- home
- Advanced Search
- Energy Research
- Closed Access
- Open Source
- 13. Climate action
- 12. Responsible consumption
- 15. Life on land
- US
- CA
- IT
- Energy Research
- Closed Access
- Open Source
- 13. Climate action
- 12. Responsible consumption
- 15. Life on land
- US
- CA
- IT
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: V. Ismet Ugursal; S. Rasoul Asaee; Ian Beausoleil-Morrison;Abstract Canada has numerous climatic and geographical regions and the Canadian housing stock (CHS) is diversified in terms of vintage, geometry, construction materials, envelope, occupancy, energy sources and heating, ventilation and air conditioning system and equipment. Therefore, strategies to achieve net zero energy (NZE) status with the current stock of houses need to be devised considering the unique characteristics of the housing stock, the economic conditions and energy mix available in each region. Identifying and assessing pathways for converting existing houses to NZE buildings at the housing stock level is a complex and multifaceted problem and requires extensive analysis on the impact of energy efficiency and renewable/alternative energy technology retrofits on the energy use and GHG emissions of households. A techno-economic analysis of retrofitting renewable/alternative energy technologies in the CHS to reduce energy consumption and GHG emissions was conducted to develop strategies to achieve or approach NZE status for Canadian houses. The results indicate that substantial energy savings and GHG emission reductions are techno-economically feasible for the CHS through careful selection of retrofit options. While achieving large scale conversion of existing houses to NZEB is not feasible, approaching NZE status is a realistic goal for a large percentage of Canadian houses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.10.055&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.10.055&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Authors: FABBRI, DANIELE; Bevoni V.; Notari M.; Rivetti F.;handle: 11585/35123
Biodiesel is a fuel generally consisting of a mixture of fatty acid methyl esters (FAMEs) which is used in alternative or in combination with petroleum diesel for its environmental benefits. Biodiesel is conveniently manufactured from vegetable oils by transesterification of triglycerides with methanol. However, the process brings about the concurrent formation of glycerol, which may become an oversupplied chemical if biodiesel production keeps growing. A novel biodiesel-like material (abbreviated as DMC-BioD) was developed by reacting soybean oil with dimethyl carbonate (DMC), which avoided the co-production of glycerol. The main difference between DMC-BioD and biodiesel produced from vegetable oil and methanol (MeOH-biodiesel) was the presence of fatty acid glycerol carbonate monoesters (FAGCs) in addition to FAMEs. In the following study, details regarding synthesis and composition of DMC-BioD are provided along with physical properties relevant for its use as a fuel. In addition, the production of potential pyrogenic contaminants was investigated by analytical pyrolysis and compared with those from MeOH-biodiesel, and the model compounds tristearin, triolein, trilinolein and oleic acid glycerol carbonate ester (OAGC). The presence of FAGCs influenced both fuel and flow properties, while the distribution of main pyrogenic compounds, including polycyclic aromatic hydrocarbons (PAHs), was little affected. Benefits and drawbacks of DMC as a candidate transmethylating reagent for producing biofuel from renewable resources and alternative co-products (glycerol carbonate and glycerol dicarbonate) are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2006.09.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2006.09.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Paul Leiby; Jonathan Rubin;This research examines the economic implications of different designs for a national low carbon fuel standard (NLCFS) for the road transportation sector. A NLCFS based on the average Carbon Intensity (CI) of all fuels sold generates an incentive for fuel suppliers to reduce the measured CI of their fuels. The economic impacts are determined by the availability of low carbon fuels, estimates of which can vary widely. Also important are the compliance path, reference level CI, and the design of the credit system, particularly the opportunities for trading and banking. To quantitatively examine the implications of a NLCFS, we created the Transportation Regulation and Credit Trading (TRACT) Model. With TRACT, we model a NLCFS credit trading system among profit maximizing fuel suppliers for light- and heavy-duty vehicle fuel use for the United States from 2012 to 2030. We find that credit trading across gasoline and diesel fuel markets can lower the average costs of carbon reductions by an insignificant amount to 98% depending on forecasts of biofuel supplies and carbon intensities. Adding banking of credits on top of trading can further lower the average cost of carbon reductions by 5%–9% and greatly reduce year-to-year fluctuations in credit prices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.05.031&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.05.031&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 ItalyPublisher:IEEE Authors: Cameretti, Maria Cristina; Pizzo, Andrea Del; Noia, Luigi Pio Di; Ferrara, Michele;handle: 11588/728570
Aeroengine manufacturers must continuously develop new high-performance engines, in terms of both specific fuel consumption and pollutant emissions. During the combustion of kerosene, CO 2 and lower amounts of SO 2 , CO, NO x and hydrocarbons are produced; those gases are directly or indirectly responsible for greenhouse effect. Large emission of NO x is produced by engines during the aircraft operation in airport. In the near future, the target in Europe for the aviation sector provides a reduction of SO% of NO x and 50% of CO 2 . For this reason, the hybrid-electric propulsion systems (HEPS) are becoming a viable alternative propulsion technology in the field of aviation, useful to guarantee a massive reduction of pollution. In the paper, the authors analyze and simulate a hybrid turbine/electric engine for a passengers regional aircraft, comparing the results in terms of pollutant and fuel consumption with the conventional thermal engine ones.
Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/aeit.2018.8577292&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/aeit.2018.8577292&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Peng Huang; Ming Gu; Xinlai Peng;Abstract A recent field survey provided eight typical soffits used in the residential houses within the typhoon-prone coastal region of southeastern China. Their aerodynamic effects in alleviating rooftop extreme wind pressures were evaluated via wind tunnel testing on a series of 1/20 gable roof house models. Local pressures, area-averaged pressures and uplift forces acting on roofs were examined. Results showed that in contrast to the model without soffits, the presence of these gutters or eaves gives a rise to a significant reduction of negative peak wind pressures at edges and corners near them. However, they hardly impact wind loads on the other roof surface. Some minor simple architectural elements attached to eaves, such as cantilevered spoiler and semicircular gutter, were observed to facilitate the reduction of extreme wind pressure at edges and corners. Additionally, the reduction rate of spatially averaged wind pressures with area was found to be dependent on the size of tributary area, rather than the shape of tributary area.
Journal of Wind Engi... arrow_drop_down Journal of Wind Engineering and Industrial AerodynamicsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Wind Engineering and Industrial AerodynamicsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jweia.2014.10.015&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Journal of Wind Engi... arrow_drop_down Journal of Wind Engineering and Industrial AerodynamicsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Wind Engineering and Industrial AerodynamicsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jweia.2014.10.015&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Hesham A. Ibrahim; Wael H. Ahmed; Sherif Abdou; Voislav Blagojevic;Abstract The need for improved fuel economy, while meeting more stringent global vehicle emission standards, continues to grow with the increasing demand for environmental protection and rising fuel prices. A new generation of catalytic converters, designed and patented by Vida Fresh Air Corp., offers emissions reduction while improving fuel economy. In this design, a thin layer of insulating material is placed inside the ceramic honeycomb channels, creating a multi-chamber catalytic converter. The improvement in performance of the catalytic converter is attributed to the change in both the flow distribution and the controlled heat diffusion from the inner to the outer chambers. On engine performance tests have shown significant improvements in both fuel economy and emissions, however, the theory of operation of this design needs to be validated for potential design improvements to achieve an optimum performance. In this study both experimental and numerical investigations are carried out in order to understand the flow through the catalytic converter, using different monolith cell densities. A dynamically scaled-down model for a typical flow through catalytic converter was utilized for this study. Detailed experiments were conducted using hot air as the working fluid in order to evaluate the thermal and fluid flow characteristics of the new catalytic converter technology without the effect of chemical reactions. The measurements were performed at a Reynolds number of 43,000 with a free stream temperature of 177 °C. These conditions were selected in order to achieve thermal and hydraulic similarity to actual flow conditions for a typical catalytic converter. Numerical modelling of the flow through the setup under investigation was found to adequately replicate the experimental measurements for temperature, velocity and turbulence intensity within ±3%, ±5% and ±8% respectively. The use of a new design of the catalytic converter found to improve the thermal performance by 18% and the hydraulic performance by 5% without a significant increase of the pressure drop across the catalytic converter.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2018.07.052&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2018.07.052&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Xinlei Wang; Chao Shen; Yang Yao; Rong Gao;Abstract Fouling is one of the most significant problems for internally enhanced tubes installed in the shell and tube condensers. Due to the lack of long-term test data, current fouling models are developed based on accelerated particulate fouling tests that have the low precision and hence are inapplicable for predicting combined fouling in most practical cooling tower systems. In addition, the constant values of fouling resistance (factor) recommended by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) are extremely limited under different operating conditions. To overcome these challenges, this research developed and validated two fouling prediction models based on experimental long-term tests. One of the models was in the form of a ratio of asymptotic fouling resistance of the enhanced tube to that of the plain tube ( R f ∗ / R f , p ∗ ), and the other one was in the form of the asymptotic fouling resistance of the directly enhanced tube ( R f ∗ ). Both models considered water quality, water velocity, and the tube geometries as the variables with the acceptable accuracy for prediction. 1) For the water quality, the parameter of valid concentration ( C com ) of cooling water was defined in this study, which reflected the potential amount of valid components to form the fouling. 2) For the water velocity, its impacts on the two critical parameters of the fouling process: sticking probability ( P ) and deposit bond strength ( ξ ) were investigated using experimental studies. Test results showed that in enhanced tubes with the increased water velocity the sticking probability ( P ) decreased continuously while the deposit bond strength (ξ) initially increased, and then, decreased. 3) For the tube geometries, by taking the parameters of tube geometries as variables the multi-variable correlations of the sticking probability ( P ) and deposit bond strength ( ξ ) were developed. From the results the generalized fouling prediction model as a ratio of asymptotic fouling resistance ( R f ∗ / R f , p ∗ ) was recommended for the application in HVAC&R industry due to its suitability and accuracy in practical project applications.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117150&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117150&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Annika W. Walters; David M. Post;doi: 10.1890/09-2323 , 10.1890/09-2323.1
pmid: 21516895
The natural hydrology of streams and rivers is being extensively modified by human activities. Water diversion, dam construction, and climate change have the potential to increase the frequency and intensity of low-flow events. Flow is a dominant force structuring stream aquatic insect communities, but the impacts of water diversion are poorly understood. Here we report results of an experimental stream flow diversion designed to test how aquatic insect communities respond to a low-flow disturbance. We diverted 40% to 80% of the water in three replicate streams for three summers, leading to summer flow exceedance probabilities of up to 99.9%. Shifts in habitat availability appeared to be a major driver of aquatic insect community responses. Responses also varied by habitat type: total insect density decreased in riffle habitats, but there was no change in pool habitats. Overall, the total biomass of aquatic insects decreased sharply with lowered flow. Collector-filterers, collector-gatherers, and scrapers were especially susceptible, while predatory insects were more resistant. Despite extremely low flow levels, there was no shift in aquatic insect family richness. The experimental water withdrawal did not increase water temperature or decrease water quality, and some wetted habitat was always maintained, which likely prevented more severe impacts on aquatic insect communities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-2323&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-2323&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:Elsevier BV Bruce E. Lord; Lee R. Stover; Charles H. Strauss; Paul R. Blankenhorn; Todd W. Bowersox;Abstract Survival, height and diameter for the first four year rotation were measured on two intensively cultured Populus hybrid plantations in central Pennsylvania. Treatments of control, irrigation, fertilization and fertilization/irrigation were installed on two sites and in two establishment years. Overall treatment survival was not affected by site but values were lower for 1980 planted trees (83%) than 1981 planted trees (90%). Survival values among the treatments were similar until the later ages of the first rotation. Treatments with fertilizers had lower four-year-old survival (78%) than the treatments without fertilizers (86%). The four-year-old control trees averaged 5.3 and 6.8 m in height, and 3.4 and 4.2 cm in diameter for the 1980 and 1981 establishment years, respectively. Fertilization, with or without irrigation, consistently increased annual height and diameter over the control. Fertilization/irrigation did not result in tree size values that were greater than fertilization. In general, there were inconsistent increases in annual height and diameter from irrigation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0961-9534(91)90033-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0961-9534(91)90033-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Zhiyuan Cong; Zhiyuan Cong; Pingqing Fu; Mark Loewen; Kirpa Ram; Guangming Wu; Shaopeng Gao; Xin Wan; Kimitaka Kawamura; Shichang Kang; Hemraj Bhattarai; Yan-Lin Zhang;pmid: 30677666
Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.01.028&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.01.028&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: V. Ismet Ugursal; S. Rasoul Asaee; Ian Beausoleil-Morrison;Abstract Canada has numerous climatic and geographical regions and the Canadian housing stock (CHS) is diversified in terms of vintage, geometry, construction materials, envelope, occupancy, energy sources and heating, ventilation and air conditioning system and equipment. Therefore, strategies to achieve net zero energy (NZE) status with the current stock of houses need to be devised considering the unique characteristics of the housing stock, the economic conditions and energy mix available in each region. Identifying and assessing pathways for converting existing houses to NZE buildings at the housing stock level is a complex and multifaceted problem and requires extensive analysis on the impact of energy efficiency and renewable/alternative energy technology retrofits on the energy use and GHG emissions of households. A techno-economic analysis of retrofitting renewable/alternative energy technologies in the CHS to reduce energy consumption and GHG emissions was conducted to develop strategies to achieve or approach NZE status for Canadian houses. The results indicate that substantial energy savings and GHG emission reductions are techno-economically feasible for the CHS through careful selection of retrofit options. While achieving large scale conversion of existing houses to NZEB is not feasible, approaching NZE status is a realistic goal for a large percentage of Canadian houses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.10.055&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.10.055&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Authors: FABBRI, DANIELE; Bevoni V.; Notari M.; Rivetti F.;handle: 11585/35123
Biodiesel is a fuel generally consisting of a mixture of fatty acid methyl esters (FAMEs) which is used in alternative or in combination with petroleum diesel for its environmental benefits. Biodiesel is conveniently manufactured from vegetable oils by transesterification of triglycerides with methanol. However, the process brings about the concurrent formation of glycerol, which may become an oversupplied chemical if biodiesel production keeps growing. A novel biodiesel-like material (abbreviated as DMC-BioD) was developed by reacting soybean oil with dimethyl carbonate (DMC), which avoided the co-production of glycerol. The main difference between DMC-BioD and biodiesel produced from vegetable oil and methanol (MeOH-biodiesel) was the presence of fatty acid glycerol carbonate monoesters (FAGCs) in addition to FAMEs. In the following study, details regarding synthesis and composition of DMC-BioD are provided along with physical properties relevant for its use as a fuel. In addition, the production of potential pyrogenic contaminants was investigated by analytical pyrolysis and compared with those from MeOH-biodiesel, and the model compounds tristearin, triolein, trilinolein and oleic acid glycerol carbonate ester (OAGC). The presence of FAGCs influenced both fuel and flow properties, while the distribution of main pyrogenic compounds, including polycyclic aromatic hydrocarbons (PAHs), was little affected. Benefits and drawbacks of DMC as a candidate transmethylating reagent for producing biofuel from renewable resources and alternative co-products (glycerol carbonate and glycerol dicarbonate) are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2006.09.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2006.09.003&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Paul Leiby; Jonathan Rubin;This research examines the economic implications of different designs for a national low carbon fuel standard (NLCFS) for the road transportation sector. A NLCFS based on the average Carbon Intensity (CI) of all fuels sold generates an incentive for fuel suppliers to reduce the measured CI of their fuels. The economic impacts are determined by the availability of low carbon fuels, estimates of which can vary widely. Also important are the compliance path, reference level CI, and the design of the credit system, particularly the opportunities for trading and banking. To quantitatively examine the implications of a NLCFS, we created the Transportation Regulation and Credit Trading (TRACT) Model. With TRACT, we model a NLCFS credit trading system among profit maximizing fuel suppliers for light- and heavy-duty vehicle fuel use for the United States from 2012 to 2030. We find that credit trading across gasoline and diesel fuel markets can lower the average costs of carbon reductions by an insignificant amount to 98% depending on forecasts of biofuel supplies and carbon intensities. Adding banking of credits on top of trading can further lower the average cost of carbon reductions by 5%–9% and greatly reduce year-to-year fluctuations in credit prices.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.05.031&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2012.05.031&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 ItalyPublisher:IEEE Authors: Cameretti, Maria Cristina; Pizzo, Andrea Del; Noia, Luigi Pio Di; Ferrara, Michele;handle: 11588/728570
Aeroengine manufacturers must continuously develop new high-performance engines, in terms of both specific fuel consumption and pollutant emissions. During the combustion of kerosene, CO 2 and lower amounts of SO 2 , CO, NO x and hydrocarbons are produced; those gases are directly or indirectly responsible for greenhouse effect. Large emission of NO x is produced by engines during the aircraft operation in airport. In the near future, the target in Europe for the aviation sector provides a reduction of SO% of NO x and 50% of CO 2 . For this reason, the hybrid-electric propulsion systems (HEPS) are becoming a viable alternative propulsion technology in the field of aviation, useful to guarantee a massive reduction of pollution. In the paper, the authors analyze and simulate a hybrid turbine/electric engine for a passengers regional aircraft, comparing the results in terms of pollutant and fuel consumption with the conventional thermal engine ones.
Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/aeit.2018.8577292&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Archivio della ricer... arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018Archivio della ricerca - Università degli studi di Napoli Federico IIConference object . 2018add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.23919/aeit.2018.8577292&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Peng Huang; Ming Gu; Xinlai Peng;Abstract A recent field survey provided eight typical soffits used in the residential houses within the typhoon-prone coastal region of southeastern China. Their aerodynamic effects in alleviating rooftop extreme wind pressures were evaluated via wind tunnel testing on a series of 1/20 gable roof house models. Local pressures, area-averaged pressures and uplift forces acting on roofs were examined. Results showed that in contrast to the model without soffits, the presence of these gutters or eaves gives a rise to a significant reduction of negative peak wind pressures at edges and corners near them. However, they hardly impact wind loads on the other roof surface. Some minor simple architectural elements attached to eaves, such as cantilevered spoiler and semicircular gutter, were observed to facilitate the reduction of extreme wind pressure at edges and corners. Additionally, the reduction rate of spatially averaged wind pressures with area was found to be dependent on the size of tributary area, rather than the shape of tributary area.
Journal of Wind Engi... arrow_drop_down Journal of Wind Engineering and Industrial AerodynamicsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Wind Engineering and Industrial AerodynamicsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jweia.2014.10.015&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Journal of Wind Engi... arrow_drop_down Journal of Wind Engineering and Industrial AerodynamicsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Wind Engineering and Industrial AerodynamicsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jweia.2014.10.015&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Hesham A. Ibrahim; Wael H. Ahmed; Sherif Abdou; Voislav Blagojevic;Abstract The need for improved fuel economy, while meeting more stringent global vehicle emission standards, continues to grow with the increasing demand for environmental protection and rising fuel prices. A new generation of catalytic converters, designed and patented by Vida Fresh Air Corp., offers emissions reduction while improving fuel economy. In this design, a thin layer of insulating material is placed inside the ceramic honeycomb channels, creating a multi-chamber catalytic converter. The improvement in performance of the catalytic converter is attributed to the change in both the flow distribution and the controlled heat diffusion from the inner to the outer chambers. On engine performance tests have shown significant improvements in both fuel economy and emissions, however, the theory of operation of this design needs to be validated for potential design improvements to achieve an optimum performance. In this study both experimental and numerical investigations are carried out in order to understand the flow through the catalytic converter, using different monolith cell densities. A dynamically scaled-down model for a typical flow through catalytic converter was utilized for this study. Detailed experiments were conducted using hot air as the working fluid in order to evaluate the thermal and fluid flow characteristics of the new catalytic converter technology without the effect of chemical reactions. The measurements were performed at a Reynolds number of 43,000 with a free stream temperature of 177 °C. These conditions were selected in order to achieve thermal and hydraulic similarity to actual flow conditions for a typical catalytic converter. Numerical modelling of the flow through the setup under investigation was found to adequately replicate the experimental measurements for temperature, velocity and turbulence intensity within ±3%, ±5% and ±8% respectively. The use of a new design of the catalytic converter found to improve the thermal performance by 18% and the hydraulic performance by 5% without a significant increase of the pressure drop across the catalytic converter.
International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2018.07.052&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert International Journa... arrow_drop_down International Journal of Heat and Mass TransferArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2018.07.052&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Xinlei Wang; Chao Shen; Yang Yao; Rong Gao;Abstract Fouling is one of the most significant problems for internally enhanced tubes installed in the shell and tube condensers. Due to the lack of long-term test data, current fouling models are developed based on accelerated particulate fouling tests that have the low precision and hence are inapplicable for predicting combined fouling in most practical cooling tower systems. In addition, the constant values of fouling resistance (factor) recommended by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) are extremely limited under different operating conditions. To overcome these challenges, this research developed and validated two fouling prediction models based on experimental long-term tests. One of the models was in the form of a ratio of asymptotic fouling resistance of the enhanced tube to that of the plain tube ( R f ∗ / R f , p ∗ ), and the other one was in the form of the asymptotic fouling resistance of the directly enhanced tube ( R f ∗ ). Both models considered water quality, water velocity, and the tube geometries as the variables with the acceptable accuracy for prediction. 1) For the water quality, the parameter of valid concentration ( C com ) of cooling water was defined in this study, which reflected the potential amount of valid components to form the fouling. 2) For the water velocity, its impacts on the two critical parameters of the fouling process: sticking probability ( P ) and deposit bond strength ( ξ ) were investigated using experimental studies. Test results showed that in enhanced tubes with the increased water velocity the sticking probability ( P ) decreased continuously while the deposit bond strength (ξ) initially increased, and then, decreased. 3) For the tube geometries, by taking the parameters of tube geometries as variables the multi-variable correlations of the sticking probability ( P ) and deposit bond strength ( ξ ) were developed. From the results the generalized fouling prediction model as a ratio of asymptotic fouling resistance ( R f ∗ / R f , p ∗ ) was recommended for the application in HVAC&R industry due to its suitability and accuracy in practical project applications.
Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117150&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2021.117150&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Authors: Annika W. Walters; David M. Post;doi: 10.1890/09-2323 , 10.1890/09-2323.1
pmid: 21516895
The natural hydrology of streams and rivers is being extensively modified by human activities. Water diversion, dam construction, and climate change have the potential to increase the frequency and intensity of low-flow events. Flow is a dominant force structuring stream aquatic insect communities, but the impacts of water diversion are poorly understood. Here we report results of an experimental stream flow diversion designed to test how aquatic insect communities respond to a low-flow disturbance. We diverted 40% to 80% of the water in three replicate streams for three summers, leading to summer flow exceedance probabilities of up to 99.9%. Shifts in habitat availability appeared to be a major driver of aquatic insect community responses. Responses also varied by habitat type: total insect density decreased in riffle habitats, but there was no change in pool habitats. Overall, the total biomass of aquatic insects decreased sharply with lowered flow. Collector-filterers, collector-gatherers, and scrapers were especially susceptible, while predatory insects were more resistant. Despite extremely low flow levels, there was no shift in aquatic insect family richness. The experimental water withdrawal did not increase water temperature or decrease water quality, and some wetted habitat was always maintained, which likely prevented more severe impacts on aquatic insect communities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-2323&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/09-2323&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:Elsevier BV Bruce E. Lord; Lee R. Stover; Charles H. Strauss; Paul R. Blankenhorn; Todd W. Bowersox;Abstract Survival, height and diameter for the first four year rotation were measured on two intensively cultured Populus hybrid plantations in central Pennsylvania. Treatments of control, irrigation, fertilization and fertilization/irrigation were installed on two sites and in two establishment years. Overall treatment survival was not affected by site but values were lower for 1980 planted trees (83%) than 1981 planted trees (90%). Survival values among the treatments were similar until the later ages of the first rotation. Treatments with fertilizers had lower four-year-old survival (78%) than the treatments without fertilizers (86%). The four-year-old control trees averaged 5.3 and 6.8 m in height, and 3.4 and 4.2 cm in diameter for the 1980 and 1981 establishment years, respectively. Fertilization, with or without irrigation, consistently increased annual height and diameter over the control. Fertilization/irrigation did not result in tree size values that were greater than fertilization. In general, there were inconsistent increases in annual height and diameter from irrigation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0961-9534(91)90033-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0961-9534(91)90033-9&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Zhiyuan Cong; Zhiyuan Cong; Pingqing Fu; Mark Loewen; Kirpa Ram; Guangming Wu; Shaopeng Gao; Xin Wan; Kimitaka Kawamura; Shichang Kang; Hemraj Bhattarai; Yan-Lin Zhang;pmid: 30677666
Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.01.028&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envpol.2019.01.028&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
