- home
- Advanced Search
- Energy Research
- 13. Climate action
- 11. Sustainability
- IT
- FR
- AT
- UA
- Energy Research
- 13. Climate action
- 11. Sustainability
- IT
- FR
- AT
- UA
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Voldoire, Aurore;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.HighResMIP.CNRM-CERFACS.CNRM-CM6-1-HR.control-1950' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CNRM-CM6-1-HR climate model, released in 2017, includes the following components: aerosol: prescribed monthly fields computed by TACTIC_v2 scheme, atmos: Arpege 6.3 (T359; Gaussian Reduced with 181724 grid points in total distributed over 360 latitude circles (with 720 grid points per latitude circle between 32.2degN and 32.2degS reducing to 18 grid points per latitude circle at 89.6degN and 89.6degS); 91 levels; top level 78.4 km), atmosChem: OZL_v2, land: Surfex 8.0c, ocean: Nemo 3.6 (eORCA025, tripolar primarily 1/4deg; 1442 x 1050 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: Gelato 6.1. The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse 31057, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse 31057, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6hrcecc2c1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6hrcecc2c1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | Open ENTRANCEEC| Open ENTRANCEAuthors: O'Reilly, Ryan; Cohen, Jed; Reichl, Johannes;Three data files are provided for Case Study 1 in the openENTRANCE project: Full_potential.V9.csv, metaData.Full_Potential.csv, and acheivable_NUTS2_summary.csv. The data covers 10 residential devices on the NUTS2 level for the EU27 + UK +TR + NO + CH from 2020-2050. The devices included are storage heater, water heater with storage capabilitites, air conditiong, heat circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier. Full_potential.V9.csv shows the NUTS2 level unadjusted loads for residential storage heater, water heater, air conditiong, circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier using representative hours from 2020-2050. The loads provided here have not been adjusted with the direct load participation rates (see paper for more details). More details on the dataset can be found in the metaData.Full_Potential.csv file. The acheivable_NUTS2_summary.csv shows the NUTS2 level acheivable direct load control potentials for the average hour in the respective year (years - 2020, 2022,2030,2040, 2050).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 33 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Laimighofer, Johannes;The dataset consists of the code and data used for the preprint "Climate change contribution to the 2023 autumn temperature records in Vienna". It contains two objects: The station data of mean monthly temperature for Vienna Hohe-Warte from 1750 to 2023 (vienna_hohe-warte.csv), which also can be downloaded here: http://www.zamg.ac.at/histalp/dataset/station/csv.php. The code for modeling and producing the figures of the preprint (autumn_temperature.R).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10103329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10103329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:SEANOE Salgueiro, Emília; Magalhães, Vítor; Rebotim, Andreia; Matos, Lélia; Schweizer, Magali; Sousa, Fátima; González Martín, Maria; Batista, Luis Batista;doi: 10.17882/96495
The CARBO-ACID research cruise (EUROFLEETS+ SEA02_10) was carried out on the RV Ramón Margalef between August 2nd and August 11st, with departing from Vigo – Spain and ending in Lisbon – Portugal. The main objective of this cruise was to collect data and samples to study the potential effects of ocean acidification on carbonate marine organisms (coccolithophores, pteropods, planktonic and benthic foraminifera, and corals) along the Iberian margin. With this objective, oceanographic data and water samples, plankton, cold-water corals and sediment samples were collected during an upwelling season, along two transects coinciding with the two persistent upwelling filaments off the Iberia Margin: the Cape Finisterra and the Cape Roca. In this dataset is guiven all the acquired data recollected onboad. During the CARBO-ACID cruise we did a total of 7 stations, 4 stations along the Cape Finisterra transect (from W to E: CA3, CA2, CA7, CA8) and 3 stations at the Cape Roca (from W to E: CA6, CA5, CA4) transect (Fig). At each station we usually started with a multibeam survey, a CTD and Rosette cast. These initial operations allowed to identify the different water masses present in this area, characterize their physical properties and to recover seawater samples at specific depth levels. The seawater samples were onboard subsampled, preserved in cold conditions or with chemicals and/ or filtered for several further analysis in the shore-based laboratories: DNA, chlorophyll, fitoplankton, coccolithophores, pH, alkalinity, stable isotopic composition, trace elements concentration and Suspend Particulate Matter. Subsequently to these operations, at each station, two vertical tows with a plankton multinet (with 5 nets) were done on the top 700 m of the water column to sample the planktonic communities of the different water depths. After this, sediment samples were recovered with a box-corer to study the past oceanographic conditions, between the pre-industrial Era and the Present, with multi-proxies used in paleoceanography and sedimentology. A total of 10 box-cores were recollected and each of them was onboard sub-sampled for eDNA, enzymes and benthic foraminifera. Fifteen shipek grab samples were recollected at the Fontanelas seamount (Estremadura Spur), station CA6, to characterize the sedimentary cover and to evaluate the presence of deep cold-water corals. Preliminary results show that the stations CA7, CA8 and CA4, located close to the coast, as expected, are the most influenced by the coastal upwelling, exhibiting colder surface water, higher values of fluorescence, and more zooplankton content reflecting higher phyto-zooplankton concentrations, as typical of the upwelling waters. At station CA4 temperature was higher and fluorescence showed lower values, indicative of less phytoplankton, and interpreted as indicating a different upwelling source water from that upwelled further north. Based on the CTD data, the Cape Roca transect is more influenced by the subtropical East North Atlantic Central Water (ENACWst), while the Cape Finisterra transect is more under the influence of the subpolar branch (ENACWsp). Seafloor sediment samples showed significant differences between the stations. Along the northern transect (Cape Finisterra) the seafloor sediments show an increase in grain size from the offshore to the coast. The offshore stations CA3 and CA2 revealed finer grained sediments, CA8 were composed of coarser sand and the station CA7, the shallowest station 77 m, presented the sediment composed mainly of shell fragments and coarse grain sand. Along the southern transect (Cape Roca), the offshore station CA6 (Fontanelas seamount) has coarser sandy sediments with rock clasts and cold-water coral fragments, and the stations CA5 and CA4 with fine sand to muddy sediments. The detailed CA6 bathymetry allowed to verify the existence of small plateaus on the slope of the Fontanelas seamount, where the fossil cold-water corals fragments were found, suggesting that this area is a very interesting system deserving further study with a ROV, and to characterize the corals fields and verify if there are live corals. These recollected data and samples will allow not only to reconstruct the pH variability under different environmental conditions, but also to estimate the biogeochemical changes along the coastal ocean waters as the anthropogenic influence increases. These results will contribute to better understand and model the effects on the biota under the future expected oceans pH changes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/96495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/96495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Lovato, Tomas; Peano, Daniele;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CMCC-CM2-SR5 climate model, released in 2016, includes the following components: aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), seaIce: CICE4.0. The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Kalt, Gerald; Mayer, Andreas; Haberl, Helmut; Kaufmann, Lisa; Lauk, Christian; Matej, Sarah; Theurl, Michaela C.; Erb, Karl-Heinz;The dataset includes 90 global food system and land use scenarios developed with the model BioBaM-GHG 2.0. The scenarios have been developed for assessing the global potential of forest regeneration for climate mitigation to 2050 under various food system pathways, i.e. diets, crop yield developments, land requirements for energy crops, and two variants of grassland use. The scenarios include the following data on country level: Land use and land-use change, cropland area by crop group, grazing area by quality classes, crop production by crop groups, crop consumption by crop groups and use types, crop wastes (losses), net imports/exports, production and consumption of animal products, grass supply and demand, GHG emissions from land-use change, GHG emissions from agricultural activities, and total cumulated GHG emissions. The main model result in this context, cumulative carbon sequestration from forest regeneration until 2050, is calculated as difference between the parameters "GHG emissions from land use change (cumulative) (Mt CO2e)" and "GHG emissions from land use change excluding C stock changes from natural succession (cumulative) (Mt CO2e)". Please refer to the related publication "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0" (Kalt et al., 2021 - currently under review at Ecological Modelling) for further information. This work was funded by the Austrian Science Fund (FWF) within project P29130-G27 GELUC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Maus, Victor; da Silva, Dieison M; Gutschlhofer, Jakob; da Rosa, Robson; Giljum, Stefan; Gass, Sidnei L B; Luckeneder, Sebastian; Lieber, Mirko; McCallum, Ian;This dataset updates the global-scale mining polygons (Version 1) available from https://doi.org/10.1594/PANGAEA.910894. It contains 44,929 polygon features, covering 101,583 km² of land used by the global mining industry, including large-scale and artisanal and small-scale mining. The polygons cover all ground features related to mining, .e.g open cuts, tailing dams, waste rock dumps, water ponds, processing infrastructure, and other land cover types related to the mining activities. The data was derived using a similar methodology as the first version by visual interpretation of satellite images. The study area was limited to a 10 km buffer around the 34,820 mining coordinates reported in the S&P metals and mining database. We digitalized the mining areas using the 2019 Sentinel-2 cloudless mosaic with 10 m spatial resolution (https://s2maps.eu by EOX IT Services GmbH - Contains modified Copernicus Sentinel data 2019). We also consulted Google Satellite and Microsoft Bing Imagery, but only as additional information to help identify land cover types linked to the mining activities. The main data set consists of a GeoPackage (GPKG) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, FID with the feature ID, and geom in geographical coordinates WGS84. The summary of the mining area per country is available in comma-separated values (CSV) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, and N_FEATURES number of mapped features. Grid data sets with the mining area per cell were derived from the polygons. The grid data is available at 30 arc-second resolution (approximately 1x1 km at the equator), 5 arc-minute (approximately 10x10 km at the equator), and 30 arc-minute resolution (approximately 55x55 km at the equator). We performed an independent validation of the mining data set using control points. For that, we draw 1,000 random samples stratified between two classes: mine and no-mine. The control points are also available as a GPKG file, including the variables: MAPPED, REFERENCE, FID with the feature ID, and geom in geographical coordinates WGS84. The overall accuracy calculated from the control points was 88.3%, Kappa 0.77, F1 score 0.87, producer's accuracy of class mine 78.9 % and user's accuracy of class mine 97.2 %.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Patrizia Simeoni; Gellio Ciotti; Antonella Meneghetti; Mattia Cottes;Abstract To achieve the EU climate and energy objectives, a transition towards a future sustainable energy system is needed. The integration of the huge potential for industrial waste heat recovery into smart energy system represents a main opportunity to accomplish these goals. To successfully implement this strategy, all the several stakeholders' conflicting objectives should be considered. In this paper an evolutionary multi-objective optimization model is developed to perform a sustainability evaluation of an energy system involving an industrial facility as the waste heat source and the neighbourhood as district heating network end users. An Italian case study of heat recovery from a steel casting facility shows how the model allows to properly select the district heating network set of users to fully exploit the available waste energy. Design directions such as the thermal energy storage capacity can be also provided. Moreover, the model enables the analysis of the trade-off between the stakeholders’ different perspectives, allowing to identify possible win-win solutions for both the industrial sector and the citizenship.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.03.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.03.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | IS-ENES2, ANR | L-IPSLEC| IS-ENES2 ,ANR| L-IPSLAmadou Thierno Gaye; Xavier Capet; Juliette Mignot; Adama Sylla; Adama Sylla;Upwelling processes bring nutrient-rich waters from the deep ocean to the surface. Areas of upwelling are often associated with high productivity, offering great economic value in terms of fisheries. The sensitivity of spring/summer-time coastal upwelling systems to climate change has recently received a lot of attention. Several studies have suggested that their intensity may increase in the future while other authors have shown decreasing intensity in their equatorward portions. Yet, recent observations do not show robust evidence of this intensification. The Senegalo-Mauritanian upwelling system (SMUS) located at the southern edge of the north Atlantic system (12°N–20°N) and most active in winter/spring has been largely excluded from these studies. Here, the seasonal cycle of the SMUS and its response to climate change is investigated in the database of the Coupled Models Inter comparison Project Phase 5 (CMIP5). Upwelling magnitude and surface signature are characterized by several sea surface temperature and wind stress indices. We highlight the ability of the climate models to reproduce the system, as well as their biases. The simulations suggest that the intensity of the SMUS winter/spring upwelling will moderately decrease in the future, primarily because of a reduction of the wind forcing linked to a northward shift of Azores anticyclone and a more regional modulation of the low pressures found over Northwest Africa. The implications of such an upwelling reduction on the ecosystems and local communities exploiting them remains very uncertain.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Informa UK Limited Chia, E.L.; Somorin, O.A.; Sonwa, D.J.; Bele, M.Y.; Tiani, A.M.;handle: 10568/95716
In Cameroon, as in other countries of the Congo basin region, policy processes and activities related to climate change have been hitherto geared mostly towards mitigation and related questions, with limited concern about adaptation issues. However, the increasing vulnerability of Cameroon to climate variability and change makes adaptation significant to its national climate-change policy. Nonetheless, it remains a challenge to make both adaptation and mitigation occupy the same policy space in Cameroon. This paper builds partly on studies carried out in two community forest carbon initiatives in the southern rainforest of Cameroon. It also argues, supported by existing literature on adaptation and mitigation, that mitigation activities have the potential to produce adaptation outcomes; a situation which avoids duplication of efforts and waste of financial and technical resources, if synergetic options are anticipated and planned. However, whether such integrated approaches succeed and are subsequently reflected in national-level climate policy depends on how actors across different sectors and at different levels engage and carry out their roles. The paper discusses these roles and how they can support each other in pursuing integrated initiatives – a context which is vital for Cameroon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17565529.2014.918867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 1% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17565529.2014.918867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Voldoire, Aurore;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.HighResMIP.CNRM-CERFACS.CNRM-CM6-1-HR.control-1950' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CNRM-CM6-1-HR climate model, released in 2017, includes the following components: aerosol: prescribed monthly fields computed by TACTIC_v2 scheme, atmos: Arpege 6.3 (T359; Gaussian Reduced with 181724 grid points in total distributed over 360 latitude circles (with 720 grid points per latitude circle between 32.2degN and 32.2degS reducing to 18 grid points per latitude circle at 89.6degN and 89.6degS); 91 levels; top level 78.4 km), atmosChem: OZL_v2, land: Surfex 8.0c, ocean: Nemo 3.6 (eORCA025, tripolar primarily 1/4deg; 1442 x 1050 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: Gelato 6.1. The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse 31057, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse 31057, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6hrcecc2c1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6hrcecc2c1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Funded by:EC | Open ENTRANCEEC| Open ENTRANCEAuthors: O'Reilly, Ryan; Cohen, Jed; Reichl, Johannes;Three data files are provided for Case Study 1 in the openENTRANCE project: Full_potential.V9.csv, metaData.Full_Potential.csv, and acheivable_NUTS2_summary.csv. The data covers 10 residential devices on the NUTS2 level for the EU27 + UK +TR + NO + CH from 2020-2050. The devices included are storage heater, water heater with storage capabilitites, air conditiong, heat circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier. Full_potential.V9.csv shows the NUTS2 level unadjusted loads for residential storage heater, water heater, air conditiong, circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier using representative hours from 2020-2050. The loads provided here have not been adjusted with the direct load participation rates (see paper for more details). More details on the dataset can be found in the metaData.Full_Potential.csv file. The acheivable_NUTS2_summary.csv shows the NUTS2 level acheivable direct load control potentials for the average hour in the respective year (years - 2020, 2022,2030,2040, 2050).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 33 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7182594&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Laimighofer, Johannes;The dataset consists of the code and data used for the preprint "Climate change contribution to the 2023 autumn temperature records in Vienna". It contains two objects: The station data of mean monthly temperature for Vienna Hohe-Warte from 1750 to 2023 (vienna_hohe-warte.csv), which also can be downloaded here: http://www.zamg.ac.at/histalp/dataset/station/csv.php. The code for modeling and producing the figures of the preprint (autumn_temperature.R).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10103329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10103329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:SEANOE Salgueiro, Emília; Magalhães, Vítor; Rebotim, Andreia; Matos, Lélia; Schweizer, Magali; Sousa, Fátima; González Martín, Maria; Batista, Luis Batista;doi: 10.17882/96495
The CARBO-ACID research cruise (EUROFLEETS+ SEA02_10) was carried out on the RV Ramón Margalef between August 2nd and August 11st, with departing from Vigo – Spain and ending in Lisbon – Portugal. The main objective of this cruise was to collect data and samples to study the potential effects of ocean acidification on carbonate marine organisms (coccolithophores, pteropods, planktonic and benthic foraminifera, and corals) along the Iberian margin. With this objective, oceanographic data and water samples, plankton, cold-water corals and sediment samples were collected during an upwelling season, along two transects coinciding with the two persistent upwelling filaments off the Iberia Margin: the Cape Finisterra and the Cape Roca. In this dataset is guiven all the acquired data recollected onboad. During the CARBO-ACID cruise we did a total of 7 stations, 4 stations along the Cape Finisterra transect (from W to E: CA3, CA2, CA7, CA8) and 3 stations at the Cape Roca (from W to E: CA6, CA5, CA4) transect (Fig). At each station we usually started with a multibeam survey, a CTD and Rosette cast. These initial operations allowed to identify the different water masses present in this area, characterize their physical properties and to recover seawater samples at specific depth levels. The seawater samples were onboard subsampled, preserved in cold conditions or with chemicals and/ or filtered for several further analysis in the shore-based laboratories: DNA, chlorophyll, fitoplankton, coccolithophores, pH, alkalinity, stable isotopic composition, trace elements concentration and Suspend Particulate Matter. Subsequently to these operations, at each station, two vertical tows with a plankton multinet (with 5 nets) were done on the top 700 m of the water column to sample the planktonic communities of the different water depths. After this, sediment samples were recovered with a box-corer to study the past oceanographic conditions, between the pre-industrial Era and the Present, with multi-proxies used in paleoceanography and sedimentology. A total of 10 box-cores were recollected and each of them was onboard sub-sampled for eDNA, enzymes and benthic foraminifera. Fifteen shipek grab samples were recollected at the Fontanelas seamount (Estremadura Spur), station CA6, to characterize the sedimentary cover and to evaluate the presence of deep cold-water corals. Preliminary results show that the stations CA7, CA8 and CA4, located close to the coast, as expected, are the most influenced by the coastal upwelling, exhibiting colder surface water, higher values of fluorescence, and more zooplankton content reflecting higher phyto-zooplankton concentrations, as typical of the upwelling waters. At station CA4 temperature was higher and fluorescence showed lower values, indicative of less phytoplankton, and interpreted as indicating a different upwelling source water from that upwelled further north. Based on the CTD data, the Cape Roca transect is more influenced by the subtropical East North Atlantic Central Water (ENACWst), while the Cape Finisterra transect is more under the influence of the subpolar branch (ENACWsp). Seafloor sediment samples showed significant differences between the stations. Along the northern transect (Cape Finisterra) the seafloor sediments show an increase in grain size from the offshore to the coast. The offshore stations CA3 and CA2 revealed finer grained sediments, CA8 were composed of coarser sand and the station CA7, the shallowest station 77 m, presented the sediment composed mainly of shell fragments and coarse grain sand. Along the southern transect (Cape Roca), the offshore station CA6 (Fontanelas seamount) has coarser sandy sediments with rock clasts and cold-water coral fragments, and the stations CA5 and CA4 with fine sand to muddy sediments. The detailed CA6 bathymetry allowed to verify the existence of small plateaus on the slope of the Fontanelas seamount, where the fossil cold-water corals fragments were found, suggesting that this area is a very interesting system deserving further study with a ROV, and to characterize the corals fields and verify if there are live corals. These recollected data and samples will allow not only to reconstruct the pH variability under different environmental conditions, but also to estimate the biogeochemical changes along the coastal ocean waters as the anthropogenic influence increases. These results will contribute to better understand and model the effects on the biota under the future expected oceans pH changes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/96495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/96495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Lovato, Tomas; Peano, Daniele;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.CMIP.CMCC.CMCC-CM2-SR5.historical' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CMCC-CM2-SR5 climate model, released in 2016, includes the following components: aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), seaIce: CICE4.0. The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6cmcmccshi&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Kalt, Gerald; Mayer, Andreas; Haberl, Helmut; Kaufmann, Lisa; Lauk, Christian; Matej, Sarah; Theurl, Michaela C.; Erb, Karl-Heinz;The dataset includes 90 global food system and land use scenarios developed with the model BioBaM-GHG 2.0. The scenarios have been developed for assessing the global potential of forest regeneration for climate mitigation to 2050 under various food system pathways, i.e. diets, crop yield developments, land requirements for energy crops, and two variants of grassland use. The scenarios include the following data on country level: Land use and land-use change, cropland area by crop group, grazing area by quality classes, crop production by crop groups, crop consumption by crop groups and use types, crop wastes (losses), net imports/exports, production and consumption of animal products, grass supply and demand, GHG emissions from land-use change, GHG emissions from agricultural activities, and total cumulated GHG emissions. The main model result in this context, cumulative carbon sequestration from forest regeneration until 2050, is calculated as difference between the parameters "GHG emissions from land use change (cumulative) (Mt CO2e)" and "GHG emissions from land use change excluding C stock changes from natural succession (cumulative) (Mt CO2e)". Please refer to the related publication "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0" (Kalt et al., 2021 - currently under review at Ecological Modelling) for further information. This work was funded by the Austrian Science Fund (FWF) within project P29130-G27 GELUC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 133visibility views 133 download downloads 25 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4965052&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:PANGAEA Maus, Victor; da Silva, Dieison M; Gutschlhofer, Jakob; da Rosa, Robson; Giljum, Stefan; Gass, Sidnei L B; Luckeneder, Sebastian; Lieber, Mirko; McCallum, Ian;This dataset updates the global-scale mining polygons (Version 1) available from https://doi.org/10.1594/PANGAEA.910894. It contains 44,929 polygon features, covering 101,583 km² of land used by the global mining industry, including large-scale and artisanal and small-scale mining. The polygons cover all ground features related to mining, .e.g open cuts, tailing dams, waste rock dumps, water ponds, processing infrastructure, and other land cover types related to the mining activities. The data was derived using a similar methodology as the first version by visual interpretation of satellite images. The study area was limited to a 10 km buffer around the 34,820 mining coordinates reported in the S&P metals and mining database. We digitalized the mining areas using the 2019 Sentinel-2 cloudless mosaic with 10 m spatial resolution (https://s2maps.eu by EOX IT Services GmbH - Contains modified Copernicus Sentinel data 2019). We also consulted Google Satellite and Microsoft Bing Imagery, but only as additional information to help identify land cover types linked to the mining activities. The main data set consists of a GeoPackage (GPKG) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, FID with the feature ID, and geom in geographical coordinates WGS84. The summary of the mining area per country is available in comma-separated values (CSV) file, including the following variables: ISO3_CODE, COUNTRY_NAME, AREA in squared kilometres, and N_FEATURES number of mapped features. Grid data sets with the mining area per cell were derived from the polygons. The grid data is available at 30 arc-second resolution (approximately 1x1 km at the equator), 5 arc-minute (approximately 10x10 km at the equator), and 30 arc-minute resolution (approximately 55x55 km at the equator). We performed an independent validation of the mining data set using control points. For that, we draw 1,000 random samples stratified between two classes: mine and no-mine. The control points are also available as a GPKG file, including the variables: MAPPED, REFERENCE, FID with the feature ID, and geom in geographical coordinates WGS84. The overall accuracy calculated from the control points was 88.3%, Kappa 0.77, F1 score 0.87, producer's accuracy of class mine 78.9 % and user's accuracy of class mine 97.2 %.
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2022License: CC BY SAData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.942325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Patrizia Simeoni; Gellio Ciotti; Antonella Meneghetti; Mattia Cottes;Abstract To achieve the EU climate and energy objectives, a transition towards a future sustainable energy system is needed. The integration of the huge potential for industrial waste heat recovery into smart energy system represents a main opportunity to accomplish these goals. To successfully implement this strategy, all the several stakeholders' conflicting objectives should be considered. In this paper an evolutionary multi-objective optimization model is developed to perform a sustainability evaluation of an energy system involving an industrial facility as the waste heat source and the neighbourhood as district heating network end users. An Italian case study of heat recovery from a steel casting facility shows how the model allows to properly select the district heating network set of users to fully exploit the available waste energy. Design directions such as the thermal energy storage capacity can be also provided. Moreover, the model enables the analysis of the trade-off between the stakeholders’ different perspectives, allowing to identify possible win-win solutions for both the industrial sector and the citizenship.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.03.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.03.104&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | IS-ENES2, ANR | L-IPSLEC| IS-ENES2 ,ANR| L-IPSLAmadou Thierno Gaye; Xavier Capet; Juliette Mignot; Adama Sylla; Adama Sylla;Upwelling processes bring nutrient-rich waters from the deep ocean to the surface. Areas of upwelling are often associated with high productivity, offering great economic value in terms of fisheries. The sensitivity of spring/summer-time coastal upwelling systems to climate change has recently received a lot of attention. Several studies have suggested that their intensity may increase in the future while other authors have shown decreasing intensity in their equatorward portions. Yet, recent observations do not show robust evidence of this intensification. The Senegalo-Mauritanian upwelling system (SMUS) located at the southern edge of the north Atlantic system (12°N–20°N) and most active in winter/spring has been largely excluded from these studies. Here, the seasonal cycle of the SMUS and its response to climate change is investigated in the database of the Coupled Models Inter comparison Project Phase 5 (CMIP5). Upwelling magnitude and surface signature are characterized by several sea surface temperature and wind stress indices. We highlight the ability of the climate models to reproduce the system, as well as their biases. The simulations suggest that the intensity of the SMUS winter/spring upwelling will moderately decrease in the future, primarily because of a reduction of the wind forcing linked to a northward shift of Azores anticyclone and a more regional modulation of the low pressures found over Northwest Africa. The implications of such an upwelling reduction on the ecosystems and local communities exploiting them remains very uncertain.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00382-019-04797-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Informa UK Limited Chia, E.L.; Somorin, O.A.; Sonwa, D.J.; Bele, M.Y.; Tiani, A.M.;handle: 10568/95716
In Cameroon, as in other countries of the Congo basin region, policy processes and activities related to climate change have been hitherto geared mostly towards mitigation and related questions, with limited concern about adaptation issues. However, the increasing vulnerability of Cameroon to climate variability and change makes adaptation significant to its national climate-change policy. Nonetheless, it remains a challenge to make both adaptation and mitigation occupy the same policy space in Cameroon. This paper builds partly on studies carried out in two community forest carbon initiatives in the southern rainforest of Cameroon. It also argues, supported by existing literature on adaptation and mitigation, that mitigation activities have the potential to produce adaptation outcomes; a situation which avoids duplication of efforts and waste of financial and technical resources, if synergetic options are anticipated and planned. However, whether such integrated approaches succeed and are subsequently reflected in national-level climate policy depends on how actors across different sectors and at different levels engage and carry out their roles. The paper discusses these roles and how they can support each other in pursuing integrated initiatives – a context which is vital for Cameroon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17565529.2014.918867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 1% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17565529.2014.918867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu