- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- Embargo
- 7. Clean energy
- 2. Zero hunger
- GB
- IT
- Energy Research
- Open Access
- Open Source
- Embargo
- 7. Clean energy
- 2. Zero hunger
- GB
- IT
Research data keyboard_double_arrow_right Dataset 2020Publisher:University of Bath Fosas, Daniel; Nikolaidou, Elli; Roberts, Matt; Allen, Stephen; Walker, Ian; Coley, David;doi: 10.15125/bath-00766
Dataset for the journal paper "Towards Active Buildings: rating grid-servicing buildings", which describes the simulations for the 20 case study buildings. The simulation inputs describe the intended characteristics as part of the early design stage process, and the outputs the performance metrics under the rating system introduced in the journal paper, called the ABCode1. Such outputs rate the relative merits of each case study in terms of embodied carbon, energy requirements, energy generation and energy flexibility. The simulation outputs have been generated using the inputs included in the dataset, which were then simulated in David Coley’s ZEBRA and then evaluated with the rating system proposed in the journal publication as part of ABCode1. The files are in the original Excel xlsx file (Microsoft Office 365), but it may be viewed by any other spread sheet tools such as LibreOffice's Calc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Embargo end date: 01 Apr 2017Publisher:Dryad Russell, Debbie J. F.; Hastie, Gordon D.; Thompson, David; Janik, Vincent M.; Hammond, Philip S.; Scott-Hayward, Lindesay A. S.; Matthiopoulos, Jason; Jones, Esther L.; McConnell, Bernie J.; Russell, Debbie J.F.;doi: 10.5061/dryad.9r0gv
As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts. Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another. Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause. There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 μPa(p-p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement. Wash_diagWash_diag.xlsx is the historic location data (pre windfarm construction) for the 19 individuals used in the analysis described in Russell et al.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gordon McFadzean; Ciaran Gilbert; Jethro Browell;Outputs from the Network Innovation Allowance project "Control REACT" (workstream 2), sponsored by National Grid Electricity System Operator (NGESO). This deposit contains underlying data used in this project. The R code (Rmarkdown) and html renders of these workbooks are available in a separate deposit linked below. See description there for further details. In order to run the R scripts, data and code must be arranged in the directory structure given in "Directory Structure.pdf". Wind, solar and net-demand data are derived from raw data made available by Elexon and Solar Sheffield via public APIs. See respective websites for details, our processed (aggregated and cleaned) versions of this data are shared here under a CC-BY license. Weather forecast data are derived from historic operational forecasts from the ECMWF HRES model and are shared under a CC-BY licence. For details on how these were processed please see references. {"references": ["J. Browell and M. Fasiolo, \"Probabilistic Forecasting of regional net-load with conditional extremes and gridded NWP\", IEEE Transactions on Smart Grid, vol. 12, no, 6, pp. 5011-5019, 2021", "C. Gilbert \"Topics in high dimensional energy forecasting\", J. Browell & D. McMillan, degree supervisors; Centre for Doctoral Training in Wind and Marine Energy Systems; Department of Electronic and Electrical Engineering Thesis [PhD] 2021"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 United KingdomPublisher:University College London Pullinger, Martin; Few, Jessica; McKenna, Eoghan; Elam, Simon; Webborn, Ellen; Oreszczyn, Tadj;This is a set of aggregated data tables that underly the key figures in the SERL stats report "Smart Energy Research Lab: Energy use in GB domestic buildings 2021" (Volume 1). The report describes domestic gas and electricity energy use in Great Britain in 2021 based on data from the Smart Energy Research Lab (SERL) Observatory, which consists of smart meter and contextual data from approximately 13,000 homes that are broadly representative of the GB population in terms of region and Index of Multiple Deprivation (IMD) quintile. The report shows how residential energy use in GB varies over time (monthly over the year and half-hourly over the course of the day), with occupant characteristics (number of occupants, tenure), property characteristics (age, size, form, and Energy Performance Certificate (EPC)), by type of heating system, presence of solar panels and of electric vehicles, and by weather, region and IMD quintile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:University of Bath Authors: Mitchell, Rachel; Natarajan, Sukumar;doi: 10.15125/bath-00774
This dataset consists of hourly internal and daily external temperature data from 82 certified Passivhaus dwellings in the UK. The data can be used for calculating overheating risk and guaging how comfortable a home would be in the summer. This data come from 16 different sites and includes houses and flats. Some of the data is from the living room only, for other dwellings there were sensors in muitple rooms and these are indicated. As this data was compared to CIBSE TM59 "Design methodology for the assessment of overheating risk in homes", there is a calculation of the running mean temperature and maximum temperature. The variables are Timestamp = time and date SiteID = Site number (1-16) DWType = dwelling type (House or Flat) HouseID = unique reference number for each dwelling in dataset Room = room type LR = living room , BR= bedroom, KI= Kitchen, BT= bathroom T.int = internal temperature (mean hourly) T.ext.daily = external temperature (mean daily) T.rm = running mean temperature calculated using the method described in CIBSE TM59 T.max = maximum daily intenral temperature calculated using the method described in CIBSE TM59 This data was provided by the Technology Stratergy Board Building Performance Evaluation Program, and is available from the digital catapault. Other data was provided by WARM low energy Consultancy and indidiual home owners. All data has been anonymised
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors: Zoe M. Harris; Yiannis Kountouris;doi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2020Publisher:University of Bath Fosas, Daniel; Nikolaidou, Elli; Roberts, Matt; Allen, Stephen; Walker, Ian; Coley, David;doi: 10.15125/bath-00766
Dataset for the journal paper "Towards Active Buildings: rating grid-servicing buildings", which describes the simulations for the 20 case study buildings. The simulation inputs describe the intended characteristics as part of the early design stage process, and the outputs the performance metrics under the rating system introduced in the journal paper, called the ABCode1. Such outputs rate the relative merits of each case study in terms of embodied carbon, energy requirements, energy generation and energy flexibility. The simulation outputs have been generated using the inputs included in the dataset, which were then simulated in David Coley’s ZEBRA and then evaluated with the rating system proposed in the journal publication as part of ABCode1. The files are in the original Excel xlsx file (Microsoft Office 365), but it may be viewed by any other spread sheet tools such as LibreOffice's Calc.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Embargo end date: 01 Apr 2017Publisher:Dryad Russell, Debbie J. F.; Hastie, Gordon D.; Thompson, David; Janik, Vincent M.; Hammond, Philip S.; Scott-Hayward, Lindesay A. S.; Matthiopoulos, Jason; Jones, Esther L.; McConnell, Bernie J.; Russell, Debbie J.F.;doi: 10.5061/dryad.9r0gv
As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts. Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another. Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause. There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 μPa(p-p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement. Wash_diagWash_diag.xlsx is the historic location data (pre windfarm construction) for the 19 individuals used in the analysis described in Russell et al.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 21visibility views 21 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.9r0gv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors: Barreaux, Antoine; Higginson, Andrew; Bonsall, Michael; English, Sinead;Here, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Zenodo Authors: Gordon McFadzean; Ciaran Gilbert; Jethro Browell;Outputs from the Network Innovation Allowance project "Control REACT" (workstream 2), sponsored by National Grid Electricity System Operator (NGESO). This deposit contains underlying data used in this project. The R code (Rmarkdown) and html renders of these workbooks are available in a separate deposit linked below. See description there for further details. In order to run the R scripts, data and code must be arranged in the directory structure given in "Directory Structure.pdf". Wind, solar and net-demand data are derived from raw data made available by Elexon and Solar Sheffield via public APIs. See respective websites for details, our processed (aggregated and cleaned) versions of this data are shared here under a CC-BY license. Weather forecast data are derived from historic operational forecasts from the ECMWF HRES model and are shared under a CC-BY licence. For details on how these were processed please see references. {"references": ["J. Browell and M. Fasiolo, \"Probabilistic Forecasting of regional net-load with conditional extremes and gridded NWP\", IEEE Transactions on Smart Grid, vol. 12, no, 6, pp. 5011-5019, 2021", "C. Gilbert \"Topics in high dimensional energy forecasting\", J. Browell & D. McMillan, degree supervisors; Centre for Doctoral Training in Wind and Marine Energy Systems; Department of Electronic and Electrical Engineering Thesis [PhD] 2021"]}
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 122visibility views 122 download downloads 263 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6974532&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022 United KingdomPublisher:University College London Pullinger, Martin; Few, Jessica; McKenna, Eoghan; Elam, Simon; Webborn, Ellen; Oreszczyn, Tadj;This is a set of aggregated data tables that underly the key figures in the SERL stats report "Smart Energy Research Lab: Energy use in GB domestic buildings 2021" (Volume 1). The report describes domestic gas and electricity energy use in Great Britain in 2021 based on data from the Smart Energy Research Lab (SERL) Observatory, which consists of smart meter and contextual data from approximately 13,000 homes that are broadly representative of the GB population in terms of region and Index of Multiple Deprivation (IMD) quintile. The report shows how residential energy use in GB varies over time (monthly over the year and half-hourly over the course of the day), with occupant characteristics (number of occupants, tenure), property characteristics (age, size, form, and Energy Performance Certificate (EPC)), by type of heating system, presence of solar panels and of electric vehicles, and by weather, region and IMD quintile.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5522/04/20039816.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:University of Bath Authors: Mitchell, Rachel; Natarajan, Sukumar;doi: 10.15125/bath-00774
This dataset consists of hourly internal and daily external temperature data from 82 certified Passivhaus dwellings in the UK. The data can be used for calculating overheating risk and guaging how comfortable a home would be in the summer. This data come from 16 different sites and includes houses and flats. Some of the data is from the living room only, for other dwellings there were sensors in muitple rooms and these are indicated. As this data was compared to CIBSE TM59 "Design methodology for the assessment of overheating risk in homes", there is a calculation of the running mean temperature and maximum temperature. The variables are Timestamp = time and date SiteID = Site number (1-16) DWType = dwelling type (House or Flat) HouseID = unique reference number for each dwelling in dataset Room = room type LR = living room , BR= bedroom, KI= Kitchen, BT= bathroom T.int = internal temperature (mean hourly) T.ext.daily = external temperature (mean daily) T.rm = running mean temperature calculated using the method described in CIBSE TM59 T.max = maximum daily intenral temperature calculated using the method described in CIBSE TM59 This data was provided by the Technology Stratergy Board Building Performance Evaluation Program, and is available from the digital catapault. Other data was provided by WARM low energy Consultancy and indidiual home owners. All data has been anonymised
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15125/bath-00774&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors: Zoe M. Harris; Yiannis Kountouris;doi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu