- home
- Advanced Search
- Energy Research
- UK Research and Innovation
- 6. Clean water
- IT
- Energy Research
- UK Research and Innovation
- 6. Clean water
- IT
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 United Kingdom, Switzerland, Czech Republic, France, Estonia, Italy, Germany, Czech Republic, ItalyPublisher:Wiley Publicly fundedFunded by:EC | IntEL, UKRI | Global Observatory of Lak..., NSF | SCC-IRG Track 2: Resilien... +3 projectsEC| IntEL ,UKRI| Global Observatory of Lake Responses to Environmental Change (GloboLakes) ,NSF| SCC-IRG Track 2: Resilient Water Systems: Integrating Environmental Sensor Networks and Real-Time Forecasting to Adaptively Manage Drinking Water Quality and Build Social Trust ,NSF| CNH-L: Linking Land-Use Decision Making, Water Quality, and Lake Associations to Understand Human-Natural Feedbacks in Lake Catchments ,NSF| Collaborative Research: Consequences of changing oxygen availability for carbon cycling in freshwater ecosystems ,NSF| MSB-ECA: A macrosystems science training program: developing undergraduates' simulation modeling, distributed computing, and collaborative skillsCayelan C. Carey; Karsten Rinke; R. Iestyn Woolway; Wim Thiery; Wim Thiery; Jonathan P. Doubek; Nico Salmaso; Ruchi Bhattacharya; Rita Adrian; Rita Adrian; Marieke A. Frassl; Orlane Anneville; James A. Rusak; James A. Rusak; Josef Hejzlar; Jason D. Stockwell; Lars G. Rudstam; Mikkel René Andersen; Stephen J. Thackeray; Aleksandra M. Lewandowska; Christian Torsten Seltmann; Christian Torsten Seltmann; Dietmar Straile; Emily R. Nodine; Nasime Janatian; Francesco Pomati; Vijay P. Patil; Maria Eugenia del Rosario Llames; Piet Verburg; Lisette N. de Senerpont Domis; Hans-Peter Grossart; Hans-Peter Grossart; B.W. Ibelings; Shin-ichiro S. Matsuzaki; Gaël Dur; Peeter Nõges; Patrick Venail; Pablo Urrutia-Cordero; Pablo Urrutia-Cordero; Laurence Carvalho; Alfred Theodore Nutefe Kwasi Kpodonu; Harriet L. Wilson; Marc J. Lajeunesse; Tanner J. Williamson; Tamar Zohary;pmid: 32133744
pmc: PMC7216882
AbstractIn many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/63879Data sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10492/6180Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 161 citations 161 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 214visibility views 214 download downloads 380 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/63879Data sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10492/6180Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 Italy, United Kingdom, ItalyPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1, EC | ECOFINDERS, UKRI | The root to stability - t...FCT| LA 1 ,EC| ECOFINDERS ,UKRI| The root to stability - the role of plant roots in ecosystem response to climate changeFranciska T. de Vries; Rob I. Griffiths; Mark Bailey; Hayley Craig; Mariangela Girlanda; Hyun Soon Gweon; Sara Hallin; Aurore Kaisermann; Aidan M. Keith; Marina Kretzschmar; Philippe Lemanceau; Erica Lumini; Kelly E. Mason; Anna Oliver; Nick Ostle; James I. Prosser; Cecile Thion; Bruce Thomson; Richard D. Bardgett;AbstractSoil microbial communities play a crucial role in ecosystem functioning, but it is unknown how co-occurrence networks within these communities respond to disturbances such as climate extremes. This represents an important knowledge gap because changes in microbial networks could have implications for their functioning and vulnerability to future disturbances. Here, we show in grassland mesocosms that drought promotes destabilising properties in soil bacterial, but not fungal, co-occurrence networks, and that changes in bacterial communities link more strongly to soil functioning during recovery than do changes in fungal communities. Moreover, we reveal that drought has a prolonged effect on bacterial communities and their co-occurrence networks via changes in vegetation composition and resultant reductions in soil moisture. Our results provide new insight in the mechanisms through which drought alters soil microbial communities with potential long-term consequences, including future plant community composition and the ability of aboveground and belowground communities to withstand future disturbances.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628750/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628750/documentAberdeen University Research Archive (AURA)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2164/10877Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-05516-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,177 popularity Top 0.01% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628750/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628750/documentAberdeen University Research Archive (AURA)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2164/10877Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-05516-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Public Library of Science (PLoS) Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: John Greenman; Grzegorz Pasternak; Grzegorz Pasternak; Ioannis Ieropoulos;Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0176475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0176475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Germany, United Kingdom, Brazil, France, Australia, Brazil, AustraliaPublisher:American Geophysical Union (AGU) Funded by:EC | AMAZALERT, UKRI | Tropical Biomes in Transi..., UKRI | Assessing the impacts of ... +2 projectsEC| AMAZALERT ,UKRI| Tropical Biomes in Transition ,UKRI| Assessing the impacts of the 2010 drought on Amazon zone of transition ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,ANR| TULIPAuthors: G. M. F. van der Heijden; Raquel Thomas-Caesar; Hirma Ramírez-Angulo; Adriana Prieto; +55 AuthorsG. M. F. van der Heijden; Raquel Thomas-Caesar; Hirma Ramírez-Angulo; Adriana Prieto; Rafael de Paiva Salomão; C. Mendoza Bautista; Gustavo Saiz; Juliana Stropp; Wendeson Castro; John Terborgh; Ben Hur Marimon-Junior; Ana Andrade; Fredy Ramírez; Jérôme Chave; Susan G. Laurance; E. Alvarez Dávila; Oliver L. Phillips; Jon Lloyd; Jon Lloyd; Jorcely Barroso; E.N. Honorio Coronado; N. C. Pallqui Camacho; Ted R. Feldpausch; R. Vásquez Martínez; G. Lopez-Gonzalez; William F. Laurance; Emanuel Gloor; Tomas F. Domingues; Carlos A. Quesada; Luzmila Arroyo; Simon L. Lewis; Simon L. Lewis; Roel J. W. Brienen; Yadvinder Malhi; Christopher Baraloto; Christopher Baraloto; Nikée Groot; H. ter Steege; C. Oliveira dos Santos; Edmar Almeida de Oliveira; Alfredo Alarcón; David A. Neill; Beatriz Schwantes Marimon; Juan Carlos Licona; Damien Bonal; Javier E. Silva-Espejo; Marcos Silveira; V. Chama; Timothy R. Baker; G. Pardo-Molina; Agustín Rudas; Maxime Réjou-Méchain; Patricia Alvarez-Loayza; Luiz E. O. C. Aragão; Luiz E. O. C. Aragão; Sophie Fauset; Emilio Vilanova; Abel Monteagudo-Mendoza; Vincent A. Vos;doi: 10.1002/2015gb005133
handle: 10044/1/46047
AbstractThe Amazon Basin has experienced more variable climate over the last decade, with a severe and widespread drought in 2005 causing large basin‐wide losses of biomass. A drought of similar climatological magnitude occurred again in 2010; however, there has been no basin‐wide ground‐based evaluation of effects on vegetation. We examine to what extent the 2010 drought affected forest dynamics using ground‐based observations of mortality and growth from an extensive forest plot network. We find that during the 2010 drought interval, forests did not gain biomass (net change: −0.43 Mg ha−1, confidence interval (CI): −1.11, 0.19, n = 97), regardless of whether forests experienced precipitation deficit anomalies. This contrasted with a long‐term biomass sink during the baseline pre‐2010 drought period (1998 to pre‐2010) of 1.33 Mg ha−1 yr−1 (CI: 0.90, 1.74, p < 0.01). The resulting net impact of the 2010 drought (i.e., reversal of the baseline net sink) was −1.95 Mg ha−1 yr−1 (CI:−2.77, −1.18; p < 0.001). This net biomass impact was driven by an increase in biomass mortality (1.45 Mg ha−1 yr−1 CI: 0.66, 2.25, p < 0.001) and a decline in biomass productivity (−0.50 Mg ha−1 yr−1, CI:−0.78, −0.31; p < 0.001). Surprisingly, the magnitude of the losses through tree mortality was unrelated to estimated local precipitation anomalies and was independent of estimated local pre‐2010 drought history. Thus, there was no evidence that pre‐2010 droughts compounded the effects of the 2010 drought. We detected a systematic basin‐wide impact of the 2010 drought on tree growth rates across Amazonia, which was related to the strength of the moisture deficit. This impact differed from the drought event in 2005 which did not affect productivity. Based on these ground data, live biomass in trees and corresponding estimates of live biomass in lianas and roots, we estimate that intact forests in Amazonia were carbon neutral in 2010 (−0.07 Pg C yr−1 CI:−0.42, 0.23), consistent with results from an independent analysis of airborne estimates of land‐atmospheric fluxes during 2010. Relative to the long‐term mean, the 2010 drought resulted in a reduction in biomass carbon uptake of 1.1 Pg C, compared to 1.6 Pg C for the 2005 event.
Hyper Article en Lig... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2015gb005133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 192 citations 192 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 61 Powered bymore_vert Hyper Article en Lig... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2015gb005133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Netherlands, United KingdomPublisher:Wiley Funded by:EC | CIRCASA, EC | BlackCycle, UKRI | Soils Research to deliver... +1 projectsEC| CIRCASA ,EC| BlackCycle ,UKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Authors: Robert I. Griffiths; Samaneh Seifollahi-Aghmiuni; Claire Chenu; Saskia M. Visser; +15 AuthorsRobert I. Griffiths; Samaneh Seifollahi-Aghmiuni; Claire Chenu; Saskia M. Visser; Daniel Evans; Carla Ferreira; Victoria Janes-Bassett; Pete Smith; David Robinson; Rattan Lal; Amy Thomas; Pasquale Borrelli; Pasquale Borrelli; Zahra Kalantari; Zahra Kalantari; Saskia Keesstra; Saskia Keesstra; Panos Panagos; Tammo S. Steenhuis;doi: 10.1111/ejss.13145
handle: 2164/18196
AbstractThe importance of soils to society has gained increasing recognition over the past decade, with the potential to contribute to most of the United Nations’ Sustainable Development Goals (SDGs). With unprecedented and growing demands for food, water and energy, there is an urgent need for a global effort to address the challenges of climate change and land degradation, whilst protecting soil as a natural resource. In this paper, we identify the contribution of soil science over the past decade to addressing gaps in our knowledge regarding major environmental challenges: climate change, food security, water security, urban development, and ecosystem functioning and biodiversity. Continuing to address knowledge gaps in soil science is essential for the achievement of the SDGs. However, with limited time and budget, it is also pertinent to identify effective methods of working that ensure the research carried out leads to real‐world impact. Here, we suggest three strategies for the next decade of soil science, comprising a greater implementation of research into policy, interdisciplinary partnerships to evaluate function trade‐offs and synergies between soils and other environmental domains, and integrating monitoring and modelling methods to ensure soil‐based policies can withstand the uncertainties of the future.Highlights We highlight the contributions of soil science to five major environmental challenges since 2010. Researchers have contributed to recommendation reports, but work is rarely translated into policy. Interdisciplinary work should assess trade‐offs and synergies between soils and other domains. Integrating monitoring and modelling is key for robust and sustainable soils‐based policymaking.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/ejss.13145Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/18196Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejss.13145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 62 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/ejss.13145Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/18196Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejss.13145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | Securing Multidisciplinar...UKRI| Securing Multidisciplinary UndeRstanding and Prediction of Hiatus and Surge events (SMURPHS)Mathew Barlow; Laura Wilcox; Thian Yew Gan; Abigail L. S. Swann; Olga Zolina; Olga Zolina; Annalisa Cherchi; Angeline G. Pendergrass; Richard P. Allan; Hayley J. Fowler; Michael P. Byrne; Michael P. Byrne; Daniel Rosenfeld; Daniel Rosenfeld; Hervé Douville;AbstractGlobally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2–3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in‐storm and larger‐scale feedback processes, while changes in large‐scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.
CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10023/19765Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 309 citations 309 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10023/19765Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | A detailed assessment of ..., UKRI | BIODIVERSITY AND LAND-USE...UKRI| A detailed assessment of ecosystem carbon dynamics along an elevation transect in the Andes ,UKRI| BIODIVERSITY AND LAND-USE IMPACTS ON TROPICAL ECOSYSTEM FUNCTION (BALI)Authors: Liliana Durand Baca; Renata Freitag; Ben Hur Marimon-Junior; Antonio Carlos Lola da Costa; +43 AuthorsLiliana Durand Baca; Renata Freitag; Ben Hur Marimon-Junior; Antonio Carlos Lola da Costa; Vianet Mihindou; Cécile A. J. Girardin; Fernando Hancco Pacha; Kathryn J. Jeffery; Toby R. Marthews; Armel Thongo M’Bou; Alejandro Araujo Murakami; Imma Oliveras; Akwasi Duah-Gyamfi; Noreen Majalap; Josué Edzang Ndong; Patrick Meir; Patrick Meir; Sami W. Rifai; Luiz E. O. C. Aragão; Javier Silva Espejo; Fidèle Evouna Ondo; Beatriz Schwantes Marimon; Natacha Nssi Bengone; Sheleme Demissie; Beisit L. Puma Vilca; Stephen Adu-Bredu; Terhi Riutta; Robert M. Ewers; Filio Farfán Amézquita; Daniel B. Metcalfe; Yadvinder Malhi; Christopher E. Doughty; Kennedy Owusu-Afriyie; Darcy F. Galiano Cabrera; Gloria Djagbletey; Katharine Abernethy; Lucy Amissah; Walter Huaraca Huasco; Carlos A. Quesada; Lee J. T. White; Forzia Ibrahim; Alexandra C. Morel; Sam Moore; Jhon del Aguila-Pasquel; Erick Oblitas Mendoza; Shalom D. Addo-Danso; Miles R. Silman;pmid: 33982340
handle: 10044/1/92064 , 1893/32631
AbstractFine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old‐growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi‐deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water‐stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/92064Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/32631Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 24 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/92064Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/32631Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF: FutureDAMS: Design ...UKRI| GCRF: FutureDAMS: Design and assessment of resilient and sustainable interventions in water-energy-food-environment Mega-SystemsAuthors: José María Faci González; James Tomlinson; Eduardo A. Martínez Ceseña; Mohammed Basheer; +13 AuthorsJosé María Faci González; James Tomlinson; Eduardo A. Martínez Ceseña; Mohammed Basheer; Emmanuel Obuobie; Philip T. Padi; Salifu Addo; Rasheed Baisie; Mikiyas Etichia; Anthony J. Hurford; Andrea Bottacin‐Busolin; John Matthews; James Dalton; D. Mark Smith; Justin Sheffield; Mathaios Panteli; Julien Harou;AbstractRenewable energy system development and improved operation can mitigate climate change. In many regions, hydropower is called to counterbalance the temporal variability of intermittent renewables like solar and wind. However, using hydropower to integrate these renewables can affect aquatic ecosystems and increase cross-sectoral water conflicts. We develop and apply an artificial intelligence-assisted multisector design framework in Ghana, which shows how hydropower’s flexibility alone could enable expanding intermittent renewables by 38% but would increase sub-daily Volta River flow variability by up to 22 times compared to historical baseload hydropower operations. This would damage river ecosystems and reduce agricultural sector revenues by US$169 million per year. A diversified investment strategy identified using the proposed framework, including intermittent renewables, bioenergy, transmission lines and strategic hydropower re-operation could reduce sub-daily flow variability and enhance agricultural performance while meeting future national energy service goals and reducing CO2 emissions. The tool supports national climate planning instruments such as nationally determined contributions (NDCs) by steering towards diversified and efficient power systems and highlighting their sectoral and emission trade-offs and synergies.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-022-01033-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 5 Powered bymore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-022-01033-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Funded by:UKRI | Performance Demonstrator ...UKRI| Performance Demonstrator Follow OnAhmed S. Abuzaid; Mohamed A. Abdel-Salam; Abeer F. Ahmad; Hala A. Fathy; Mohamed E. Fadl; Antonio Scopa;doi: 10.3390/su14031067
handle: 11563/161011
Lack of active sorption sites in sandy soils renders metals added by irrigation water more labile and increases their soil-to-plant transfer. Thus, this study investigated the long-term impacts of irrigation using sewage effluents and contaminated groundwater on metal accumulations in TypicTorripsamment soils, and edible parts of food crops. Nine sites in El-Gabal El-Asfar farm, south-eastern to the Nile Delta of Egypt, were selected. At each site, irrigation water, soil (0–30 cm), and the crop’s edible part were sampled in triplicates and analyzed for Mn, Pb, and Zn. Results revealed significant (p < 0.05) differences in metal concentrations among water sources. Thus, constant irrigation caused significant spatial variations in total and available metal contents in soils. Total contents of Pb (in four sites) and Zn (in all sites) exceed the lithosphere range, while the available contents of the three metals exceeded the safe limits in all soils. The index of geo-accumulation indicated no Mn pollution but showed elevated pollution risks for Pb and Zn. The three metals showed high availability ratios, proving the effect of light soil texture. The multivariate statistical analysis indicated that Mn and Zn had similar geochemical behaviors in soils. Metal contents in all crop’s edible parts surpassed the safe limits. The bioaccumulation factor (BAF) was less than 1.0 for Mn and Zn but higher than 1.0 for Pb. The highest BAFs occurred in cabbage leaves, indicating the phytoextraction potential of this species. Sufficient water treatment and proper remediation techniques are recommended to alleviate metal accumulation in food crops and their transfer via the food chain.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11563/161011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11563/161011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, United KingdomPublisher:Elsevier BV Funded by:UKRI | MFC Commercialisation thr..., UKRI | Waste Made Useful by Micr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC) ,UKRI| Waste Made Useful by Microbial Fuel Cells for Energy GenerationCarlo Santoro; Sofia Babanova; Kateryna Artyushkova; Plamen Atanassov; John Greenman; Pierangela Cristiani; Stefano Trasatti; Andrew J. Schuler; Baikun Li; Ioannis Ieropoulos;handle: 2434/450655
Abstract Cost-effective activated carbon (AC) material was investigated for the development of gas-diffusion cathode employed in membraneless single chamber microbial fuel cells (SCMFCs) treating different feeding solutions. The electrocatalytic activity of AC cathodes was monitored in synthetic wastewater containing phosphate buffer saline solution and sodium acetate (PBS and NaOAc) and compared with several types of wastewaters (e.g. fresh urine (FU), hydrolysed urine (HU), wastewater and sodium acetate (WW + NaOAc) and raw wastewater (WW)). Solution conductivity and pH significantly affected the cathode and the SCMFCs performance. Synthetic wastewater (PBS) outperformed real wastewater in terms of cathode current and SCMFC power output. The results showed that the SCMFCs fed with urine generated 3 times higher power densities than those with raw WW and 25% higher than those with WW + NaOAc, most likely due to the high amount of electrons generated from organic substances. Chemical analysis showed that nutrient concentrations remained the same in the SCMFCs fed with PBS, but decreased 40% in those fed with urine. High power generation associated with phosphorus removal underlines the possibility of using urine as a feedstock for MFCs in real wastewater treatment processes.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.09.167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.09.167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 United Kingdom, Switzerland, Czech Republic, France, Estonia, Italy, Germany, Czech Republic, ItalyPublisher:Wiley Publicly fundedFunded by:EC | IntEL, UKRI | Global Observatory of Lak..., NSF | SCC-IRG Track 2: Resilien... +3 projectsEC| IntEL ,UKRI| Global Observatory of Lake Responses to Environmental Change (GloboLakes) ,NSF| SCC-IRG Track 2: Resilient Water Systems: Integrating Environmental Sensor Networks and Real-Time Forecasting to Adaptively Manage Drinking Water Quality and Build Social Trust ,NSF| CNH-L: Linking Land-Use Decision Making, Water Quality, and Lake Associations to Understand Human-Natural Feedbacks in Lake Catchments ,NSF| Collaborative Research: Consequences of changing oxygen availability for carbon cycling in freshwater ecosystems ,NSF| MSB-ECA: A macrosystems science training program: developing undergraduates' simulation modeling, distributed computing, and collaborative skillsCayelan C. Carey; Karsten Rinke; R. Iestyn Woolway; Wim Thiery; Wim Thiery; Jonathan P. Doubek; Nico Salmaso; Ruchi Bhattacharya; Rita Adrian; Rita Adrian; Marieke A. Frassl; Orlane Anneville; James A. Rusak; James A. Rusak; Josef Hejzlar; Jason D. Stockwell; Lars G. Rudstam; Mikkel René Andersen; Stephen J. Thackeray; Aleksandra M. Lewandowska; Christian Torsten Seltmann; Christian Torsten Seltmann; Dietmar Straile; Emily R. Nodine; Nasime Janatian; Francesco Pomati; Vijay P. Patil; Maria Eugenia del Rosario Llames; Piet Verburg; Lisette N. de Senerpont Domis; Hans-Peter Grossart; Hans-Peter Grossart; B.W. Ibelings; Shin-ichiro S. Matsuzaki; Gaël Dur; Peeter Nõges; Patrick Venail; Pablo Urrutia-Cordero; Pablo Urrutia-Cordero; Laurence Carvalho; Alfred Theodore Nutefe Kwasi Kpodonu; Harriet L. Wilson; Marc J. Lajeunesse; Tanner J. Williamson; Tamar Zohary;pmid: 32133744
pmc: PMC7216882
AbstractIn many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.
Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/63879Data sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10492/6180Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 161 citations 161 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 214visibility views 214 download downloads 380 Powered bymore_vert Natural Environment ... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2020Full-Text: http://hdl.handle.net/10449/63879Data sources: Bielefeld Academic Search Engine (BASE)Estonian University of Life Sciences: DSpaceArticle . 2020License: CC BY NC NDFull-Text: http://hdl.handle.net/10492/6180Data sources: Bielefeld Academic Search Engine (BASE)Repository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 Italy, United Kingdom, ItalyPublisher:Springer Science and Business Media LLC Funded by:FCT | LA 1, EC | ECOFINDERS, UKRI | The root to stability - t...FCT| LA 1 ,EC| ECOFINDERS ,UKRI| The root to stability - the role of plant roots in ecosystem response to climate changeFranciska T. de Vries; Rob I. Griffiths; Mark Bailey; Hayley Craig; Mariangela Girlanda; Hyun Soon Gweon; Sara Hallin; Aurore Kaisermann; Aidan M. Keith; Marina Kretzschmar; Philippe Lemanceau; Erica Lumini; Kelly E. Mason; Anna Oliver; Nick Ostle; James I. Prosser; Cecile Thion; Bruce Thomson; Richard D. Bardgett;AbstractSoil microbial communities play a crucial role in ecosystem functioning, but it is unknown how co-occurrence networks within these communities respond to disturbances such as climate extremes. This represents an important knowledge gap because changes in microbial networks could have implications for their functioning and vulnerability to future disturbances. Here, we show in grassland mesocosms that drought promotes destabilising properties in soil bacterial, but not fungal, co-occurrence networks, and that changes in bacterial communities link more strongly to soil functioning during recovery than do changes in fungal communities. Moreover, we reveal that drought has a prolonged effect on bacterial communities and their co-occurrence networks via changes in vegetation composition and resultant reductions in soil moisture. Our results provide new insight in the mechanisms through which drought alters soil microbial communities with potential long-term consequences, including future plant community composition and the ability of aboveground and belowground communities to withstand future disturbances.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628750/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628750/documentAberdeen University Research Archive (AURA)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2164/10877Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-05516-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,177 popularity Top 0.01% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)Hyper Article en LigneArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628750/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2018License: CC BYFull-Text: https://hal.inrae.fr/hal-02628750/documentAberdeen University Research Archive (AURA)Article . 2018License: CC BYFull-Text: http://hdl.handle.net/2164/10877Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-05516-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 United KingdomPublisher:Public Library of Science (PLoS) Funded by:UKRI | MFC Commercialisation thr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC)Authors: John Greenman; Grzegorz Pasternak; Grzegorz Pasternak; Ioannis Ieropoulos;Microbial Fuel Cells (MFCs) are emerging as an effective means of treating different types of waste including urine and wastewater. However, the fate of pathogens in an MFC-based system remains unknown, and in this study we investigated the effect of introducing the enteric pathogen Salmonella enterica serovar enteritidis in an MFC cascade system. The MFCs continuously fed with urine showed high disinfecting potential. As part of two independent trials, during which the bioluminescent S. enteritidis strain was introduced into the MFC cascade, the number of viable counts and the level of bioluminescence were reduced by up to 4.43±0.04 and 4.21±0.01 log-fold, respectively. The killing efficacy observed for the MFCs operating under closed-circuit conditions, were higher by 1.69 and 1.72 log-fold reduction than for the open circuit MFCs, in both independent trials. The results indicated that the bactericidal properties of a well performing anode were dependent on power performance and the oxidation-reduction potential recorded for the MFCs. This is the first time that the fate of pathogenic bacteria has been investigated in continuously operating MFC systems.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0176475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0176475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 Germany, United Kingdom, Brazil, France, Australia, Brazil, AustraliaPublisher:American Geophysical Union (AGU) Funded by:EC | AMAZALERT, UKRI | Tropical Biomes in Transi..., UKRI | Assessing the impacts of ... +2 projectsEC| AMAZALERT ,UKRI| Tropical Biomes in Transition ,UKRI| Assessing the impacts of the 2010 drought on Amazon zone of transition ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,ANR| TULIPAuthors: G. M. F. van der Heijden; Raquel Thomas-Caesar; Hirma Ramírez-Angulo; Adriana Prieto; +55 AuthorsG. M. F. van der Heijden; Raquel Thomas-Caesar; Hirma Ramírez-Angulo; Adriana Prieto; Rafael de Paiva Salomão; C. Mendoza Bautista; Gustavo Saiz; Juliana Stropp; Wendeson Castro; John Terborgh; Ben Hur Marimon-Junior; Ana Andrade; Fredy Ramírez; Jérôme Chave; Susan G. Laurance; E. Alvarez Dávila; Oliver L. Phillips; Jon Lloyd; Jon Lloyd; Jorcely Barroso; E.N. Honorio Coronado; N. C. Pallqui Camacho; Ted R. Feldpausch; R. Vásquez Martínez; G. Lopez-Gonzalez; William F. Laurance; Emanuel Gloor; Tomas F. Domingues; Carlos A. Quesada; Luzmila Arroyo; Simon L. Lewis; Simon L. Lewis; Roel J. W. Brienen; Yadvinder Malhi; Christopher Baraloto; Christopher Baraloto; Nikée Groot; H. ter Steege; C. Oliveira dos Santos; Edmar Almeida de Oliveira; Alfredo Alarcón; David A. Neill; Beatriz Schwantes Marimon; Juan Carlos Licona; Damien Bonal; Javier E. Silva-Espejo; Marcos Silveira; V. Chama; Timothy R. Baker; G. Pardo-Molina; Agustín Rudas; Maxime Réjou-Méchain; Patricia Alvarez-Loayza; Luiz E. O. C. Aragão; Luiz E. O. C. Aragão; Sophie Fauset; Emilio Vilanova; Abel Monteagudo-Mendoza; Vincent A. Vos;doi: 10.1002/2015gb005133
handle: 10044/1/46047
AbstractThe Amazon Basin has experienced more variable climate over the last decade, with a severe and widespread drought in 2005 causing large basin‐wide losses of biomass. A drought of similar climatological magnitude occurred again in 2010; however, there has been no basin‐wide ground‐based evaluation of effects on vegetation. We examine to what extent the 2010 drought affected forest dynamics using ground‐based observations of mortality and growth from an extensive forest plot network. We find that during the 2010 drought interval, forests did not gain biomass (net change: −0.43 Mg ha−1, confidence interval (CI): −1.11, 0.19, n = 97), regardless of whether forests experienced precipitation deficit anomalies. This contrasted with a long‐term biomass sink during the baseline pre‐2010 drought period (1998 to pre‐2010) of 1.33 Mg ha−1 yr−1 (CI: 0.90, 1.74, p < 0.01). The resulting net impact of the 2010 drought (i.e., reversal of the baseline net sink) was −1.95 Mg ha−1 yr−1 (CI:−2.77, −1.18; p < 0.001). This net biomass impact was driven by an increase in biomass mortality (1.45 Mg ha−1 yr−1 CI: 0.66, 2.25, p < 0.001) and a decline in biomass productivity (−0.50 Mg ha−1 yr−1, CI:−0.78, −0.31; p < 0.001). Surprisingly, the magnitude of the losses through tree mortality was unrelated to estimated local precipitation anomalies and was independent of estimated local pre‐2010 drought history. Thus, there was no evidence that pre‐2010 droughts compounded the effects of the 2010 drought. We detected a systematic basin‐wide impact of the 2010 drought on tree growth rates across Amazonia, which was related to the strength of the moisture deficit. This impact differed from the drought event in 2005 which did not affect productivity. Based on these ground data, live biomass in trees and corresponding estimates of live biomass in lianas and roots, we estimate that intact forests in Amazonia were carbon neutral in 2010 (−0.07 Pg C yr−1 CI:−0.42, 0.23), consistent with results from an independent analysis of airborne estimates of land‐atmospheric fluxes during 2010. Relative to the long‐term mean, the 2010 drought resulted in a reduction in biomass carbon uptake of 1.1 Pg C, compared to 1.6 Pg C for the 2005 event.
Hyper Article en Lig... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2015gb005133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 192 citations 192 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 1visibility views 1 download downloads 61 Powered bymore_vert Hyper Article en Lig... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2015gb005133&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Netherlands, United KingdomPublisher:Wiley Funded by:EC | CIRCASA, EC | BlackCycle, UKRI | Soils Research to deliver... +1 projectsEC| CIRCASA ,EC| BlackCycle ,UKRI| Soils Research to deliver Greenhouse Gas REmovals and Abatement Technologies (Soils-R-GGREAT) ,UKRI| UK Status, Change and Projections of the Environment (UK-SCaPE)Authors: Robert I. Griffiths; Samaneh Seifollahi-Aghmiuni; Claire Chenu; Saskia M. Visser; +15 AuthorsRobert I. Griffiths; Samaneh Seifollahi-Aghmiuni; Claire Chenu; Saskia M. Visser; Daniel Evans; Carla Ferreira; Victoria Janes-Bassett; Pete Smith; David Robinson; Rattan Lal; Amy Thomas; Pasquale Borrelli; Pasquale Borrelli; Zahra Kalantari; Zahra Kalantari; Saskia Keesstra; Saskia Keesstra; Panos Panagos; Tammo S. Steenhuis;doi: 10.1111/ejss.13145
handle: 2164/18196
AbstractThe importance of soils to society has gained increasing recognition over the past decade, with the potential to contribute to most of the United Nations’ Sustainable Development Goals (SDGs). With unprecedented and growing demands for food, water and energy, there is an urgent need for a global effort to address the challenges of climate change and land degradation, whilst protecting soil as a natural resource. In this paper, we identify the contribution of soil science over the past decade to addressing gaps in our knowledge regarding major environmental challenges: climate change, food security, water security, urban development, and ecosystem functioning and biodiversity. Continuing to address knowledge gaps in soil science is essential for the achievement of the SDGs. However, with limited time and budget, it is also pertinent to identify effective methods of working that ensure the research carried out leads to real‐world impact. Here, we suggest three strategies for the next decade of soil science, comprising a greater implementation of research into policy, interdisciplinary partnerships to evaluate function trade‐offs and synergies between soils and other environmental domains, and integrating monitoring and modelling methods to ensure soil‐based policies can withstand the uncertainties of the future.Highlights We highlight the contributions of soil science to five major environmental challenges since 2010. Researchers have contributed to recommendation reports, but work is rarely translated into policy. Interdisciplinary work should assess trade‐offs and synergies between soils and other domains. Integrating monitoring and modelling is key for robust and sustainable soils‐based policymaking.
Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/ejss.13145Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/18196Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejss.13145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 34visibility views 34 download downloads 62 Powered bymore_vert Lancaster EPrints arrow_drop_down Lancaster University: Lancaster EprintsArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Cranfield University: Collection of E-Research - CERESArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/ejss.13145Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/18196Data sources: Bielefeld Academic Search Engine (BASE)European Journal of Soil ScienceArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ejss.13145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | Securing Multidisciplinar...UKRI| Securing Multidisciplinary UndeRstanding and Prediction of Hiatus and Surge events (SMURPHS)Mathew Barlow; Laura Wilcox; Thian Yew Gan; Abigail L. S. Swann; Olga Zolina; Olga Zolina; Annalisa Cherchi; Angeline G. Pendergrass; Richard P. Allan; Hayley J. Fowler; Michael P. Byrne; Michael P. Byrne; Daniel Rosenfeld; Daniel Rosenfeld; Hervé Douville;AbstractGlobally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2–3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in‐storm and larger‐scale feedback processes, while changes in large‐scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.
CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10023/19765Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 309 citations 309 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10023/19765Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.14337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | A detailed assessment of ..., UKRI | BIODIVERSITY AND LAND-USE...UKRI| A detailed assessment of ecosystem carbon dynamics along an elevation transect in the Andes ,UKRI| BIODIVERSITY AND LAND-USE IMPACTS ON TROPICAL ECOSYSTEM FUNCTION (BALI)Authors: Liliana Durand Baca; Renata Freitag; Ben Hur Marimon-Junior; Antonio Carlos Lola da Costa; +43 AuthorsLiliana Durand Baca; Renata Freitag; Ben Hur Marimon-Junior; Antonio Carlos Lola da Costa; Vianet Mihindou; Cécile A. J. Girardin; Fernando Hancco Pacha; Kathryn J. Jeffery; Toby R. Marthews; Armel Thongo M’Bou; Alejandro Araujo Murakami; Imma Oliveras; Akwasi Duah-Gyamfi; Noreen Majalap; Josué Edzang Ndong; Patrick Meir; Patrick Meir; Sami W. Rifai; Luiz E. O. C. Aragão; Javier Silva Espejo; Fidèle Evouna Ondo; Beatriz Schwantes Marimon; Natacha Nssi Bengone; Sheleme Demissie; Beisit L. Puma Vilca; Stephen Adu-Bredu; Terhi Riutta; Robert M. Ewers; Filio Farfán Amézquita; Daniel B. Metcalfe; Yadvinder Malhi; Christopher E. Doughty; Kennedy Owusu-Afriyie; Darcy F. Galiano Cabrera; Gloria Djagbletey; Katharine Abernethy; Lucy Amissah; Walter Huaraca Huasco; Carlos A. Quesada; Lee J. T. White; Forzia Ibrahim; Alexandra C. Morel; Sam Moore; Jhon del Aguila-Pasquel; Erick Oblitas Mendoza; Shalom D. Addo-Danso; Miles R. Silman;pmid: 33982340
handle: 10044/1/92064 , 1893/32631
AbstractFine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old‐growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi‐deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water‐stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/92064Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/32631Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 24 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/92064Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/1893/32631Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15677&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | GCRF: FutureDAMS: Design ...UKRI| GCRF: FutureDAMS: Design and assessment of resilient and sustainable interventions in water-energy-food-environment Mega-SystemsAuthors: José María Faci González; James Tomlinson; Eduardo A. Martínez Ceseña; Mohammed Basheer; +13 AuthorsJosé María Faci González; James Tomlinson; Eduardo A. Martínez Ceseña; Mohammed Basheer; Emmanuel Obuobie; Philip T. Padi; Salifu Addo; Rasheed Baisie; Mikiyas Etichia; Anthony J. Hurford; Andrea Bottacin‐Busolin; John Matthews; James Dalton; D. Mark Smith; Justin Sheffield; Mathaios Panteli; Julien Harou;AbstractRenewable energy system development and improved operation can mitigate climate change. In many regions, hydropower is called to counterbalance the temporal variability of intermittent renewables like solar and wind. However, using hydropower to integrate these renewables can affect aquatic ecosystems and increase cross-sectoral water conflicts. We develop and apply an artificial intelligence-assisted multisector design framework in Ghana, which shows how hydropower’s flexibility alone could enable expanding intermittent renewables by 38% but would increase sub-daily Volta River flow variability by up to 22 times compared to historical baseload hydropower operations. This would damage river ecosystems and reduce agricultural sector revenues by US$169 million per year. A diversified investment strategy identified using the proposed framework, including intermittent renewables, bioenergy, transmission lines and strategic hydropower re-operation could reduce sub-daily flow variability and enhance agricultural performance while meeting future national energy service goals and reducing CO2 emissions. The tool supports national climate planning instruments such as nationally determined contributions (NDCs) by steering towards diversified and efficient power systems and highlighting their sectoral and emission trade-offs and synergies.
e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-022-01033-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 13visibility views 13 download downloads 5 Powered bymore_vert e-Prints Soton arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-022-01033-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:MDPI AG Funded by:UKRI | Performance Demonstrator ...UKRI| Performance Demonstrator Follow OnAhmed S. Abuzaid; Mohamed A. Abdel-Salam; Abeer F. Ahmad; Hala A. Fathy; Mohamed E. Fadl; Antonio Scopa;doi: 10.3390/su14031067
handle: 11563/161011
Lack of active sorption sites in sandy soils renders metals added by irrigation water more labile and increases their soil-to-plant transfer. Thus, this study investigated the long-term impacts of irrigation using sewage effluents and contaminated groundwater on metal accumulations in TypicTorripsamment soils, and edible parts of food crops. Nine sites in El-Gabal El-Asfar farm, south-eastern to the Nile Delta of Egypt, were selected. At each site, irrigation water, soil (0–30 cm), and the crop’s edible part were sampled in triplicates and analyzed for Mn, Pb, and Zn. Results revealed significant (p < 0.05) differences in metal concentrations among water sources. Thus, constant irrigation caused significant spatial variations in total and available metal contents in soils. Total contents of Pb (in four sites) and Zn (in all sites) exceed the lithosphere range, while the available contents of the three metals exceeded the safe limits in all soils. The index of geo-accumulation indicated no Mn pollution but showed elevated pollution risks for Pb and Zn. The three metals showed high availability ratios, proving the effect of light soil texture. The multivariate statistical analysis indicated that Mn and Zn had similar geochemical behaviors in soils. Metal contents in all crop’s edible parts surpassed the safe limits. The bioaccumulation factor (BAF) was less than 1.0 for Mn and Zn but higher than 1.0 for Pb. The highest BAFs occurred in cabbage leaves, indicating the phytoextraction potential of this species. Sufficient water treatment and proper remediation techniques are recommended to alleviate metal accumulation in food crops and their transfer via the food chain.
Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11563/161011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Università degli Stu... arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Full-Text: https://hdl.handle.net/11563/161011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, United KingdomPublisher:Elsevier BV Funded by:UKRI | MFC Commercialisation thr..., UKRI | Waste Made Useful by Micr...UKRI| MFC Commercialisation through continued Research, Networking and Collaboration (MFCC-RNC) ,UKRI| Waste Made Useful by Microbial Fuel Cells for Energy GenerationCarlo Santoro; Sofia Babanova; Kateryna Artyushkova; Plamen Atanassov; John Greenman; Pierangela Cristiani; Stefano Trasatti; Andrew J. Schuler; Baikun Li; Ioannis Ieropoulos;handle: 2434/450655
Abstract Cost-effective activated carbon (AC) material was investigated for the development of gas-diffusion cathode employed in membraneless single chamber microbial fuel cells (SCMFCs) treating different feeding solutions. The electrocatalytic activity of AC cathodes was monitored in synthetic wastewater containing phosphate buffer saline solution and sodium acetate (PBS and NaOAc) and compared with several types of wastewaters (e.g. fresh urine (FU), hydrolysed urine (HU), wastewater and sodium acetate (WW + NaOAc) and raw wastewater (WW)). Solution conductivity and pH significantly affected the cathode and the SCMFCs performance. Synthetic wastewater (PBS) outperformed real wastewater in terms of cathode current and SCMFC power output. The results showed that the SCMFCs fed with urine generated 3 times higher power densities than those with raw WW and 25% higher than those with WW + NaOAc, most likely due to the high amount of electrons generated from organic substances. Chemical analysis showed that nutrient concentrations remained the same in the SCMFCs fed with PBS, but decreased 40% in those fed with urine. High power generation associated with phosphorus removal underlines the possibility of using urine as a feedstock for MFCs in real wastewater treatment processes.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.09.167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2014.09.167&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu