- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOField of Science
Source
- Energy Research
- IT
- Energy Research
- IT
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mario Grosso; D. Faedo; A.E.M. van den Oever; Giuseppe Cardellini; S. Casadei; Stefano Puricelli;Abstract The European transport sector was responsible for more than 25% of the EU total greenhouse gas (GHG) emissions in 2017. 53% of these emissions came from the passenger cars and light-commercial vehicles segments. Biofuels are seen as one of the options to limit these emissions in Europe. To understand the recent evolution of biofuels and their future, this review gives an overview on the production, use, legislation, and environmental impacts of biofuels in Europe for light-duty vehicles. In 2017, biofuels made up 4.5% of the energy consumption in the road transport and non-road mobile machinery. Biodiesel in 2018 accounted for 62% of the biofuels consumed in the EU, followed by bioethanol (17.5%), HVO (16.6%), upgraded biogas (1.7%) and bio-ETBE (1.1%). A review of 86 LCA studies published between 2013 and 2020 indicated that the climate change impact of biofuels is generally lower than diesel and petrol, with average emission savings depending on the type of biofuel: 70% for biohydrogen, 63% for upgraded biogas, 41% for pure biodiesel, between 54% and 7% for bioethanol (depending on the blend percentage, between 100% and 10%). An important issue identified is the limited consideration of the land use change effects, which are rarely assessed and are of paramount importance, as the values found in this review were as high as 231 g CO2eq/MJ in some cases and thus non-negligible. Biofuels perform generally similarly or worse than fossil fuels for most of the non-GHG-related impact categories, except for ozone, fossil resource and abiotic depletion. Currently, it is highly recommended to move towards non-edible feedstocks, waste and by-products which guarantee a lower risk of land use change. The European legislation, through the Directive 2018/2001 and the regulation 2019/807, is pushing in that direction.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 01 Jan 2019 Netherlands, SwitzerlandPublisher:Elsevier BV Funded by:EC | FORMITEC| FORMITAuthors: Alain Thivolle-Cazat; Per Kristian Rørstad; B. Del Perugia; Konstantin Olschofsky; +21 AuthorsAlain Thivolle-Cazat; Per Kristian Rørstad; B. Del Perugia; Konstantin Olschofsky; Annikki Mäkelä; Frits Mohren; Gherardo Chirici; Frank Berninger; Katarína Merganičová; Bart Muys; Mait Lang; Hubert Hasenauer; Birger Solberg; Mathias Neumann; Volker Mues; Karol Bronisz; Adam Moreno; Volodymyr Trotsiuk; Volodymyr Trotsiuk; Volodymyr Trotsiuk; Giuseppe Cardellini; Matteo Mura; Sanna Härkönen; M. Koehl; Alexander Moiseyev;FORMIT-M is a widely applicable, open-access, simple and flexible, climate-sensitive forest management simulator requiring only standard forest inventory data as input. It combines a process-based carbon balance approach with a strong inventory-based empirical component. The model has been linked to the global forest sector model EFI-GTM to secure consistency between timber cutting and demand, although prescribed harvest scenarios can also be used. Here we introduce the structure of the model and demonstrate its use with example simulations until the end of the 21st century in Europe, comparing different management scenarios in different regions under climate change. The model was consistent with country-level statistics of growing stock volumes (R2 = 0.938) and its projections of climate impact on growth agreed with other studies. The management changes had a greater impact on growing stocks, harvest potential and carbon balance than projected climate change, at least in the absence of increased disturbance rates. Environmental Modelling & Software, 115 ISSN:1364-8152 ISSN:1873-6726
Environmental Modell... arrow_drop_down Environmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2019License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2019.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Modell... arrow_drop_down Environmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2019License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2019.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Netherlands, FinlandPublisher:MDPI AG Funded by:EC | FORMITEC| FORMITMathias Neumann; Adam Moreno; Christopher Thurnher; Volker Mues; Sanna Härkönen; Matteo Mura; Olivier Bouriaud; Mait Lang; Giuseppe Cardellini; Alain Thivolle-Cazat; Karol Bronisz; Jan Merganic; Iciar Alberdi; Rasmus Astrup; Frits Mohren; Maosheng Zhao; Hubert Hasenauer;doi: 10.3390/rs8070554
handle: 20.500.12792/3123 , 10261/292411
Net primary production (NPP) is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI) from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also agrees with NFI NPP across scales (from continental, regional to country) and gradients (elevation, location, tree age, dominant species, etc.). The agreement is particularly good for elevation, dominant species or tree height. This suggests that using improved climate data allows the MOD17 algorithm to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and NFI NPP can be related to differences in stand density due to forest management and the national carbon estimation methods. With this study, we provide a consistent, temporally continuous and spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can be used to assess climate change impacts on ecosystems or the potential biomass supply of the European forests for an increasing bio-based economy. MODIS EURO data are made freely available at ftp://palantir.boku.ac.at/Public/MODIS_EURO.
Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 11 Powered bymore_vert Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mario Grosso; D. Faedo; A.E.M. van den Oever; Giuseppe Cardellini; S. Casadei; Stefano Puricelli;Abstract The European transport sector was responsible for more than 25% of the EU total greenhouse gas (GHG) emissions in 2017. 53% of these emissions came from the passenger cars and light-commercial vehicles segments. Biofuels are seen as one of the options to limit these emissions in Europe. To understand the recent evolution of biofuels and their future, this review gives an overview on the production, use, legislation, and environmental impacts of biofuels in Europe for light-duty vehicles. In 2017, biofuels made up 4.5% of the energy consumption in the road transport and non-road mobile machinery. Biodiesel in 2018 accounted for 62% of the biofuels consumed in the EU, followed by bioethanol (17.5%), HVO (16.6%), upgraded biogas (1.7%) and bio-ETBE (1.1%). A review of 86 LCA studies published between 2013 and 2020 indicated that the climate change impact of biofuels is generally lower than diesel and petrol, with average emission savings depending on the type of biofuel: 70% for biohydrogen, 63% for upgraded biogas, 41% for pure biodiesel, between 54% and 7% for bioethanol (depending on the blend percentage, between 100% and 10%). An important issue identified is the limited consideration of the land use change effects, which are rarely assessed and are of paramount importance, as the values found in this review were as high as 231 g CO2eq/MJ in some cases and thus non-negligible. Biofuels perform generally similarly or worse than fossil fuels for most of the non-GHG-related impact categories, except for ozone, fossil resource and abiotic depletion. Currently, it is highly recommended to move towards non-edible feedstocks, waste and by-products which guarantee a lower risk of land use change. The European legislation, through the Directive 2018/2001 and the regulation 2019/807, is pushing in that direction.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 104 citations 104 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Embargo end date: 01 Jan 2019 Netherlands, SwitzerlandPublisher:Elsevier BV Funded by:EC | FORMITEC| FORMITAuthors: Alain Thivolle-Cazat; Per Kristian Rørstad; B. Del Perugia; Konstantin Olschofsky; +21 AuthorsAlain Thivolle-Cazat; Per Kristian Rørstad; B. Del Perugia; Konstantin Olschofsky; Annikki Mäkelä; Frits Mohren; Gherardo Chirici; Frank Berninger; Katarína Merganičová; Bart Muys; Mait Lang; Hubert Hasenauer; Birger Solberg; Mathias Neumann; Volker Mues; Karol Bronisz; Adam Moreno; Volodymyr Trotsiuk; Volodymyr Trotsiuk; Volodymyr Trotsiuk; Giuseppe Cardellini; Matteo Mura; Sanna Härkönen; M. Koehl; Alexander Moiseyev;FORMIT-M is a widely applicable, open-access, simple and flexible, climate-sensitive forest management simulator requiring only standard forest inventory data as input. It combines a process-based carbon balance approach with a strong inventory-based empirical component. The model has been linked to the global forest sector model EFI-GTM to secure consistency between timber cutting and demand, although prescribed harvest scenarios can also be used. Here we introduce the structure of the model and demonstrate its use with example simulations until the end of the 21st century in Europe, comparing different management scenarios in different regions under climate change. The model was consistent with country-level statistics of growing stock volumes (R2 = 0.938) and its projections of climate impact on growth agreed with other studies. The management changes had a greater impact on growing stocks, harvest potential and carbon balance than projected climate change, at least in the absence of increased disturbance rates. Environmental Modelling & Software, 115 ISSN:1364-8152 ISSN:1873-6726
Environmental Modell... arrow_drop_down Environmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2019License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2019.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Modell... arrow_drop_down Environmental Modelling & SoftwareArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefEnvironmental Modelling & SoftwareArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2019License: CC BY NC NDData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsoft.2019.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Netherlands, FinlandPublisher:MDPI AG Funded by:EC | FORMITEC| FORMITMathias Neumann; Adam Moreno; Christopher Thurnher; Volker Mues; Sanna Härkönen; Matteo Mura; Olivier Bouriaud; Mait Lang; Giuseppe Cardellini; Alain Thivolle-Cazat; Karol Bronisz; Jan Merganic; Iciar Alberdi; Rasmus Astrup; Frits Mohren; Maosheng Zhao; Hubert Hasenauer;doi: 10.3390/rs8070554
handle: 20.500.12792/3123 , 10261/292411
Net primary production (NPP) is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI) from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also agrees with NFI NPP across scales (from continental, regional to country) and gradients (elevation, location, tree age, dominant species, etc.). The agreement is particularly good for elevation, dominant species or tree height. This suggests that using improved climate data allows the MOD17 algorithm to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and NFI NPP can be related to differences in stand density due to forest management and the national carbon estimation methods. With this study, we provide a consistent, temporally continuous and spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can be used to assess climate change impacts on ecosystems or the potential biomass supply of the European forests for an increasing bio-based economy. MODIS EURO data are made freely available at ftp://palantir.boku.ac.at/Public/MODIS_EURO.
Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 16visibility views 16 download downloads 11 Powered bymore_vert Remote Sensing arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs8070554&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu