Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
    Clear
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
687 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • Open Source
  • Embargo
  • medical and health sciences
  • IT
  • NL

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Margriet S. Westerterp-Plantenga; Pilou L. H. R. Janssens; Rick Hursel;

    Green tea catechins mixed with caffeine have been proposed as adjuvants for maintaining or enhancing energy expenditure and for increasing fat oxidation, in the context of prevention and treatment of obesity. These catechins-caffeine mixtures seem to counteract the decrease in metabolic rate that occurs during weight loss. Their effects are of particular importance during weight maintenance after weight loss. Other metabolic targets may be fat absorption and the gut microbiota composition, but these effects still need further investigation in combination with weight loss. Limitations for the effects of green tea catechins are moderating factors such as genetic predisposition related to COMT-activity, habitual caffeine intake, and ingestion combined with dietary protein. In conclusion, a mixture of green tea catechins and caffeine has a beneficial effect on body-weight management, especially by sustained energy expenditure, fat oxidation, and preservation of fat free body-mass, after energy restriction induced body-weight loss, when taking the limitations into account.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physiology & Behavio...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Physiology & Behavior
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physiology & Behavio...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Physiology & Behavior
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid ROSSI, C.;
    ROSSI, C.
    ORCID
    Harvested from ORCID Public Data File

    ROSSI, C. in OpenAIRE
    orcid MARCHETTINI, N.;
    MARCHETTINI, N.
    ORCID
    Harvested from ORCID Public Data File

    MARCHETTINI, N. in OpenAIRE
    orcid bw DONATI, A.;
    DONATI, A.
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    DONATI, A. in OpenAIRE
    orcid MEDAGLINI, D.;
    MEDAGLINI, D.
    ORCID
    Harvested from ORCID Public Data File

    MEDAGLINI, D. in OpenAIRE
    +3 Authors

    Abstract In vivo NMR techniques and substrates selectively enriched with 13 C were used to follow the step-by-step metabolism of glucose and xylose, on their own or as mixed substrates in the ratio as they occur in hydrolysates from hemicellulose. The organism used was a newly isolated strain of Klebsiella planticola isolated from soil where maize has been cultivated for 30 years. Results suggest that glucose is converted to pyruvate via the Embden-Meyerhof pathway and then to lactate and ethanol. No evidence of 2,3-butandiol or formate metabolism was observed. This organism had a higher rate of uptake of xylose than previously studied microorganisms, resulting in ethanol, lactate, acetate succinate and formate as end products. Xylose metabolism in K. planticola G11, unlike that reported for many other organisms, was not inhibited by glucose. The addition of glucose, after 2 h of xylose fermentation, did not change the rate of xylose metabolism.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Usiena air - Univers...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 1995 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Usiena air - Univers...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 1995 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid GASPARRINI, BIANCA;
    GASPARRINI, BIANCA
    ORCID
    Harvested from ORCID Public Data File

    GASPARRINI, BIANCA in OpenAIRE
    BOCCIA L.; DE ROSA A.; orcid DI PALO, ROSSELLA;
    DI PALO, ROSSELLA
    ORCID
    Harvested from ORCID Public Data File

    DI PALO, ROSSELLA in OpenAIRE
    +2 Authors

    The possibility of artificially inducing activation of MII buffalo oocytes may allow us to evaluate indirectly the quality of oocytes after in vitro maturation. The aim of this work was to compare buffalo embryo development after IVF and after chemical activation by two different agents. A further goal was to evaluate the effects of aging of oocytes on post-parthenogenetic and post-fertilization development. In Experiment 1 cumulus-oocyte complexes (COCs) were recovered from abattoir-derived ovaries and matured in vitro. After IVM the COCs were either fertilized in vitro (positive control) or activated with ethanol and ionomycin, both followed by immediate exposure to 6-diethylaminopurine (6-DMAP) for 4 h. In vitro culture (IVC) was carried out up to the blastocyst stage. In Experiment 2 COCs were matured in vitro for 18, 21, 24, 27 and 30 h before activation was triggered with ethanol, followed by 6-DMAP. In Experiment 3 COCs were fertilized in vitro at 18, 21, 24, 27 and 30 h post-maturation. Ethanol activation gave better results than the IVF control group, with higher cleavage rate (71.4 +/- 7.8 versus 55.8 +/- 5.8, respectively; P < 0.05) and a higher proportion of oocytes developing into morulae-blastocysts (32.6 +/- 6.5 versus 22.9 +/- 7.5, respectively; P < 0.05). Within the activation groups, ethanol supported the highest development in terms of cleavage (71.4 +/- 7.8 versus 59.4 +/- 10.7; P < 0.05) and morulae-blastocysts rate (32.6 +/- 6.5 versus 25.7 +/- 8.3; n.s.). It was also demonstrated that aging negatively affects post-parthenogenetic and post-fertilization development.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Theriogenology
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Theriogenology
    Article . 2005
    addClaim
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Langhout, Rob; Weber, Marvin; orcid Tak, Igor;
    Tak, Igor
    ORCID
    Harvested from ORCID Public Data File

    Tak, Igor in OpenAIRE
    Lenssen, Ton;

    The first aim of this study was to describe duration and relative timing of the phases of the maximal instep kick. The second aim was to describe the concurrence of maximal range of motion, maximal angular acceleration, maximal angular deceleration and maximal angular velocity of body segments with four key points.Twenty experienced football players performed three maximal instep kicks. The kicks were analysed using a full body, three-dimensional motion capture system. Camera recordings determined kicking leg events. The concurrence of peak kinematics of body segments with four key points was calculated.Duration and timing of five phases were identified. Key point maximal hip extension (51.4±5.0%) concurred significantly with maximal range of motion (ROM) of shoulder extension. Key point maximal knee flexion (63.6±5.2%) concurred significantly with maximal angular acceleration of spine flexion and pelvis posterior tilt. Key point knee flexion 90 degrees (69.3±4.9%) concurred significantly with maximal angular velocity of shoulder flexion and spine flexion, maximal angular deceleration of hip flexion and maximal angular acceleration of knee extension. Key point ball impact (75.2±5.2%) concurred significantly with maximal ROM of hip deflexion and pelvis anterior rotation and with maximal angular deceleration of spine flexion and pelvis anterior rotation.This study demonstrated that eleven peak kinematics of upper body and kicking leg segments, significantly concurred with four kicking leg positions. These results provide Key points for kicking coordination and stress the importance of dynamical coupling as a kicking mechanism.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Sport...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Sport...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Michela Stoppo; orcid Giovanni Addolorato;
    Giovanni Addolorato
    ORCID
    Harvested from ORCID Public Data File

    Giovanni Addolorato in OpenAIRE
    orcid bw Fabio Caputo;
    Fabio Caputo
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Fabio Caputo in OpenAIRE
    Arfedele Del Re; +7 Authors

    Sodium oxybate (SMO) is a GABA-ergic drug currently used for the treatment of alcohol-dependence in some European countries. In particular, clinical studies have shown a role of SMO in promoting alcohol abstinence, as well as in relieving withdrawal symptoms. The aim of this study was to describe alcohol abstinence and the onset of craving for and abuse of SMO in alcohol-dependent subjects with and without psychiatric co-morbidity. Forty-eight patients were enrolled and classified into two groups: group A (20 alcoholics without any psychiatric co-morbidity) and group B (28 alcoholics with a psychiatric co-morbidity). All patients were treated with oral SMO (50 mg/kg of body weight t.i.d.) for 12 weeks. Alcohol abstinence as well as alcohol drinking during the 12 weeks of treatment did not differ between the two groups at the end of treatment (p=0.9). In addition, a reduction of alcohol intake in both groups has been observed (p<0.0001). On the other hand, craving for SMO was significantly more frequent in group B than group A (p=0.001). Cases of SMO abuse were observed in almost 10% of group B patients. In conclusion, alcohol abstinence achieved through SMO administration does not differ in patients with and without psychiatric co-morbidity. However, alcoholics with co-morbid borderline disorders appear to be at high risk of developing craving for and abuse of the drug; therefore, SMO may not be indicated in these patients.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    European Neuropsychopharmacology
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    PubliCatt
    Article . 2011
    Data sources: PubliCatt
    addClaim
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid CALAPAI, Gioacchino;
    CALAPAI, Gioacchino
    ORCID
    Harvested from ORCID Public Data File

    CALAPAI, Gioacchino in OpenAIRE
    orcid MAZZAGLIA G;
    MAZZAGLIA G
    ORCID
    Harvested from ORCID Public Data File

    MAZZAGLIA G in OpenAIRE
    SAUTEBIN L; COSTANTINO G; +4 Authors

    Brain nitric oxide is involved in the mechanisms that regulate ingestive behavior. To test whether this compound plays a role in alcohol preference, we studied the effects of different doses of NG-nitro-L-arginine (L-NO arg), an inhibitor of nitric oxide synthase (NOS), on voluntary consumption of ethanol and on blood alcohol levels produced by a single intraperitoneal dose of alcohol in the rat. L-NO arg produced a significant and dose-dependent reduction of ethanol intake (P < 0.001) without influencing total fluid consumption or feeding behavior. L-NO arg did not influence the kinetics of alcohol. Our data show that inhibition of nitric oxide formation accompanies reduction of ethanol intake and suggest a possible role for nitric oxide in ethanol self-administration.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BOA - Bicocca Open A...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Psychopharmacology
    Article . 1996 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BOA - Bicocca Open A...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Psychopharmacology
      Article . 1996 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Marloes G. Postel;
    Marloes G. Postel
    ORCID
    Harvested from ORCID Public Data File

    Marloes G. Postel in OpenAIRE
    Marcel E. Pieterse; J. Korte; orcid Joris Jasper van Hoof;
    Joris Jasper van Hoof
    ORCID
    Harvested from ORCID Public Data File

    Joris Jasper van Hoof in OpenAIRE

    This study supports the hypothesis that the drinking setting can be an environmental risk factor for hazardous alcohol use. In a survey of Dutch adolescents (n = 1516), alcohol consumption and participation in private peer group settings (PPSs), environments where adolescents meet and drink alcohol without direct adult supervision, were measured. After controlling for demographic variables, adolescents visiting PPSs as compared to non-visitors, appeared to have a significantly higher lifetime prevalence of alcohol use, average weekly consumption, and frequency of heavy episodic drinking. Moreover, accounting for school clustering, the frequency of PPS visits was associated with increased alcohol consumption.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Health & Placearrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Health & Place
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Health & Placearrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Health & Place
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Comanescu M; orcid ANNARATONE, LAURA;
    ANNARATONE, LAURA
    ORCID
    Harvested from ORCID Public Data File

    ANNARATONE, LAURA in OpenAIRE
    D'Armento G; Cardos G; +2 Authors

    Histopathological diagnosis using Formalin-Fixed Paraffin Embedded (FFPE) tissues is essential for the prognostic and therapeutic management of cancer patients. Pathologists are being confronted with increasing demands, from both clinicians and patients, to provide immunophenotypic and gene expression data from FFPE tissues to allow the planning of personalized therapeutic regimens. Recent improvements in the protocols for pre-analysis processing of pathological tissues aim to better preserve cellular details and to conserve antigens and nucleic acid sequences. These developments have been recently patented. The international protocol for the transporting of surgical specimens from the surgical theatre to the pathology department is to immerse the specimen in formalin. The alternative method of sealing the specimens into bags under a vacuum and then cooling is a well-accepted and environmentally safe procedure that overcomes the many drawbacks linked to transfer in formalin. Importantly, RNA is notoriously poorly preserved in FFPE tissue. Due to this, successful procedures for the extraction of genetic information from archival tissues have been the object of several studies and patents. Novel molecular approaches for RT-qPCR and gene array analysis on FFPE tissues are presented here. Moreover, a major advance is reported in this study, the observation that tissue fixation in cold conditions allows a much better preservation of nucleic acid sequences.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Recent Patents on DNA & Gene Sequences
    Article . 2012 . Peer-reviewed
    Data sources: Crossref
    addClaim
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw BAZZOCCHI, Massimo;
    BAZZOCCHI, Massimo
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    BAZZOCCHI, Massimo in OpenAIRE
    Francescutti GE; orcid bw ZUIANI, Chiara;
    ZUIANI, Chiara
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    ZUIANI, Chiara in OpenAIRE
    Del Frate C; +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    American Journal of Roentgenology
    Article . 2002 . Peer-reviewed
    Data sources: Crossref
    addClaim
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mark P. Jensen; orcid Johannes Vlaeyen;
    Johannes Vlaeyen
    ORCID
    Harvested from ORCID Public Data File

    Johannes Vlaeyen in OpenAIRE
    Warren R. Nielson; Petra A. Karsdorp;

    Activity pacing (AP) is a concept that is central to many chronic pain theories and treatments, yet there remains confusion regarding its definition and effects.To review the current knowledge concerning AP and integrate this knowledge in a manner that allows for a clear definition and useful directions for future research.A narrative review of the major theoretical approaches to AP and of the empirical evidence regarding the effects of AP interventions, followed by an integrative discussion.The concept of AP is derived from 2 main traditions: operant and energy conservation. Although there are common elements across these traditions, significant conceptual and practical differences exist, which has led to confusion. Little empirical evidence exists concerning the efficacy of AP as a treatment for chronic pain.Future research on AP should be based on a clear theoretical foundation, consider the context in which the AP behavior occurs and the type of pacing problem ("underactivity" vs. "overactivity"), and should examine the impact of AP treatment on multiple clinical outcomes. We provide a provisional definition of AP and specific recommendations that we believe will move the field forward.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clinical Journal of Pain
    Article . 2013 . Peer-reviewed
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clinical Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clinical Journal of Pain
      Article . 2013 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
We use cookies
This website uses essential cookies to ensure its proper operation and tracking cookies to understand how you interact with it. The latter will be set only upon approval.

Read more about our Cookies policy.