- home
- Advanced Search
- Energy Research
- Embargo
- 11. Sustainability
- 2. Zero hunger
- NL
- IT
- ES
- DK
- Energy Research
- Embargo
- 11. Sustainability
- 2. Zero hunger
- NL
- IT
- ES
- DK
description Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors:Goh, Chun Sheng;
Goh, Chun Sheng
Goh, Chun Sheng in OpenAIREJunginger, Martin;
Faaij, André;Junginger, Martin
Junginger, Martin in OpenAIREdoi: 10.1002/bbb.1445
AbstractTransition to a bio‐based economy will create new demand for biomass, e.g. the increasing use of bioenergy, but the impacts on existing markets are unclear. Furthermore, there is a growing public concern on the sustainability of biomass. This study proposes a methodological framework for mapping national biomass flows based on domestic production‐consumption and cross‐border trade, and respective share of sustainably‐certified biomass. A case study was performed on the Netherlands for 2010‐2011, focusing on three categories: (i) woody biomass, (ii) oils and fats, and (iii) carbohydrates. Between 2010‐2011 few major shifts were found, besides the increasing biofuel production. The share of sustainably‐certified feedstock is growing in many categories. Woody biomass used for energy amounted to 3.45 MT, including 1.3 MT imported wood pellets ( >85% certified). About 0.6 MT of oils and fats and 1.2 MT (estimation) of carbohydrates were used for biofuel production. It is assumed that only certified materials were used for biofuel production. For non‐energy purpose, more than 50% of woody biomass used was either certified or derived from recycled streams. Certified oils has entered the Dutch food sector since 2011, accounted for 7% of total vegetable oils consumption. It is expected that carbohydrates will also be certified in the near future. Methodological challenges encountered are: inconsistency in data definitions, lack of coherent cross‐sectorial reporting systems, low reliability of bilateral trade statistics, lack of transparency in biomass supply chains, and disparity in sustainability requirements. The methodology may be expanded for future projection in different scenarios. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors:Francesca Verones;
Francesca Verones;Francesca Verones
Francesca Verones in OpenAIREPeter Bayer;
Peter Bayer
Peter Bayer in OpenAIREStefanie Hellweg;
+3 AuthorsStefanie Hellweg
Stefanie Hellweg in OpenAIREFrancesca Verones;
Francesca Verones;Francesca Verones
Francesca Verones in OpenAIREPeter Bayer;
Peter Bayer
Peter Bayer in OpenAIREStefanie Hellweg;
Oliver Schwab; Oliver Schwab; Ronnie Juraske;Stefanie Hellweg
Stefanie Hellweg in OpenAIREIn industrialized countries, large amounts of mineral wastes are produced. They are re-used in various ways, particularly in road and earth constructions, substituting primary resources such as gravel. However, they may also contain pollutants, such as heavy metals, which may be leached to the groundwater. The toxic impacts of these emissions are so far often neglected within Life Cycle Assessments (LCA) of products or waste treatment services and thus, potentially large environmental impacts are currently missed. This study aims at closing this gap by assessing the ecotoxic impacts of heavy metal leaching from industrial mineral wastes in road and earth constructions. The flows of metals such as Sb, As, Pb, Cd, Cr, Cu, Mo, Ni, V and Zn originating from three typical constructions to the environment are quantified, their fate in the environment is assessed and potential ecotoxic effects evaluated. For our reference country, Germany, the industrial wastes that are applied as Granular Secondary Construction Material (GSCM) carry more than 45,000 t of diverse heavy metals per year. Depending on the material quality and construction type applied, up to 150 t of heavy metals may leach to the environment within the first 100 years after construction. Heavy metal retardation in subsoil can potentially reduce the fate to groundwater by up to 100%. One major challenge of integrating leaching from constructions into macro-scale LCA frameworks is the high variability in micro-scale technical and geographical factors, such as material qualities, construction types and soil types. In our work, we consider a broad range of parameter values in the modeling of leaching and fate. This allows distinguishing between the impacts of various road constructions, as well as sites with different soil properties. The findings of this study promote the quantitative consideration of environmental impacts of long-term leaching in Life Cycle Assessment, complementing site-specific risk assessment, for the design of waste management strategies, particularly in the construction sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2014.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.wasman.2014.04.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Germany, Italy, GermanyPublisher:Elsevier BV Authors:Stefano Campanari;
S. Cerniauskas; S. Cerniauskas;Stefano Campanari
Stefano Campanari in OpenAIREMartin Robinius;
+4 AuthorsMartin Robinius
Martin Robinius in OpenAIREStefano Campanari;
S. Cerniauskas; S. Cerniauskas;Stefano Campanari
Stefano Campanari in OpenAIREMartin Robinius;
Martin Robinius
Martin Robinius in OpenAIREPaolo Colbertaldo;
Detlef Stolten; Detlef Stolten; T. Grube;Paolo Colbertaldo
Paolo Colbertaldo in OpenAIREhandle: 11311/1146016
Abstract As main contributors to greenhouse gas emissions, power and transportation are crucial sectors for energy system decarbonization. Their interaction is expected to increase significantly: plug-in electric vehicles add a new electric load, increasing grid demand and potentially requiring substantial grid upgrade; hydrogen production for fuel cell electric vehicles or for clean fuels synthesis could exploit the projected massive power overgeneration by intermittent and seasonally-dependent renewable sources via Power-to-Hydrogen. This work investigates the infrastructural needs involved with a broad diffusion of clean mobility, adopting a sector integration perspective at the national scale. The analysis combines a multi-node energy system balance simulation and a techno-economic assessment of the infrastructure to deliver energy vectors for mobility. The article explores the long-term case of Italy, considering a massive increase of renewable power generation capacity and investigating different mobility scenarios, where low-emission vehicles account for 50% of the stock. First, the model solves the energy balances, integrating the consumption related to mobility energy vectors and taking into account power grid constraints. Then, an optimal infrastructure is identified, composed of both a hydrogen delivery network and a widespread installation of charging points. Results show that the infrastructural requirements bring about investment costs in the range of 43–63 G€. Lower specific costs are associated with the exclusive presence of FCEVs, whereas the full reliance on BEVs leads to the most significant costs. Scenarios that combine FCEVs and BEVs lie in between, suggesting that the overall power + mobility system benefits from the presence of both drivetrain options.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Wiley Authors: Batidzirai, Batidzirai; van der Hilst, Floortje;Meerman, Hans;
Meerman, Hans
Meerman, Hans in OpenAIREJunginger, Martin H.;
+1 AuthorsJunginger, Martin H.
Junginger, Martin H. in OpenAIREBatidzirai, Batidzirai; van der Hilst, Floortje;Meerman, Hans;
Meerman, Hans
Meerman, Hans in OpenAIREJunginger, Martin H.;
Faaij, André P C;Junginger, Martin H.
Junginger, Martin H. in OpenAIREdoi: 10.1002/bbb.1458
AbstractThis study compared the economic and environmental impacts of torrefaction on bioenergy supply chains against conventional pellets for scenarios where biomass is produced in Mozambique, and undergoes pre‐processing before shipment to Rotterdam for conversion to power and Fischer‐Tropsch (FT) fuels. We also compared the impacts of using different land quality (productive and marginal) for feedstock production, feedstocks (eucalyptus and switchgrass), final conversion technologies (XtY and CXtY) and markets (the Netherlands and Mozambique). At current conditions, the torrefied pellets (TOPs) are delivered in Rotterdam at higher cost (7.3–7.5 $/GJ) than pellets (5.1–5.3 $/GJ). In the long term, TOPs costs could decline (4.7–5.8 $/GJ) and converge with pellets. TOPs supply chains also incur 20% lower greenhouse gas (GHG) emissions than pellets. Due to improved logistics and lower conversion investment, fuel production costs from TOPs are lower (12.8–16.9 $/GJFT) than from pellets (12.9–18.7 $/GJFT). Co‐firing scenarios (CXtY) result in lower cost fuel (but a higher environmental penalty) than 100% biomass fired scenarios (XtY). In most cases, switchgrass and the productive region of Nampula provide the lowest fuel production cost compared to eucalyptus and the marginally productive Gaza region. Both FT and ion in Mozambique are more costly than in Rotterdam. For the Netherlands, both FT and power production are competitive against average energy costs in Western Europe. The analysis shows that large‐scale bioenergy production can become competitive against fossil fuels. While the benefits of TOPs are apparent in logistics and conversion, the current higher torrefaction costs contribute to higher biofuel costs. Improvements in torrefaction technology can result in significant performance improvements over the future chain. © 2013 Society of Chemical Industry and John Wiley & Sons, Ltd
Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Biofuels Bioproducts and BiorefiningArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bbb.1458&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Elsevier BV Authors:Eva Lieberherr;
Eva Lieberherr
Eva Lieberherr in OpenAIREBernhard Truffer;
Bernhard Truffer
Bernhard Truffer in OpenAIREThis paper analyzes the ability of water utilities to contribute to sustainability transition processes. More specifically, we compare the capacity of utilities, embedded in purely public, mixed and largely private governance modes, to innovate. We employ dynamic capabilities as core indicators for innovativeness and therefore as major enabling factors for sustainable sector transitions. We assess the relationship between governance modes and innovation by conducting an in-depth comparative analysis of three water utilities, each within a differing governance mode along the public-to-private continuum: Zurich, Berlin and Leeds. While we find that the private and mixed governance modes have an increased degree of innovativeness, they perform lower in terms of static sustainability criteria than the public mode. We therefore conclude that the impact of privatization on sustainability transitions in the water sector involves multi-dimensional trade-offs between static and dynamic sustainability criteria.
Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 71 citations 71 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Environmental Innovation and Societal TransitionsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefEnvironmental Innovation and Societal TransitionsArticle . 2015Data sources: Pure Utrecht Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eist.2013.12.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Switzerland, NetherlandsPublisher:Elsevier BV Authors:Martin Kumar Patel;
Martin Kumar Patel; M. Draeck; Dolf Gielen; +2 AuthorsMartin Kumar Patel
Martin Kumar Patel in OpenAIREMartin Kumar Patel;
Martin Kumar Patel; M. Draeck; Dolf Gielen; Ernst Worrell;Martin Kumar Patel
Martin Kumar Patel in OpenAIREDeger Saygin;
Deger Saygin
Deger Saygin in OpenAIREFossil fuel substitution with biomass is one of the measures to reduce carbon dioxide (CO2) emissions. This paper estimates the cost-effectiveness of raising industrial steam and producing materials (i.e. chemicals, polymers) from biomass. We quantify their long-term global potentials in terms of energy saving, CO2 emission reduction, cost and resource availability. Technically, biomass can replace all fossil fuels used for the production of materials and for generating low and medium temperature steam. Cost-effective opportunities exist for steam production from biomass residues and by substitution of high value petrochemicals which would together require more than 20 exajoules (EJ) of biomass worldwide in addition to baseline by 2030. Potentials could double in 2050 and reach 38-45 EJ (25% of the total industrial energy use), with most demand in Asia, other developing countries and economies in transition. The economic potential of using biomass as chemical feedstock is nearly as high as for steam production, indicating its importance. The exploitation of these potentials depends on energy prices and industry's access to biomass supply. Given the increasing competition for biomass from several economic sectors, more resource efficient materials need to be developed while steam production is already attractive due to its high effectiveness for reducing CO2 emissions per unit of biomass.
Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2014.07.114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | CONSTRAINEC| CONSTRAINAuthors: Sofia Gonzales-Zuñiga;Claire Fyson;
Claire Fyson
Claire Fyson in OpenAIREAndreas Geiges;
Silke Mooldijk; +8 AuthorsAndreas Geiges
Andreas Geiges in OpenAIRESofia Gonzales-Zuñiga;Claire Fyson;
Claire Fyson
Claire Fyson in OpenAIREAndreas Geiges;
Silke Mooldijk;Andreas Geiges
Andreas Geiges in OpenAIREMatthew Gidden;
Matthew Gidden
Matthew Gidden in OpenAIREMairi Louise Jeffery;
Mairi Louise Jeffery
Mairi Louise Jeffery in OpenAIREMichel G.J. den Elzen;
Michel G.J. den Elzen
Michel G.J. den Elzen in OpenAIRENiklas Höhne;
Niklas Höhne
Niklas Höhne in OpenAIREJoeri Rogelj;
Joeri Rogelj;Joeri Rogelj
Joeri Rogelj in OpenAIREFrederic Hans;
William Hare;Frederic Hans
Frederic Hans in OpenAIRENational net zero emission targets could, if fully implemented, reduce best estimates of projected global average temperature increase to 2.0–2.4 °C by 2100, bringing the Paris Agreement temperature goal within reach. A total of 131 countries are discussing, have announced or have adopted net zero targets, covering 72% of global emissions. These targets could substantially lower projected warming as compared to currently implemented policies (2.9–3.2 °C) or pledges submitted to the Paris Agreement (2.4–2.9 °C). Current pledges for emissions cuts are insufficient to meet the Paris Agreement temperature goal. The wave of net zero targets being discussed and adopted could make the Paris goal possible if further countries follow suit.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 170 citations 170 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 NetherlandsPublisher:Elsevier BV This paper presents an overview of 67 ongoing certification initiatives to safeguard the sustainability of bioenergy. Most recent initiatives are focused on the sustainability of liquid biofuels. Content-wise, most of these initiatives have mainly included environmental principles. Despite serious concerns in various parts of the world on the socio-economic impacts of bioenergy production, these are generally not included in existing bioenergy initiatives. At the same time, the overview shows a strong proliferation of standards. The overview shows that certification has the potential to influence direct, local impacts related to environmental and social effects of direct bioenergy production. Key recommendations to come to an efficient certification system include the need for further harmonization, availability of reliable data and linking indicators on a micro, meso and macro levels. Considering the multiple spatial scales, certification should be combined with additional measurements and tools on a regional, national and international level. The role of bioenergy production on indirect land use change (ILUC) is still very uncertain and current initiatives have rarely captured impacts from ILUC in their standards. Addressing unwanted LUC requires first of all sustainable land use production and good governance, regardless of the end-use of the product. It is therefore recommended to extend measures to mitigate impacts from LUC to other lands and feedstock. PDF (776 K)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.03.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Springer Science and Business Media LLC Authors:Harmsen, Robert;
Harmsen, Robert
Harmsen, Robert in OpenAIREEichhammer, Wolfgang;
Wesselink, Bart;Eichhammer, Wolfgang
Eichhammer, Wolfgang in OpenAIREAs Europe is not on track in meeting its 2020 energy savings target, there has been quite some debate to make the energy savings target binding instead of indicative. Although the final draft text of the Energy Efficiency Directive left the option of a binding target explicitly open for the period beyond 2014, this statement has watered down in the adopted Directive: If still not on track mid-2014, the European Commission will propose "further measures." In this paper, we argue that a binding energy savings target could be the first EU legal initiative to look beyond 2020 serving as a beacon for other policies such as for renewables and greenhouse gases that need redefinition after 2020. We therefore explore four possible design options of a binding savings target and assess their feasibility. We conclude that a binding target at Member State level (opposed to an EU-wide target like for the EU Emission Trading System (ETS)) is the most feasible. A binding target at Member State level would ensure political accountability and commitment to deliver results while providing flexibility to choose and apply the most suitable tools to achieve the target. It could provide a framework to guide ambitious and coherent implementation of EU energy efficiency policies, as well as the strengthening of national policies. Furthermore, binding targets at Member State level will make Member States take an ambitious position in Brussels when new energy or CO2 performance standards for appliances and transport modes are to be set. A Member State binding target applied to end-users (excluding ETS companies) is a design option that covers the vast majority of the cost-effective energy savings potential, maintains the flexibility for ETS companies, and supports the most cost-effective achievement of a greater share of renewables.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-013-9202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-013-9202-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Authors:Sikkema, Richard;
Sikkema, Richard
Sikkema, Richard in OpenAIREJunginger, Martin;
McFarlane, Paul; Faaij, André;Junginger, Martin
Junginger, Martin in OpenAIRESome Parties (Countries) to the UNFCCC decided to include the carbon uptake by harvested wood products (HWP) in a new general accounting framework after 2012 (post Kyoto). The analysis aims to make a comparison between the cascaded use of HWP and the use of wood for energy. We combine the new HWP framework with an assumed increased 50 million m3harvest level in Canada and evaluate the impact of the GHG emissions over a 100-year period. Our reference case assumes all harvested wood is an immediate CO2emission (IPCC default) and no substitution effects, i.e. annual GHG emissions of 41 million tonnes CO2eq. In our wood utilization scenario's, harvested trees are allocated (in varying shares) to three end-products: construction wood, paper products and pellets for power production. In comparison with our base case, a combination of fossil fuel substitution, material substitution and temporary carbon uptake by HWP leads to significant decreases in GHG emissions. All scenario's show annual GHG emission between 18 and 21 million tonnes CO2eqexcept for triple use without recycling (at least 24 million tonnes CO2eq). We conclude that GHG emissions of our scenarios are substantially lower than IPCC default. However, it is difficult to incorporate one single method to account for GHG uptake and emissions by HWP, due to end use efficiency and recycling options. Further GHG allocation over individual countries is not straightforward and needs further research. © 2013 Elsevier Ltd.
Utrecht University R... arrow_drop_down Environmental Science & PolicyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2013.03.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Utrecht University R... arrow_drop_down Environmental Science & PolicyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2013.03.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu