- home
- Advanced Search
- Energy Research
- European Commission
- IT
- English
- Energy Research
- European Commission
- IT
- English
Research data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | HEARTEC| HEARTAuthors: Pietro Zambelli; Claudio Del Pero; Fabrizio Leonforte; Michela Buzzetti;This datapackage provides the dataset used for the first stage of the validation of the simulations and the analysis of the main variables collected by the monitoring system of the HEART project. At this stage (M32), the building refurbishment of the Italian case study in Bagnolo in Piano (Reggio Emilia) is not completed due to the COVID-19 lockdown; the window renovation has been done in September 2019 and in February 2020 the refurbishment works stopped. Therefore, the content of dataset at the moment is only on the first step of the building refurbishment. The dataset contains: the main climatic variables in the area the central heating monitored data the main monitorwd data for 5 refurbished appartments The building is located in the city of Bagnolo in Piano (Reggio Emilia, Italy), and it is oriented 21 degrees towards south west (44.7698536, 10.6768598 at 30 m of altitude.). It is a four-story building, having a total of 12 apartments (4 apartments per floor); cellars and parking area are located on the ground floor. The gross floor area for the conditioned zone is 245.78 [m2] (apartment plus external walls), for a total conditioned area of 737.34 [m2] for the entire building. Further information are available in the repository: Data set repository: https://gitlab.inf.unibz.it/URS/heart/bagnolo-dataset
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4081133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4081133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2014 Italy Funded by:EC | COCONETEC| COCONETZambianchi; Enrico; Iermano; Ilaria; Suaria; Giuseppe; Aliani; Stefano;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::b8e05bb25470e7aac8fad1d493373ed2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::b8e05bb25470e7aac8fad1d493373ed2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Funded by:EC | PRODIGEESEC| PRODIGEESAuthors: Sarno, Giulia Sofia;Climate change is worsening the number, frequency and duration of natural hazards across the globe, making disaster risk reduction and resilience building among the most pressing challenges ahead. According to UN-Habitat, informal settlements are where the impacts of climate change are the most acute in urban areas and strengthening resilience in these neighbourhoods represents a very complex yet urgent challenge. Today, urban areas are home to 56 per cent of the world’s population and this figure is projected to increase to 60 per cent by 2030 and 68 per cent by 2050, with 90 per cent of the growth by 2050 expected to occur in less developed economies. In these countries, population growth and displacement (including climate-driven migrations) will lead to rapid and unplanned urbanisation forcing a growing number of people into informal settlements. Currently, one billion people live in informal settlements, mostly in Asia, Sub-Saharan Africa and Latin America and this figure is expected to grow to 3 billion in 2050. Horizon 2020 MSCA-RISE, Grant Agreement #873119
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8169190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8169190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2022Publisher:Zenodo Funded by:EC | FLOATECHEC| FLOATECHAuthors: Perez-Becker, Sebastian; Saverin, Joseph; Behrens de Luna, Robert; Papi, Francesco; +4 AuthorsPerez-Becker, Sebastian; Saverin, Joseph; Behrens de Luna, Robert; Papi, Francesco; Combreau, Cyril; Ducasse, Marie-Laure; Marten, David; Bianchini, Alessandro;For the detailed validation and verification of the capabilities of QBlade-Ocean in work package 2 (WP2) of FLOATECH, a detailed definition of the three considered models was recently presented in Deliverable 2.1 [1]. This document can be seen as a continuation of that work as the three aero-hydro-elastic models within QBlade-Ocean were thoroughly validated against experimental results and other state-of-the-art aero-servo-hydro-elastic simulation codes with complex load cases. As a first check, the models were validated in static and decay tests to assure that their natural frequencies and damping coefficients align. Secondly, regular and irregular wave only load cases were carried out to isolate the hydrodynamic response and quantify the hydrodynamic accuracy of QBlade-Ocean. Finally, combined irregular wave with turbulent wind load cases were analysed in order to obtain insight into the accuracy of QBlade- Ocean in complex load cases where aero-, hydro-, servo- and structural dynamics concurrently play a significant role. Of the simulated models, two include experimental validation: the upscaled 10 MW SOFTWIND experimental turbine mounted on a spar floater and the upscaled 5 MW OC5 experimental turbine mounted on a semi-submersible floater. Both models were additionally set up in the open-source software OpenFAST to, on the one hand, compare the performance of both software tools and on the other hand, as a preparatory step for a full-scale code-to-code comparison with the aim of uncertainty identification between the codes occurring later in WP2. The third model – the DTU 10MW Reference Wind Turbine mounted on the Hexafloat floater – is used for numerical validation against the established commercial code DeepLines Wind™ which was used during the design process of the floater by the company SAIPEM. The present document includes results of a selected set of load cases that demonstrate the capabilities of QBlade-Ocean compared to experimental results and the considered numerical codes. Links to the updated QBlade-Ocean models as well as the OpenFAST model are provided in the relevant sections of each model
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7817604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7817604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2023Publisher:Zenodo Funded by:EC | FLOATECHEC| FLOATECHCoiro, Domenico P.; Troise, Giancarlo; Lazzerini, Guido; Grieco, Adolfo; Papi, Francesco; Bianchini, Alessandro; Behrens de Luna, Robert;This document is related to the results of Work Package 5 of the FLOATECH project (Optimization of floating wind turbines using innovative control techniques and fully coupled open-source engineering tool). The main goal of WP 5 is the estimation of the impact of the newly developed technologies on the economic performance of floating wind turbines. Specifically, WP5 has investigated the effects on the overall component costs due to the introduction of two new control strategies: Active Wave Control (AWC), related to the feed forward control methodology developed in WP 3 of FLOATECH project, and Active Wake Mixing (AWM), related to the wake mixing control strategy developed in WP 4. Two different tasks are devoted to the new control models, Task 5.1, dedicated to the study of AWC, and Task 5.2 dedicated to AWM. In order to explore the economic effects of the implementation of the new controls, a cost model parametrized on the main geometrical and performance data of the FOWT, is simultaneously under development in Task 5.3. This report is specifically related to the economic assessment of the AWC control implementation. This study exploits the results of simulations performed using QBlade, in order to estimate the loads on the main FOWT components. The methodology used to estimate the possible improvements due to the newly introduced control technology is based on a hybrid approach: on the one hand, some cost contributions will be estimated using expressions based on statistical regression, typically derived from literature, while, on the other hand, the costs of the FOWT components mainly affected by the control variation will be estimated using a simplified preliminary design calculations, in order to evaluate possible changes in design parameters due to the predicted load variations. In LCOE estimation, possible changes in the annual energy production are also accounted for. Results are presented in terms of variation of the LCOE between a reference case and a modified design including the AWC control technology, developed at the Ecole Central Nantes with an innovative control system designed by TUDelft.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10418625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10418625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2019 Portugal Funded by:EC | PROPHET, EC | POLONEZ, FCT | Institute of Nanostructur... +1 projectsEC| PROPHET ,EC| POLONEZ ,FCT| Institute of Nanostructures, Nanomodelling and Nanofabrication ,FCT| SFRH/BPD/115566/2016Authors: Morawiec, S.; Mendes, M. J.; Priolo, F.; Crupi, I.;M.J.M. acknowledges funding from FCT through the grant SFRH/BPD/115566/2016. ALTALUZ (Reference PTDC/CTM-ENE/5125/2014). The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic techniques, allowing for the quantification of useful and parasitic absorption in thin photovoltaic absorber deposited on top of the PBR. We achieve a significant broadband useful absorption enhancement of 90% for 0.9 µm thick μc-Si:H film and demonstrate that optical losses due to plasmonic scattering are insignificant below 730 nm. Finally, we present a successful implementation of a plasmonic light trapping scheme in a thin film a-Si:H solar cell. The quantum efficiency spectra of the devices show a pronounced broadband enhancement resulting in remarkably high short circuit current densities (Jsc). preprint published
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1437::e48cf0d2425b363e0741bdfbd8198d74&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1437::e48cf0d2425b363e0741bdfbd8198d74&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Zenodo Funded by:EC | BIM4EEBEC| BIM4EEBAuthors: Andrea Giovanni Mainini; Martina Signorini; Sonia Lupica Spagnolo; Simone Ciuffreda; +3 AuthorsAndrea Giovanni Mainini; Martina Signorini; Sonia Lupica Spagnolo; Simone Ciuffreda; Markku Kiviniemi; Kostas Tsatsakis; Bruno Daniotti;{"references": ["BIM4EEB, 2020a. Digital Construction Ontologies. Available online: https://w3id.org/digitalconstruction (Accessed on 20 December 2021).", "BIM4EEB, 2020b. BIM Management System. Available online: https://bim4eeb.oneteam.it (Accessed on 21 December 2021).", "BIM4EEB, 2021. BIM4EEB: BIM based toolkit for Efficient rEnovation in Buildings. Available online: https://www.bim4eeb-project.eu/ (Accessed on 21 December 2021).", "Buildings Performance Institute Europe (BPIE), 2020. The European Renovation wave: from words to action.", "Buildings Performance Institute Europe (BPIE), 2021. The renovation wave strategy & action plan: designed for success or doomed to fail?", "Daniotti, B., et al., 2021. An Interoperable BIM-Based Toolkit for Efficient Renovation in Buildings. Buildings, 11(7), 271.", "Digital Europe, 2021. A digital investment plan for Europe.", "Elagiry, M., et al., 2020. Digitalization Tools for Energy-Efficient Renovations, Sustainable Places 2020, Online 28\u201330 October 2020. MDPI.", "European Commission, 2020a. Energy efficiency in buildings", "European Commission, 2020b. A renovation wave for Europe - greening our buildings, creating jobs, improving lives.", "European Commission, 2020c. Renovation Wave: doubling the renovation rate to cut emissions, boost recovery and reduce energy poverty.", "T\u00f6rm\u00e4, S., et al., 2020. Towards BIM-Enhanced Renovation Management Tools with Support to Stakeholder Interaction, Sustainable Places 2020, Online 28\u201330 October 2020. MDPI.", "Valra, A., et al., 2020. The BIM Management System: A Common Data Environment Using Linked Data to Support the Efficient Renovation in Buildings, Sustainable Places 2020, Online 28\u201330 October 2020. MDPI."]} The construction sector is among the main ones responsible for energy consumption and greenhouse gases emissions. Hence, buildings retrofitting shall be encouraged and supported by targeted actions to achieve a European climate-neutrality by 2050, as pointed out by EU Agenda objectives. In this context, the European Commission is promoting a Renovation Wave Strategy. One step towards the renovation action is the exploitation of digital tools such as Building Information Modelling (BIM) and the Internet of Things (IoT). This paper is related to the potentialities of an ongoing EU funded project –BIM4EEB- and it illustrates the application of two BIM-based tools, namely BIMPlanner and BIM4Occupants, developed within the project. The two tools have respectively the purpose of sharing current information about the progress of construction works among renovation stakeholders and sharing with inhabitants tailored information about indoor conditions, comfort preferences and energy consumption of their houses. Thanks to IoT devices installed in a demonstration building permitted the real-time evaluation and control of several parameters. Therefore, a pilot building, namely the Italian demonstration application of the project, is described for testing the proposed tools. Benefits connected to the BIM framework and IoT devices result in an improvement of data sharing and communication between renovation stakeholders, then in an enhanced building process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6795190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 34 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6795190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Federico II Open Access University Press Funded by:EC | INTENSSS-PAEC| INTENSSS-PAMaurizio, Tira; Ioanna, Giannouli; Sgobbo, Alessandro; Carmine, Brescia; Chiara, Cervigni; Lisa, Carollo; Christos, Tourkolias;The INTENSSS PA project, funded by Horizon 2020, the Framework Programme for Research and Innovation of the European Union, aims to support the local authorities involved and their stakeholders to develop an innovative integrated sustainable energy planning concept through a participatory, interdisciplinary and multilevel process. By building individual and institutional capacity of the actors involved, using the Regional Living Lab approach, the concept will be applied in order to develop seven sustainable integrated energy plans. In this first article the project activities and the results achieved so far are preliminary described, anticipating a more extensive and detailed publication on the project planned for the December edition of UPLand – Journal of Urban Planning Landscape & Environmental Design. UPLanD - Journal of Urban Planning, Landscape & environmental Design, GREEN 2.0
https://dx.doi.org/1... arrow_drop_down UPLanD: Journal of Urban Planning, Landscape & Environmental DesignArticle . 2017Data sources: DOAJUPLanD: Journal of Urban Planning, Landscape & Environmental DesignArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/2531-9906/5258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down UPLanD: Journal of Urban Planning, Landscape & Environmental DesignArticle . 2017Data sources: DOAJUPLanD: Journal of Urban Planning, Landscape & Environmental DesignArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/2531-9906/5258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | HEARTEC| HEARTAuthors: Pietro Zambelli; Claudio Del Pero; Fabrizio Leonforte; Michela Buzzetti;This datapackage provides the dataset used for the first stage of the validation of the simulations and the analysis of the main variables collected by the monitoring system of the HEART project. At this stage (M32), the building refurbishment of the Italian case study in Bagnolo in Piano (Reggio Emilia) is not completed due to the COVID-19 lockdown; the window renovation has been done in September 2019 and in February 2020 the refurbishment works stopped. Therefore, the content of dataset at the moment is only on the first step of the building refurbishment. The dataset contains: the main climatic variables in the area the central heating monitored data the main monitorwd data for 5 refurbished appartments The building is located in the city of Bagnolo in Piano (Reggio Emilia, Italy), and it is oriented 21 degrees towards south west (44.7698536, 10.6768598 at 30 m of altitude.). It is a four-story building, having a total of 12 apartments (4 apartments per floor); cellars and parking area are located on the ground floor. The gross floor area for the conditioned zone is 245.78 [m2] (apartment plus external walls), for a total conditioned area of 737.34 [m2] for the entire building. Further information are available in the repository: Data set repository: https://gitlab.inf.unibz.it/URS/heart/bagnolo-dataset
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4081133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4081133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2014 Italy Funded by:EC | COCONETEC| COCONETZambianchi; Enrico; Iermano; Ilaria; Suaria; Giuseppe; Aliani; Stefano;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::b8e05bb25470e7aac8fad1d493373ed2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::b8e05bb25470e7aac8fad1d493373ed2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Zenodo Funded by:EC | PRODIGEESEC| PRODIGEESAuthors: Sarno, Giulia Sofia;Climate change is worsening the number, frequency and duration of natural hazards across the globe, making disaster risk reduction and resilience building among the most pressing challenges ahead. According to UN-Habitat, informal settlements are where the impacts of climate change are the most acute in urban areas and strengthening resilience in these neighbourhoods represents a very complex yet urgent challenge. Today, urban areas are home to 56 per cent of the world’s population and this figure is projected to increase to 60 per cent by 2030 and 68 per cent by 2050, with 90 per cent of the growth by 2050 expected to occur in less developed economies. In these countries, population growth and displacement (including climate-driven migrations) will lead to rapid and unplanned urbanisation forcing a growing number of people into informal settlements. Currently, one billion people live in informal settlements, mostly in Asia, Sub-Saharan Africa and Latin America and this figure is expected to grow to 3 billion in 2050. Horizon 2020 MSCA-RISE, Grant Agreement #873119
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8169190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 9 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8169190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2022Publisher:Zenodo Funded by:EC | FLOATECHEC| FLOATECHAuthors: Perez-Becker, Sebastian; Saverin, Joseph; Behrens de Luna, Robert; Papi, Francesco; +4 AuthorsPerez-Becker, Sebastian; Saverin, Joseph; Behrens de Luna, Robert; Papi, Francesco; Combreau, Cyril; Ducasse, Marie-Laure; Marten, David; Bianchini, Alessandro;For the detailed validation and verification of the capabilities of QBlade-Ocean in work package 2 (WP2) of FLOATECH, a detailed definition of the three considered models was recently presented in Deliverable 2.1 [1]. This document can be seen as a continuation of that work as the three aero-hydro-elastic models within QBlade-Ocean were thoroughly validated against experimental results and other state-of-the-art aero-servo-hydro-elastic simulation codes with complex load cases. As a first check, the models were validated in static and decay tests to assure that their natural frequencies and damping coefficients align. Secondly, regular and irregular wave only load cases were carried out to isolate the hydrodynamic response and quantify the hydrodynamic accuracy of QBlade-Ocean. Finally, combined irregular wave with turbulent wind load cases were analysed in order to obtain insight into the accuracy of QBlade- Ocean in complex load cases where aero-, hydro-, servo- and structural dynamics concurrently play a significant role. Of the simulated models, two include experimental validation: the upscaled 10 MW SOFTWIND experimental turbine mounted on a spar floater and the upscaled 5 MW OC5 experimental turbine mounted on a semi-submersible floater. Both models were additionally set up in the open-source software OpenFAST to, on the one hand, compare the performance of both software tools and on the other hand, as a preparatory step for a full-scale code-to-code comparison with the aim of uncertainty identification between the codes occurring later in WP2. The third model – the DTU 10MW Reference Wind Turbine mounted on the Hexafloat floater – is used for numerical validation against the established commercial code DeepLines Wind™ which was used during the design process of the floater by the company SAIPEM. The present document includes results of a selected set of load cases that demonstrate the capabilities of QBlade-Ocean compared to experimental results and the considered numerical codes. Links to the updated QBlade-Ocean models as well as the OpenFAST model are provided in the relevant sections of each model
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7817604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 24visibility views 24 download downloads 21 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7817604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type 2023Publisher:Zenodo Funded by:EC | FLOATECHEC| FLOATECHCoiro, Domenico P.; Troise, Giancarlo; Lazzerini, Guido; Grieco, Adolfo; Papi, Francesco; Bianchini, Alessandro; Behrens de Luna, Robert;This document is related to the results of Work Package 5 of the FLOATECH project (Optimization of floating wind turbines using innovative control techniques and fully coupled open-source engineering tool). The main goal of WP 5 is the estimation of the impact of the newly developed technologies on the economic performance of floating wind turbines. Specifically, WP5 has investigated the effects on the overall component costs due to the introduction of two new control strategies: Active Wave Control (AWC), related to the feed forward control methodology developed in WP 3 of FLOATECH project, and Active Wake Mixing (AWM), related to the wake mixing control strategy developed in WP 4. Two different tasks are devoted to the new control models, Task 5.1, dedicated to the study of AWC, and Task 5.2 dedicated to AWM. In order to explore the economic effects of the implementation of the new controls, a cost model parametrized on the main geometrical and performance data of the FOWT, is simultaneously under development in Task 5.3. This report is specifically related to the economic assessment of the AWC control implementation. This study exploits the results of simulations performed using QBlade, in order to estimate the loads on the main FOWT components. The methodology used to estimate the possible improvements due to the newly introduced control technology is based on a hybrid approach: on the one hand, some cost contributions will be estimated using expressions based on statistical regression, typically derived from literature, while, on the other hand, the costs of the FOWT components mainly affected by the control variation will be estimated using a simplified preliminary design calculations, in order to evaluate possible changes in design parameters due to the predicted load variations. In LCOE estimation, possible changes in the annual energy production are also accounted for. Results are presented in terms of variation of the LCOE between a reference case and a modified design including the AWC control technology, developed at the Ecole Central Nantes with an innovative control system designed by TUDelft.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10418625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10418625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Review 2019 Portugal Funded by:EC | PROPHET, EC | POLONEZ, FCT | Institute of Nanostructur... +1 projectsEC| PROPHET ,EC| POLONEZ ,FCT| Institute of Nanostructures, Nanomodelling and Nanofabrication ,FCT| SFRH/BPD/115566/2016Authors: Morawiec, S.; Mendes, M. J.; Priolo, F.; Crupi, I.;M.J.M. acknowledges funding from FCT through the grant SFRH/BPD/115566/2016. ALTALUZ (Reference PTDC/CTM-ENE/5125/2014). The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic techniques, allowing for the quantification of useful and parasitic absorption in thin photovoltaic absorber deposited on top of the PBR. We achieve a significant broadband useful absorption enhancement of 90% for 0.9 µm thick μc-Si:H film and demonstrate that optical losses due to plasmonic scattering are insignificant below 730 nm. Finally, we present a successful implementation of a plasmonic light trapping scheme in a thin film a-Si:H solar cell. The quantum efficiency spectra of the devices show a pronounced broadband enhancement resulting in remarkably high short circuit current densities (Jsc). preprint published
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1437::e48cf0d2425b363e0741bdfbd8198d74&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1437::e48cf0d2425b363e0741bdfbd8198d74&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Zenodo Funded by:EC | BIM4EEBEC| BIM4EEBAuthors: Andrea Giovanni Mainini; Martina Signorini; Sonia Lupica Spagnolo; Simone Ciuffreda; +3 AuthorsAndrea Giovanni Mainini; Martina Signorini; Sonia Lupica Spagnolo; Simone Ciuffreda; Markku Kiviniemi; Kostas Tsatsakis; Bruno Daniotti;{"references": ["BIM4EEB, 2020a. Digital Construction Ontologies. Available online: https://w3id.org/digitalconstruction (Accessed on 20 December 2021).", "BIM4EEB, 2020b. BIM Management System. Available online: https://bim4eeb.oneteam.it (Accessed on 21 December 2021).", "BIM4EEB, 2021. BIM4EEB: BIM based toolkit for Efficient rEnovation in Buildings. Available online: https://www.bim4eeb-project.eu/ (Accessed on 21 December 2021).", "Buildings Performance Institute Europe (BPIE), 2020. The European Renovation wave: from words to action.", "Buildings Performance Institute Europe (BPIE), 2021. The renovation wave strategy & action plan: designed for success or doomed to fail?", "Daniotti, B., et al., 2021. An Interoperable BIM-Based Toolkit for Efficient Renovation in Buildings. Buildings, 11(7), 271.", "Digital Europe, 2021. A digital investment plan for Europe.", "Elagiry, M., et al., 2020. Digitalization Tools for Energy-Efficient Renovations, Sustainable Places 2020, Online 28\u201330 October 2020. MDPI.", "European Commission, 2020a. Energy efficiency in buildings", "European Commission, 2020b. A renovation wave for Europe - greening our buildings, creating jobs, improving lives.", "European Commission, 2020c. Renovation Wave: doubling the renovation rate to cut emissions, boost recovery and reduce energy poverty.", "T\u00f6rm\u00e4, S., et al., 2020. Towards BIM-Enhanced Renovation Management Tools with Support to Stakeholder Interaction, Sustainable Places 2020, Online 28\u201330 October 2020. MDPI.", "Valra, A., et al., 2020. The BIM Management System: A Common Data Environment Using Linked Data to Support the Efficient Renovation in Buildings, Sustainable Places 2020, Online 28\u201330 October 2020. MDPI."]} The construction sector is among the main ones responsible for energy consumption and greenhouse gases emissions. Hence, buildings retrofitting shall be encouraged and supported by targeted actions to achieve a European climate-neutrality by 2050, as pointed out by EU Agenda objectives. In this context, the European Commission is promoting a Renovation Wave Strategy. One step towards the renovation action is the exploitation of digital tools such as Building Information Modelling (BIM) and the Internet of Things (IoT). This paper is related to the potentialities of an ongoing EU funded project –BIM4EEB- and it illustrates the application of two BIM-based tools, namely BIMPlanner and BIM4Occupants, developed within the project. The two tools have respectively the purpose of sharing current information about the progress of construction works among renovation stakeholders and sharing with inhabitants tailored information about indoor conditions, comfort preferences and energy consumption of their houses. Thanks to IoT devices installed in a demonstration building permitted the real-time evaluation and control of several parameters. Therefore, a pilot building, namely the Italian demonstration application of the project, is described for testing the proposed tools. Benefits connected to the BIM framework and IoT devices result in an improvement of data sharing and communication between renovation stakeholders, then in an enhanced building process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6795190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 28visibility views 28 download downloads 34 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6795190&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Federico II Open Access University Press Funded by:EC | INTENSSS-PAEC| INTENSSS-PAMaurizio, Tira; Ioanna, Giannouli; Sgobbo, Alessandro; Carmine, Brescia; Chiara, Cervigni; Lisa, Carollo; Christos, Tourkolias;The INTENSSS PA project, funded by Horizon 2020, the Framework Programme for Research and Innovation of the European Union, aims to support the local authorities involved and their stakeholders to develop an innovative integrated sustainable energy planning concept through a participatory, interdisciplinary and multilevel process. By building individual and institutional capacity of the actors involved, using the Regional Living Lab approach, the concept will be applied in order to develop seven sustainable integrated energy plans. In this first article the project activities and the results achieved so far are preliminary described, anticipating a more extensive and detailed publication on the project planned for the December edition of UPLand – Journal of Urban Planning Landscape & Environmental Design. UPLanD - Journal of Urban Planning, Landscape & environmental Design, GREEN 2.0
https://dx.doi.org/1... arrow_drop_down UPLanD: Journal of Urban Planning, Landscape & Environmental DesignArticle . 2017Data sources: DOAJUPLanD: Journal of Urban Planning, Landscape & Environmental DesignArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/2531-9906/5258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down UPLanD: Journal of Urban Planning, Landscape & Environmental DesignArticle . 2017Data sources: DOAJUPLanD: Journal of Urban Planning, Landscape & Environmental DesignArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/2531-9906/5258&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu