption TES systems operated with Zeolite13X are investigated with a focus on the integration in practical applications. First, the experimental analysis and modelling of the sole TES system is described. Then, the integration of the TES at system level is carried out. The analysis evidences that a significant reduction of storage capacity occurs if air humidification is necessary before the adsorption process or afterwards to keep adequate indoor comfort conditions for the occupants. For the exemplary case study considered, an energy density of 150 kWhm−3 can drop to 40 kWhm−3 in case of complete compensation of the adsorbed water through a humidifier. This paper provides useful guidelines for evaluating the performance of a TES integrated system in terms of specific energy and efficiency. It also identifies applications involving high latent loads (e.g., swimming pools, locker rooms) or for which low relative air humidity is required (e.g. interior of vehicles to prevent condensation on windows) as particularly beneficial for using a TES system.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.04.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ItalyPublisher:Elsevier BV Authors: Miglioli, Alessandro; Aste, Niccolò; Del Pero, Claudio; Leonforte, Fabrizio;handle: 11311/1206546
Abstract The photovoltaic-thermal collector is one of the most interesting technology for solar energy conversion, combining electric and thermal energy production in a single device. Vapour-compression heat pump is already considered the most suitable clean technology for buildings thermal energy needs. The combination of these two technologies in an integrated ”photovoltaic-thermal solar-assisted heat pump” (PVT-SAHP) system allows reaching a high fraction of the building thermal needs covered by renewable energy sources and to improve the performances of both the photovoltaic-thermal collector and the heat pump. The first is cooled down increasing its energy conversion efficiency, while providing low-temperature thermal energy to the second, which benefits from a higher evaporation temperature. The review study presents the state-of-art of photovoltaic-thermal solar-assisted heat pump systems intended to cover thermal energy needs in buildings, with a particular focus on the integration methodologies, the possible configurations, the use of different sources and the design of sub-system components. These issues are addressed by much scientific research, to improve the reliability and applicability of this technology, as an option for the building decarbonization. This study aims to present PVT-SAHP systems in an organic and critical way to propose a useful tool for future research developments. More in detail, the work highlights the fact that the integration of photovoltaic-thermal collectors as evaporator of the heat pump in direct-expansion systems allows the highest heat recovery and performances. However, the distinction of the two circuits lead to more reliable, flexible and robust systems, especially when combined with a second heat source, being able to cover both heating and cooling needs. The implementation of real-time control strategy, as well as the continuous development of the compressor and refrigerant industries is positively influencing this technology, which is receiving more and more attention from scientific research as a suitable solution for nearly zero energy buildings.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Funded by:EC | GEO4CIVHICEC| GEO4CIVHICCarnieletto, Laura; Di Bella, Antonino; Quaggiotto, Davide; Emmi, Giuseppe; Bernardi, Adriana; De Carli, Michele;handle: 10278/5019837 , 11577/3468473
According to the recent policies regarding energy use in buildings and the need of retrofit strategies, the aim of this work is to support policies concerning the installation of ground source heat exchangers in urban and historical areas, raising the awareness on the potential energy saving achievable with optimal sizing and limited impact on the urban environment. Archetypes have been developed distinguishing among existing and historic buildings, focusing on single-family terrace houses, which are the typical residential buildings in European historic centres.A methodology for the optimal sizing of ground source heat pumps, eventually considering dual-source system or air system has been developed combining simulations of a photovoltaic system to estimate the self-sufficiency and the self-consumption for five orientations of the building. Extreme results have been obtained for warm climates, with negligible heating energy demand and possibly free cooling systems rather than traditional cooling systems needed in wintertime. Penalty temperature was acceptable despite unbalanced energy demands. With proper inclination, photovoltaic systems could provide up to 40% of self-sufficiency share also in northern climates. An energy - economic analysis was carried out obtaining a variety of cases representing a general overview of the European building stock and the potential benefits achievable in terms of renewable energy share, energy savings and economic investments needed to be extended to simulations at urban scale.
Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2023License: CC BY NC NDEnergy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnergy and Built EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down Archivio istituzionale della ricerca - Università di PadovaArticle . 2023License: CC BY NC NDEnergy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnergy and Built EnvironmentArticle . 2023 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.11.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu