- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- GB
- IT
- ZENODO
- Energy Research
- 12. Responsible consumption
- GB
- IT
- ZENODO
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors:Minx, Jan C.;
Minx, Jan C.
Minx, Jan C. in OpenAIRELamb, William F.;
Lamb, William F.
Lamb, William F. in OpenAIREAndrew, Robbie M.;
Andrew, Robbie M.
Andrew, Robbie M. in OpenAIRECanadell, Josep G.;
+13 AuthorsCanadell, Josep G.
Canadell, Josep G. in OpenAIREMinx, Jan C.;
Minx, Jan C.
Minx, Jan C. in OpenAIRELamb, William F.;
Lamb, William F.
Lamb, William F. in OpenAIREAndrew, Robbie M.;
Andrew, Robbie M.
Andrew, Robbie M. in OpenAIRECanadell, Josep G.;
Crippa, Monica;Canadell, Josep G.
Canadell, Josep G. in OpenAIREDöbbeling, Niklas;
Döbbeling, Niklas
Döbbeling, Niklas in OpenAIREForster, Piers;
Guizzardi, Diego;Forster, Piers
Forster, Piers in OpenAIREOlivier, Jos;
Olivier, Jos
Olivier, Jos in OpenAIREPongratz, Julia;
Pongratz, Julia
Pongratz, Julia in OpenAIREReisinger, Andy;
Reisinger, Andy
Reisinger, Andy in OpenAIRERigby, Matthew;
Rigby, Matthew
Rigby, Matthew in OpenAIREPeters, Glen;
Peters, Glen
Peters, Glen in OpenAIRESaunois, Marielle;
Saunois, Marielle
Saunois, Marielle in OpenAIRESmith, Steven J.;
Smith, Steven J.
Smith, Steven J. in OpenAIRESolazzo, Efisio;
Solazzo, Efisio
Solazzo, Efisio in OpenAIRETian, Hanqin;
Tian, Hanqin
Tian, Hanqin in OpenAIREComprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 12 Sep 2023Publisher:Dryad Authors:Mason, Victoria;
Burden, Annette; Epstein, Graham; Jupe, Lucy; +2 AuthorsMason, Victoria
Mason, Victoria in OpenAIREMason, Victoria;
Burden, Annette; Epstein, Graham; Jupe, Lucy; Wood, Kevin; Skov, Martin;Mason, Victoria
Mason, Victoria in OpenAIRE# Data from: Blue Carbon Benefits from Global Saltmarsh Restoration [https://doi.org/10.5061/dryad.pc866t1vp](https://doi.org/10.5061/dryad.pc866t1vp) This README file was generated on 12th September 2023 by Victoria Mason. **Title of Dataset:** Blue carbon benefits from global saltmarsh restoration. **Author information:** * Victoria G. Mason, Bangor University/Royal Netherlands Institute for Sea Research (NIOZ), victoria.mason@nioz.nl (*Corresponding author*) * Annette Burden, UK Centre for Ecology & Hydrology * Graham Epstein, University of Exeter/University of Victoria * Lucy L. Jupe, Wildfowl & Wetlands Trust * Kevin A. Wood, Wildfowl & Wetlands Trust * Martin W. Skov, Bangor University **Summary of dataset:** These data include all data which were extracted or derived from relevant studies on global saltmarsh carbon storage and greenhouse gas flux. Data were obtained following screening of 29,182 peer reviewed published studies for relevant data, which were then extracted from 431 studies via text, tables and figures. We then used a meta-analysis to assess drivers of variation in global saltmarsh and greenhouse gas flux. * Date of literature search: 21st January 2022. * Date of data extraction: February - March 2022 * Literature search conducted via: Scopus + Web of Science ## Description of the data and file structure The contents of these data include: * **Full dataset (Aug2023\_GlobalCarbonReview\_FullDataset.xls):** All data extracted from 431 relevant studies and used in analysis. This includes a title page, metadata (with descriptions of column headers) and the full dataset. Response variables included: * Carbon stock * Percentage organic carbon * Bulk density * Sediment accretion rate * Carbon accumulation rate * Carbon dioxide flux * Methane flux * Nitrous oxide flux **\- Data on each included study \(Aug2023\_GlobalCarbonReview\_IncludedStudies\.xls\):** List of each study included in the final analysis, and its metadata. This includes a title page, metadata (with descriptions of column headers) and the dataset. All data include standard deviation (SD) and n (number of replicates) where provided by the original study, which were used to calculate Hedge's *g* effect sizes reported in the subsequent study. | Frequently used abbreviations: | | | ------------------------------ | --- | | C | carbon | | OC | organic carbon | | GHG | greenhouse gas | | bd | bulk density (g cm-3 dry sediment) | | Y/N | yes/no | | ref | reference | | lat | latitude | | long | longitude | | rest | restoration | | prec | precipitation | | sal | salinity | | acc | accretion | | resp | respiration | | SR | soil respiration (appears for CO2 flux) | | ER | ecosystem respiration (appears for CO2 flux) | | n | number of samples included in mean/standard deviation | | sd | standard deviation | All abbreviations used are outlined in the ‘Metadata’ worksheet of .xls files. **Data specific information for Aug2023\_GlobalCarbonReview\_FullDataset.xls:** Number of variables: 88 Number of cases/rows: 2055 Variables included: See 'Metadata' sheet **Data specific information for** **Aug2023\_GlobalCarbonReview\_IncludedStudies.xls:** Number of variables: 47 Number of cases/rows: 431 Variables included: See 'Metadata' sheet **Empty cells:** Cells are empty where data on that variable were not provided by the original study from which they were extracted. For example, where a study provided data on carbon stock variables, but not greenhouse gas flux. For further details, see the 'Metadata' sheets of each file. ## Sharing/Access information These data are available via Dryad, and described in ‘Blue Carbon Benefits from Global Saltmarsh Restoration’, in Global Change Biology. **DOI:** 10.1111/gcb.16943 Data were extracted from 431 published peer reviewed articles, the details of which can be found in the attached datasheets. Coastal saltmarshes are found globally, yet are 25–50% reduced compared to their historical cover. Restoration is incentivised by the promise that marshes are efficient storers of ‘blue’ carbon, although the claim lacks substantiation across global contexts. We synthesised data from 431 studies to quantify the benefits of saltmarsh restoration to carbon accumulation and greenhouse gas uptake. The results showed global marshes store approximately 1.41–2.44 Pg carbon. Restored marshes had very low greenhouse gas (GHG) fluxes and rapid carbon accumulation, resulting in a mean net accumulation rate of 64.70 t CO2e ha-1 y-1. Using this estimate and potential restoration rates, we find saltmarsh regeneration could result in 12.93–207.03 Mt CO2e accumulation per year, offsetting the equivalent of up to 0.51% global-energy-related CO2 emissions – a substantial amount, considering marshes represent <1% of Earth’s surface. Carbon accumulation rates and GHG fluxes varied contextually with temperature, rainfall and dominant vegetation, with the eastern costs of the USA and Australia being particular hotspots for carbon storage. Whilst the study reveals paucity of data for some variables and continents, suggesting a need for further research, the potential for saltmarsh restoration to offset carbon emissions is clear. The ability to facilitate natural carbon accumulation by saltmarshes now rests principally on the action of the management-policy community and on financial opportunities for supporting restoration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.pc866t1vp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.pc866t1vp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:MIURMIURAuthors:Carla Zarbà;
Carla Zarbà
Carla Zarbà in OpenAIREGaetano Chinnici;
Gaetano Chinnici
Gaetano Chinnici in OpenAIREGiovanni La Via;
Giovanni La Via
Giovanni La Via in OpenAIRESalvatore Bracco;
+2 AuthorsSalvatore Bracco
Salvatore Bracco in OpenAIRECarla Zarbà;
Carla Zarbà
Carla Zarbà in OpenAIREGaetano Chinnici;
Gaetano Chinnici
Gaetano Chinnici in OpenAIREGiovanni La Via;
Giovanni La Via
Giovanni La Via in OpenAIRESalvatore Bracco;
Salvatore Bracco
Salvatore Bracco in OpenAIREBiagio Pecorino;
Biagio Pecorino
Biagio Pecorino in OpenAIREMario D’Amico;
Mario D’Amico
Mario D’Amico in OpenAIREdoi: 10.3390/su13158350
In the transition from linear production systems, unsustainable from the point of view of resources, to a model that finds strength in environmental, social and economic sustainability, the circular economy paradigm is the foundation that facilitates the planetary agro-ecological transition. The European Union has taken a number of steps (including the Circular Economy Package of Directives) shaping circularity as a wide-ranging driver measure involving many sectors. The paper intends to provide a regulatory framework on the current general situation regarding circularity in European Union, in order to extrapolate and give evidence to the aspects that intersect the agri-food sector. This is not only because they are poorly addressed in the literature, but also because there is a lack of regulatory instruments on the circular economy specifically addressing this area of interest. For this purpose, the analysis focuses on waste and residue/scrap management issues, recognized by law as by-products and end-of-waste status, as they are covered by circular economy legislation and as they can be applied to the agri-food sector. The latter allow the implementation of circularity strategies in the agri-food sector and, given the numerousness of production chains and the peculiarities of each of them, various regeneration and/or reuse processes of specific resources may be depicted. The intent is to provide useful knowledge on how to implement sustainable waste management, also proposing a concrete case on a by-product of olive oil processing, through which it is possible to highlight how the correct application of regulations favors the adoption of circular economic and management models in the firms involved, as well as informing the relevant economic operators on the possible profiles of legal liability that may arise from insufficient knowledge. Furthermore, this paper delves into the European Green Deal’s Strategy as it enriches the circular economy paradigm with new facets. NextGenerationEU and the National Recovery and Resilience Plan financially support this strategy in the aftermath of the socioeconomic crisis from COVID-19 in the EU Member States. This is in order to achieve the objective of achieving the agro-ecological transition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 29 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Elsevier BV Funded by:MIURMIURAuthors:D'Annibale Alessandro;
D'Annibale Alessandro
D'Annibale Alessandro in OpenAIRECarota Eleonora;
Carota Eleonora
Carota Eleonora in OpenAIRECrognale Silvia;
Crognale Silvia
Crognale Silvia in OpenAIREPetruccioli Maurizio;
Petruccioli Maurizio
Petruccioli Maurizio in OpenAIREThe aqueous extraction of orange peel waste (OPW), the byproduct of the juice extraction process generated annually in massive amounts (21 Mton), yields a carbohydrate-rich liquid fraction, termed orange peel extract (OPE). Several studies highlight that the combination of glycerol, a biodiesel byproduct, with carbohydrate mixtures might boost microbial lipid production. This study performed first a shaken flask screening of 15 oleaginous yeast strains based on their growth and lipid-producing abilities on OPE- and glycerol-based media. This screening enabled the selection of R. toruloides NRRL 1091 for the assessment of the process transfer in a stirred tank reactor (STR). This assessment relied, in particular, on either single- and double-stage feeding fed-batch (SSF-FB and DSF-FB, respectively) processes where OPE served as the primary medium and nitrogen-containing glycerol-OPE mixtures as the feeding one. The continuous supply mode at low dilution rates (0.02 and 0.01 h-1 for SSF-FB and DSF-FB, respectively) starting from the end of the exponential growth of the initial batch phase enabled the temporal extension of biomass and lipid production. The SSF-FB and DSF-FB processes attained high biomass and lipid volumetric productions (LVP) and ensured significant lipid accumulation on a dry cell basis (YL/X). The SSF-FB process led to LVP of 20.6 g L-1 after 104 h with volumetric productivity (r L) of 0.20 g L-1 h-1 and YL/X of 0.80; the DSF-FB process yielded LVP, r L and YL/X values equal to 15.92 g L-1, 0.11 g L-1 h-1 and 0.65, respectively. The fatty acid profiles of lipids from both fed-batch processes were not significantly different and resembled that of Jatropha oil, a vastly used feedstock for biodiesel production. These results suggest that OPE constitutes an excellent basis for the fed-batch production of R. toruloides lipids, and this process might afford a further option in OPW-based biorefinery.
Heliyon arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2020.e04801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 19visibility views 19 download downloads 24 Powered bymore_vert Heliyon arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2020.e04801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Funded by:EC | PRODIGEESEC| PRODIGEESAuthors: Sarno, Giulia Sofia;Climate change is worsening the number, frequency and duration of natural hazards across the globe, making disaster risk reduction and resilience building among the most pressing challenges ahead. According to UN-Habitat, informal settlements are where the impacts of climate change are the most acute in urban areas and strengthening resilience in these neighbourhoods represents a very complex yet urgent challenge. Today, urban areas are home to 56 per cent of the world’s population and this figure is projected to increase to 60 per cent by 2030 and 68 per cent by 2050, with 90 per cent of the growth by 2050 expected to occur in less developed economies. In these countries, population growth and displacement (including climate-driven migrations) will lead to rapid and unplanned urbanisation forcing a growing number of people into informal settlements. Currently, one billion people live in informal settlements, mostly in Asia, Sub-Saharan Africa and Latin America and this figure is expected to grow to 3 billion in 2050. Horizon 2020 MSCA-RISE, Grant Agreement #873119
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8169190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8169190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:EC | REACTEC| REACTAuthors: Heracles Polatidis;Andrew Barney;
Dias Haralambopoulos; Gobind Pillai; +2 AuthorsAndrew Barney
Andrew Barney in OpenAIREHeracles Polatidis;Andrew Barney;
Dias Haralambopoulos; Gobind Pillai;Andrew Barney
Andrew Barney in OpenAIREMarko Jelić;
Marko Jelić
Marko Jelić in OpenAIRENikola Tomašević;
Nikola Tomašević
Nikola Tomašević in OpenAIREAbstract This paper presents REACT-DECARB, an energy planning decarbonisation platform employing renewable energy sources coupled with storage for islands. The paper implements the energy scenario creation and economic evaluation steps of the platform on eight geographic islands in seven countries within the EU. Twenty-one technologically feasible energy scenarios, applicable to the specific conditions of each island, are specified and their economic assessment via a levelized cost of energy (LCOE) calculation is then performed. The main aim of this application is to verify the noted steps of the platform as well as to test its flexibility across geographically, socially and dimensionally disparate islands with various scenario generation methods. The results of the economic analysis show a wide variation of LCOE depending primarily on whether full island autonomy is assumed. In some cases the islands’ scenarios’ costs approach current market prices but are never below them; some scenarios are, however, below the current price of the island’s thermal generation. The sensitivity and uncertainty of the economic performance results’ and the variables used to calculate them are evaluated and discussed for two of the islands. The overall analysis and application has shown that the REACT-DECARB platform is suitable for different islands, regardless of location and size and can be useful for island energy planners.
Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2021.101501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:Zenodo Alessandra Vernile; Annalisa Donati; Elisa Filippi; Marco Scarselli; Maria Brovelli; Daniela Carrion; Marco Gianinetto;As stated in the European Green Deal: "to tackle climate and environmental-related challenges is this generation defining task". Young generations represent a juncture between understanding the potential hazardous impact of climate change on society and local communities. In this frame, STEAM education in school proved its ability to nurture students' curiosity and cognitive resources, provide them with the right tools to understand the world's complexity and face the challenges that the current times are posing, like climate change, among many others. However, STEAM subjects are not always part of educational curricula: according to the OECD Programme for International Student Assessment (PISA) report 2018, more than 20% of pupils in the European Union has insufficient proficiency in reading, mathematics, or science. Such a lack of diversity in the offer may decrease pupils' motivation to pursue STEAM academic paths, often perceived as highly theoretical and complex. The improvement of STEAM education in secondary schools is the core objective of the Erasmus+ funded project "GIS4Schools", which aims at promoting a new innovative approach to foster the teaching of STEAM subjects in secondary schools across four different European countries: Italy, Portugal, Romania, and Spain. The project intends to introduce the education of GIS and satellite technologies for Earth Observation- rarely adopted in secondary schools- and applying them to the thematic area of Climate Change. GIS4Schools combines Inquiry-Based Science Education (IBSE) with Problem Based Learning (PBL) approaches to an interdisciplinary contextualisation of the science topic. Pupils actively contributes to the co-creation of new knowledge by assessing with GIS tools the impacts of specific climate challenges affecting their local community thanks to Copernicus products, Sentinels' satellite-derived information, and other ancillary data. The paper illustrates the genesis of the project, and more specifically, the process leading to the development of training packages for secondary schools' teachers and pupils. Furthermore, the paper explores which methodology and pedagogic approach must be adopted to transfer new knowledge from teachers to pupils. The paper also describes how the teaching of GIS and satellite technologies for Earth observation in secondary school can impact pupils' perception of STEAM subjects and how this can impact their future academic careers. Specific attention is also dedicated to the description of the innovative tools developed and applied for monitoring and evaluation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7634720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 19visibility views 19 download downloads 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7634720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:MDPI AG Authors:Rodolfo Picchio;
Rodolfo Picchio
Rodolfo Picchio in OpenAIREFrancesco Latterini;
Francesco Latterini
Francesco Latterini in OpenAIREPiotr S. Mederski;
Damiano Tocci; +3 AuthorsPiotr S. Mederski
Piotr S. Mederski in OpenAIRERodolfo Picchio;
Rodolfo Picchio
Rodolfo Picchio in OpenAIREFrancesco Latterini;
Francesco Latterini
Francesco Latterini in OpenAIREPiotr S. Mederski;
Damiano Tocci;Piotr S. Mederski
Piotr S. Mederski in OpenAIRERachele Venanzi;
Rachele Venanzi
Rachele Venanzi in OpenAIREWalter Stefanoni;
Walter Stefanoni
Walter Stefanoni in OpenAIRELuigi Pari;
Luigi Pari
Luigi Pari in OpenAIREReducing potential soil damage due to the passing of forest machinery is a key issue in sustainable forest management. Limiting soil compaction has a significant positive impact on forest soil. With this in mind, the aim of this work was the application of precision forestry tools, namely the Global Navigation Satellite System (GNSS) and Geographic Information System (GIS), to improve forwarding operations in hilly areas, thereby reducing the soil surface impacted. Three different forest study areas located on the slopes of Mount Amiata (Tuscany, Italy) were analyzed. Extraction operations were carried out using a John Deere 1410D forwarder. The study was conducted in chestnut (Castanea sativa Mill.) coppice, and two coniferous stands: black pine (Pinus nigra Arn.) and Monterey pine (Pinus radiata D. Don). The first stage of this work consisted of field surveys collecting data concerning new strip roads prepared by the forwarder operator to extract all the wood material from the forest areas. These new strip roads were detected using a GNSS system: specifically, a Trimble Juno Sb handheld data collector. The accumulated field data were recorded in GIS Software Quantum GIS 2.18, allowing the creation of strip road shapefiles followed by a calculation of the soil surface impacted during the extraction operation. In the second phase, various GIS tools were used to define a preliminary strip road network, developed to minimize impact on the surface, and, therefore, environmental disturbance. The results obtained showed the efficiency of precision forestry tools to improve forwarding operations. This electronic component, integrated with the on-board GNSS and GIS systems of the forwarder, could assure that the machine only followed the previously-planned strip roads, leading to a considerable reduction of the soil compaction and topsoil disturbances. The use of such tool can also minimize the risks of accidents in hilly areas operations, thus allowing more sustainable forest operations under all the three pillars of sustainability (economy, environment and society).
Sustainability arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 48visibility views 48 download downloads 45 Powered bymore_vert Sustainability arrow_drop_down Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Università degli studi della Tuscia: Unitus DSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12145716&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | IProPBioEC| IProPBioAuthors:Luigi di Bitonto;
Hilda Elizabeth Reynel-Ávila;Luigi di Bitonto
Luigi di Bitonto in OpenAIREDidilia Ileana Mendoza-Castillo;
Adrián Bonilla-Petriciolet; +1 AuthorsDidilia Ileana Mendoza-Castillo
Didilia Ileana Mendoza-Castillo in OpenAIRELuigi di Bitonto;
Hilda Elizabeth Reynel-Ávila;Luigi di Bitonto
Luigi di Bitonto in OpenAIREDidilia Ileana Mendoza-Castillo;
Adrián Bonilla-Petriciolet;Didilia Ileana Mendoza-Castillo
Didilia Ileana Mendoza-Castillo in OpenAIRECarlo Pastore;
Carlo Pastore
Carlo Pastore in OpenAIREThe conversion of renewable biomasses into biofuels and chemicals represents a strategic way to reduce the use of fossil feedstock, by contributing in switching to a more sustainable society. The use of agro-industrial wastes does not subtract resources destined for food consumption. In addition, waste utilization would result in a reduction of its accumulation, with a consequent decrease of environmental impact and financial losses due to the relevant disposal. In this context, a wide variety of exploitable agricultural resources can be used to support this sustainable growth. However, the characterization represents the first step towards a targeted and proficient exploitation of the chemical and energetic potential of a residual biomass. In this work, some representative residual (Mexican) biomasses were investigated: pepper residues (Hungarian yellow and red variety), coconut shells (Cocos nucifera), flamboyant pods (Delonix regia), seeds of avocado (Persea Americana), palm (Palma de Coroco) and nance (Byrsonima crassifolia) were chemically characterized and the relevant potential applications for the synthesis of biofuels and fine chemicals were specifically evaluated. Lipids, structural carbohydrates, and lignin were specifically valorized in a proficient cascade of technologies, which aim to exploit the correspondent potential, according to the principles of biorefinery and circular economy.
ZENODO arrow_drop_down Biomass Conversion and BiorefineryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-020-00616-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 20visibility views 20 download downloads 27 Powered bymore_vert ZENODO arrow_drop_down Biomass Conversion and BiorefineryArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefBiomass Conversion and BiorefineryArticle . 2020 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13399-020-00616-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu