- home
- Advanced Search
- Energy Research
- IT
- Energy Research
- IT
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Springer Science and Business Media LLC Amalfitano, Carmine; Gomez, Leonardo D.; Frendo, Pierre; De Pascale, Stefania; Pepe, Olimpia; Simister, Rachael; Ventorino, Valeria; Agrelli, Diana; Borrelli, Carlo; McQueen-Mason, Simon J.; Caruso, Gianluca;Background: Broad bean fits sustainable agriculture model due to symbiosis with Rhizobium, the seeds being a good source of energy, proteins, polyphenols, and fiber. The large amount of broad bean biomass residues can be employed for biofuel production, thus valorizing the overall production process. This research was aimed to investigate on the effects of farming management, such as greenhouse cultivation and appropriate planting time on the qualities of broad bean seeds and residual biomass for conversion into biofuel. The related balances of energy gain associated to both ethanol yield and nitrogen fertilizer saving due to Rhizobium nitrogen fixation were assessed. Methods: Research was carried out on broad bean in Portici, province of Naples, southern Italy, based on the factorial combination of two farming systems (open field, greenhouse) and five planting times: 27 September and 11 October, to obtain early production; 25 October, which fell in the usual period for broad bean planting in the province area; and 8 November and 22 November, for late production. For each of these cultivation conditions, the quality of seeds, in terms of protein, fiber and antioxidant concentrations, and of crop residual biomass were determined. In addition, the energy yield as ethanol production from residual biomass and nitrogen fertilizer saving due to Rhizobium atmospheric fixation were assessed. Results and discussion: The highest plant nitrogen uptake was recorded under the fourth planting time in open field and the third in greenhouse, the average accumulation attaining 87% in residual biomass, 7.4% in pods, and 5.6% in seeds. Seed protein content was 12.6% higher in greenhouse than in open field and 16.2% higher under the latest planting time compared to the earliest one. Seed polyphenol concentration was higher in open field than in greenhouse and with the two earliest planting times. Greenhouse grown biomass showed higher values of lignin, hemicellulose and pectin, compared to open field, whereas the opposite trend was for cellulose. Lignin showed a decrease from the first to the last crop cycle, opposite to cellulose, and glucose was the most represented monosaccharide. Both the highest theoretical ethanol and overall energy production were highest with the fourth planting time. Conclusions: Greenhouse management enabled broad bean plants to accumulate higher proteins in seeds, but open field conditions resulted in better residual biomass quality for ethanol and Rhizobium-depending energy production.
CORE arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628752/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628752/documentChemical and Biological Technologies in AgricultureArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40538-018-0126-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 56 Powered bymore_vert CORE arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628752/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628752/documentChemical and Biological Technologies in AgricultureArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40538-018-0126-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Anna Andolfi; Antonio Evidente; Carlo Borrelli; Maria Raffaella Ercolano; Simon J. McQueen-Mason; Luigi Frusciante; Ciro Troise; Gianluca Caruso; Rachael Simister; G. Angelino; Leonardo D. Gomez;Abstract Two processing tomato hybrids and five N fertilization rates were evaluated regarding their biomass, fruit yield, and saccharification potential. Although no difference was detected between the hybrids, both for fruit and residual biomass yield, 106 kg ha −1 N fertilization rate showed the highest fruit mass and 186 kg ha −1 resulted in the highest residual biomass production. The biomass in the hybrid Kero had higher content of total and crystalline cellulose compared to Defender. N fertilization significantly changed biomass composition. Eighty kg ha −1 N led to the highest lignin, hemicellulose and pectin content, whereas the 159 kg ha −1 applications caused the highest percentage of total and crystalline cellulose. Xylose was the most abundant monosaccharide in hemicelluloses, whereas fucose was the lest abundant. The hybrid Kero gave higher ethanol potential production than Defender and both hybrids reached the highest values under 159 kg ha −1 of N. Alkali pre-treatment caused the highest values of saccharification and hot water the lowest. The hybrid Kero showed higher saccharification potential than Defender and 159 kg ha −1 N fertilization rate led to the best results. We show that tomato residual biomass is an interesting lignocellulosic feedstock for ethanol production and both hybrid and nitrogen fertilization rate significantly affects the biomass chemical composition and saccharification potential of the residual biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.10.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.10.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Gianluca Caruso; Antonio Evidente; C. Borgonuovo; Domenico Carputo; Leonardo D. Gomez; Maria Raffaella Ercolano; Simon J. McQueen-Mason; Rachael Simister; Francesca Ferriello; Anna Andolfi; Luigi Frusciante;Residual biomass production for fuel conversion represents a unique opportunity to avoid concerns about compromising food supply by using dedicated feedstock crops. Developing tomato varieties suitable for both food consumption and fuel conversion requires the establishment of new selection methods.A tomato Solanum pennellii introgression population was assessed for fruit yield, biomass phenotypic diversity, and for saccharification potential. Introgression lines 2-5, 2-6, 6-3, 7-2, 10-2 and 12-4 showed the best combination of fruit and residual biomass production. Lignin, cellulose, hemicellulose content and saccharification rate showed a wide variation in the tested lines. Within hemicellulose, xylose value was high in IL 6-3, IL 7-2 and IL 6-2, whereas arabinose showed a low content in IL 10-2, IL 6-3 and IL 2-6. The latter line showed also the highest ethanol potential production. Alkali pre-treatment resulted in the highest values of saccharification in most of lines tested, suggesting that chemical pretreatment is an important factor for improving biomass processability. Interestingly, extreme genotypes for more than one single trait were found, allowing the identification of better genotypes. Cell wall related genes mapping in genomic regions involved into tomato biomass production and digestibility variation highlighted potential candidate genes. Molecular expression profile of few of them provided useful information about challenged pathways.The screening of S. pennellii introgression population resulted very useful for delving into complex traits such as biomass production and digestibility. The extreme genotypes identified could be fruitfully employed for both genetic studies and breeding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12863-016-0362-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12863-016-0362-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Gómez, Leonardo D.; Amalfitano, Carmine; Andolfi, Anna; Simister, Rachael; Somma, Silvano; Ercolano, Maria Raffaella; Borrelli, Carlo; McQueen-Mason, Simon J.; Frusciante, Luigi; Cuciniello, Antonio; Caruso, Gianluca;Research was carried out in southern Italy with the aim to assess the quality of faba bean residual biomass and its potential for biorefinery application. Faba bean is a sustainable crop, due to its ability to fix atmospheric nitrogen, and a large amount of biomass remains after harvest which can be valorised for energy production. Greenhouse and early planting are known to affect pod yield and, in this respect, even the residual biomass quality needs to be assessed. For this purpose, the effects of five planting times (i.e. the dates of transplants ranging from 27 September to 22 November at two-week interval, earlier and later than the common planting date of 25 October in Naples province) on pods yield, residual biomass, and saccharification potential were evaluated in faba bean grown in open field and in greenhouse. The third planting time resulted in the highest fruit and residual biomass yield under greenhouse, whereas the fourth was the best in open field. Harvest index was best affected by the third and fourth planting times in open field. Greenhouse grown biomass showed higher values of lignin, hemicellulose and pectin, compared to open field, whereas the opposite trend was recorded with cellulose. Lignin content showed a gradual decrease from the first to the last planting time (17.7%–13.7% biomass fraction respectively), as well as pectin (from 14.1 to 11.5% biomass fraction); conversely, cellulose increased from the first to the last planting time (from 41.1 to 48.7% biomass fraction). Glucose was the most represented monosaccharide (46.7 mol%), followed by xylose (27.4 mol%) and galactose (9.9 mol%). Overall, the potential of faba bean residual biomass for energy production was best affected by open field growing, the latest planting time and alkali pre-treatment, the latter giving the highest value of saccharification (60.7 g kg−1 h−1 compared to 27.6 relevant to hot water pre-treatment).
CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 154 Powered bymore_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Springer Science and Business Media LLC Amalfitano, Carmine; Gomez, Leonardo D.; Frendo, Pierre; De Pascale, Stefania; Pepe, Olimpia; Simister, Rachael; Ventorino, Valeria; Agrelli, Diana; Borrelli, Carlo; McQueen-Mason, Simon J.; Caruso, Gianluca;Background: Broad bean fits sustainable agriculture model due to symbiosis with Rhizobium, the seeds being a good source of energy, proteins, polyphenols, and fiber. The large amount of broad bean biomass residues can be employed for biofuel production, thus valorizing the overall production process. This research was aimed to investigate on the effects of farming management, such as greenhouse cultivation and appropriate planting time on the qualities of broad bean seeds and residual biomass for conversion into biofuel. The related balances of energy gain associated to both ethanol yield and nitrogen fertilizer saving due to Rhizobium nitrogen fixation were assessed. Methods: Research was carried out on broad bean in Portici, province of Naples, southern Italy, based on the factorial combination of two farming systems (open field, greenhouse) and five planting times: 27 September and 11 October, to obtain early production; 25 October, which fell in the usual period for broad bean planting in the province area; and 8 November and 22 November, for late production. For each of these cultivation conditions, the quality of seeds, in terms of protein, fiber and antioxidant concentrations, and of crop residual biomass were determined. In addition, the energy yield as ethanol production from residual biomass and nitrogen fertilizer saving due to Rhizobium atmospheric fixation were assessed. Results and discussion: The highest plant nitrogen uptake was recorded under the fourth planting time in open field and the third in greenhouse, the average accumulation attaining 87% in residual biomass, 7.4% in pods, and 5.6% in seeds. Seed protein content was 12.6% higher in greenhouse than in open field and 16.2% higher under the latest planting time compared to the earliest one. Seed polyphenol concentration was higher in open field than in greenhouse and with the two earliest planting times. Greenhouse grown biomass showed higher values of lignin, hemicellulose and pectin, compared to open field, whereas the opposite trend was for cellulose. Lignin showed a decrease from the first to the last crop cycle, opposite to cellulose, and glucose was the most represented monosaccharide. Both the highest theoretical ethanol and overall energy production were highest with the fourth planting time. Conclusions: Greenhouse management enabled broad bean plants to accumulate higher proteins in seeds, but open field conditions resulted in better residual biomass quality for ethanol and Rhizobium-depending energy production.
CORE arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628752/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628752/documentChemical and Biological Technologies in AgricultureArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40538-018-0126-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 56 Powered bymore_vert CORE arrow_drop_down Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628752/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628752/documentChemical and Biological Technologies in AgricultureArticle . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s40538-018-0126-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Anna Andolfi; Antonio Evidente; Carlo Borrelli; Maria Raffaella Ercolano; Simon J. McQueen-Mason; Luigi Frusciante; Ciro Troise; Gianluca Caruso; Rachael Simister; G. Angelino; Leonardo D. Gomez;Abstract Two processing tomato hybrids and five N fertilization rates were evaluated regarding their biomass, fruit yield, and saccharification potential. Although no difference was detected between the hybrids, both for fruit and residual biomass yield, 106 kg ha −1 N fertilization rate showed the highest fruit mass and 186 kg ha −1 resulted in the highest residual biomass production. The biomass in the hybrid Kero had higher content of total and crystalline cellulose compared to Defender. N fertilization significantly changed biomass composition. Eighty kg ha −1 N led to the highest lignin, hemicellulose and pectin content, whereas the 159 kg ha −1 applications caused the highest percentage of total and crystalline cellulose. Xylose was the most abundant monosaccharide in hemicelluloses, whereas fucose was the lest abundant. The hybrid Kero gave higher ethanol potential production than Defender and both hybrids reached the highest values under 159 kg ha −1 of N. Alkali pre-treatment caused the highest values of saccharification and hot water the lowest. The hybrid Kero showed higher saccharification potential than Defender and 159 kg ha −1 N fertilization rate led to the best results. We show that tomato residual biomass is an interesting lignocellulosic feedstock for ethanol production and both hybrid and nitrogen fertilization rate significantly affects the biomass chemical composition and saccharification potential of the residual biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.10.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2014.10.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Gianluca Caruso; Antonio Evidente; C. Borgonuovo; Domenico Carputo; Leonardo D. Gomez; Maria Raffaella Ercolano; Simon J. McQueen-Mason; Rachael Simister; Francesca Ferriello; Anna Andolfi; Luigi Frusciante;Residual biomass production for fuel conversion represents a unique opportunity to avoid concerns about compromising food supply by using dedicated feedstock crops. Developing tomato varieties suitable for both food consumption and fuel conversion requires the establishment of new selection methods.A tomato Solanum pennellii introgression population was assessed for fruit yield, biomass phenotypic diversity, and for saccharification potential. Introgression lines 2-5, 2-6, 6-3, 7-2, 10-2 and 12-4 showed the best combination of fruit and residual biomass production. Lignin, cellulose, hemicellulose content and saccharification rate showed a wide variation in the tested lines. Within hemicellulose, xylose value was high in IL 6-3, IL 7-2 and IL 6-2, whereas arabinose showed a low content in IL 10-2, IL 6-3 and IL 2-6. The latter line showed also the highest ethanol potential production. Alkali pre-treatment resulted in the highest values of saccharification in most of lines tested, suggesting that chemical pretreatment is an important factor for improving biomass processability. Interestingly, extreme genotypes for more than one single trait were found, allowing the identification of better genotypes. Cell wall related genes mapping in genomic regions involved into tomato biomass production and digestibility variation highlighted potential candidate genes. Molecular expression profile of few of them provided useful information about challenged pathways.The screening of S. pennellii introgression population resulted very useful for delving into complex traits such as biomass production and digestibility. The extreme genotypes identified could be fruitfully employed for both genetic studies and breeding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12863-016-0362-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12863-016-0362-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Elsevier BV Gómez, Leonardo D.; Amalfitano, Carmine; Andolfi, Anna; Simister, Rachael; Somma, Silvano; Ercolano, Maria Raffaella; Borrelli, Carlo; McQueen-Mason, Simon J.; Frusciante, Luigi; Cuciniello, Antonio; Caruso, Gianluca;Research was carried out in southern Italy with the aim to assess the quality of faba bean residual biomass and its potential for biorefinery application. Faba bean is a sustainable crop, due to its ability to fix atmospheric nitrogen, and a large amount of biomass remains after harvest which can be valorised for energy production. Greenhouse and early planting are known to affect pod yield and, in this respect, even the residual biomass quality needs to be assessed. For this purpose, the effects of five planting times (i.e. the dates of transplants ranging from 27 September to 22 November at two-week interval, earlier and later than the common planting date of 25 October in Naples province) on pods yield, residual biomass, and saccharification potential were evaluated in faba bean grown in open field and in greenhouse. The third planting time resulted in the highest fruit and residual biomass yield under greenhouse, whereas the fourth was the best in open field. Harvest index was best affected by the third and fourth planting times in open field. Greenhouse grown biomass showed higher values of lignin, hemicellulose and pectin, compared to open field, whereas the opposite trend was recorded with cellulose. Lignin content showed a gradual decrease from the first to the last planting time (17.7%–13.7% biomass fraction respectively), as well as pectin (from 14.1 to 11.5% biomass fraction); conversely, cellulose increased from the first to the last planting time (from 41.1 to 48.7% biomass fraction). Glucose was the most represented monosaccharide (46.7 mol%), followed by xylose (27.4 mol%) and galactose (9.9 mol%). Overall, the potential of faba bean residual biomass for energy production was best affected by open field growing, the latest planting time and alkali pre-treatment, the latter giving the highest value of saccharification (60.7 g kg−1 h−1 compared to 27.6 relevant to hot water pre-treatment).
CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 154 Powered bymore_vert CORE arrow_drop_down White Rose Research OnlineArticle . 2017License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2017.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu