- home
- Advanced Search
Filters
Clear All- Energy Research
- 7. Clean energy
- IT
- University of North Texas
- Energy Research
- 7. Clean energy
- IT
- University of North Texas
description Publicationkeyboard_double_arrow_right Report , Other literature type 1996 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Schoonover, Jon R.; Bignozzi, Carlo; Meyer, Thomas;doi: 10.2172/263003
This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). The objective of this project was to explore molecular-level assemblies based on polypyridyl transition metal complexes attached to metal oxide surfaces to provide the basis for applications such as energy conversion and electricity generation, photoremediation of hazardous waste, chemical sensors, and optical storage and photorefractive devices for communications and optical computing. We have elucidated the fundamental factors that determine the photochemistry and photophysics of a series of these photoactive inorganic complexes in solution and on metal oxide substrates by exploiting our unique transient laser capabilities. This data is being utilized to design and fabricate molecular-level photonic devices. The rich chemistry of transition metal polypyridyl complexes can be utilized to prepare molecular assemblies having well-defined redox or excited-state properties that can be finely tuned to produce desired materials properties. We plan to explore other novel applications such as photorefractive switches and optical sensors using this molecular engineering approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/263003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/263003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 United StatesPublisher:Elsevier BV Authors: Mainardi, E.; Premuda, F.; Lee, E.;Inertial confinement fusion (ICF) aims to induce implosions of D–T pellets to obtain a extremely dense and hot plasma with lasers or heavy-ion beams. For heavy-ion fusion (HIF), recent research has focused on “liquid-protected” designs that allow highly compact target chambers. In the design of a reactor such as HYLIFE-II [Fus. Techol. 25 (1984); HYLIFE-II Progress Report, UCID-21816, 4.82-100], the liquid used is a molten salt made of F10, Li6, Li7, Be9 (called flibe). Flibe allows the final-focus magnets to be closer to the target, which helps to reduce the focus spot size and in turn the size of the driver, with a large reduction of the cost of HIF electricity. Consequently the superconducting coils of the magnets closer to the D–T neutron source will potentially suffer higher damage though they can stand only a certain amount of energy deposited before quenching. This work has been primarily focusing on verifying that total energy deposited by fusion neutrons and induced γ rays remain under such limit values and the final purpose is the optimization of the shielding of the magnetic lens system from the points of view of the geometrical configuration and of the physical nature of the materials adopted. The system is analyzed in terms of six geometrical models going from simplified up to much more realistic representations of a system of 192 beam lines, each focused by six magnets. A 3-D transport calculation of the radiation penetrating through ducts, that takes into account the complexity of the system, requires Monte Carlo methods. The technical nature of the design problem and the methodology followed were presented in a previous paper [Nucl. Instr. and Meth. A 464 (2001) 410] by summarizing briefly the results for the deposited energy distribution on the six focal magnets of a beam line. Now a comparison of the performances of the two codes TART98 [TART98: A Coupled Neutron-Photon 3-D Combinational Geometry Monte Carlo Transport Code, Lawrence Livermore National Laboratory, UCRL-ID-126455, Rev. 1, November, 1997] and MCNP4B [MCNP – A General Monte Carlo N-Particle Transport Code, Version 4B, La-12625-m, March 1997, Los Alamos National Laboratory] for two different configurations of the system is discussed, separating the n and γ contributions, in the light of the physical interpretation of the results in terms of first flight and of scattered neutron fluxes, of primary γ and of secondary γ generated by inelastically scattered or radiatively captured neutrons. The final conclusions indicate some guidelines and suggest possible improvements for the future neutronic shielding design for a HIF facility.
eScholarship - Unive... arrow_drop_down eScholarship - University of CaliforniaArticle . 2002Data sources: eScholarship - University of CaliforniaNuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and AtomsArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0168-583x(03)01602-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert eScholarship - Unive... arrow_drop_down eScholarship - University of CaliforniaArticle . 2002Data sources: eScholarship - University of CaliforniaNuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and AtomsArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0168-583x(03)01602-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1989 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Tuninetti; G. (Ansaldo S.p.A.; Genoa (Italy). Research Div.); Botta, E.; Criscuolo, C.; Riscossa; P. (Ansaldo S.p.A.; Genoa (Italy). Nuclear Div.); Giammanco; F. (Pisa Univ. (Italy). Dipt. di Fisica); Rosa-Clot; M. (Florence Univ. (Italy). Dipt. di Fisica);doi: 10.2172/5062941
This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statement of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5062941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5062941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2003 United Kingdom, United States, United StatesPublisher:IEEE Krieger, B.; Alfonsi, S.; Bacchetta, N.; Centro, S.; Christofek, L.; Garcia-Sciveres, M.; Haber, C.; Hanagaki, K.; Hoff, J.; Johnson, M.; vonderLippe, H.; Lujan, P.; Mandelli, E.; Meng, G.; Nomerotski, A.; Pellet, D.; Rapidis, P.; Utes, M.; Walder, J.-P.; Weber, M.; Wester, W.; /LBL; Berkeley /Padua U. /INFN; Padua /Kansas U. /Fermilab /UC; Davis;SVX4 is the new silicon strip readout IC designed to meet the increased radiation tolerance requirements for Run IIb at the Tevatron collider. Devices have been fabricated, tested, and approved for production. The SVX4 design is a technology migration of the SVX3D design currently in use by CDF. Whereas SVX3D was fabricated in a 0.8-/spl mu/m radiation-hard process, SVX4 was fabricated in a standard 0.25-/spl mu/m mixed-signal CMOS technology using the "radiation tolerant by design" transistor topologies devised by the CERN RD49 collaboration. The specific cell layouts include digital cells developed by the ATLAS Pixel group, and full-custom analog blocks. Unlike its predecessors, the new design also includes the necessary features required for generic use by both the CDF and D0 experiments at Fermilab. Performance of the IC includes >20 MRad total dose tolerance, and /spl sim/2000 e-rms equivalent input noise charge with 40-pF input capacitance, when sampled at 132-ns period with an 80-ns preamp risetime. At the nominal digitize/readout rate of 106/53 MHz, the 9 mm/spl times/6.3 mm die dissipates /spl sim/2 mW/channel average at 2.5 V. A review of typical operation, details of the design conversion process, and performance measurements are covered.
https://digital.libr... arrow_drop_down IEEE Transactions on Nuclear ScienceArticle . 2004 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/nssmic.2003.1352072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert https://digital.libr... arrow_drop_down IEEE Transactions on Nuclear ScienceArticle . 2004 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/nssmic.2003.1352072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1989 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Bhat, C. M.; Mokhov, N. V.;doi: 10.2172/6233939
The problems arising from targeting high intensity small-sigma proton pulses for antiproton production can be reduced by the beam sweeping on the target. The presented results of analytical estimations and of the full-scale Monte Carlo studies indicate a significant efficiency of diluting the beam energy deposition. These results are useful to obtain optimum design parameters for various magnetic elements to be put in at the upstream end of the target to develop a beam sweeping system. 8 refs., 4 figs., 1 tab.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/6233939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/6233939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Gabriel, T.A.; Bishop, B.L.; Brau, J.; Di Ciaccio, A.; Goodman, M.; Wilson, R.;The pros and cons of utilizing a fissionable material such as 238U to compensate for the nuclear binding energy losses in a hadron calorimeter are discussed. Fissionable material can return some lost energy to the particle cascade in terms of low-energy neutrons and gamma rays, but electromagnetic sampling inefficiencies (often called transition effects) and the detection medium which tries to convert this energy to a useable signal are just as important.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Nuclear ScienceArticle . 1985 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tns.1985.4336925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Nuclear ScienceArticle . 1985 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tns.1985.4336925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Martovetsky, N.; Michael, P.; Minervini, J.; Radovinsky, A.; Takayasu, M.; Gung, C. Y.; Thome, R.; Ando, T.; Isono, T.; Hamada, K.; Kato, T.; Kawano, K.; Koizumi, N.; Matsui, K.; Nakajima, H.; Nishijima, G.; Nunoya, Y.; Sugimoto, M.; Takahasi, Y.; Hsuji, H.; Bessette, D.; Okuno, K.; Mitchell, N.; Ricci, M.; Zanino, R.; Savoldi, L.; Arai, K.; Ninomiya, A.;The Central Solenoid Model Coil (CSMC) was designed and built from 1993 to 1999 by an ITER collaboration between the U.S. and Japan, with contributions from the European Union and the Russian Federation. The main goal of the project was to establish the superconducting magnet technology necessary for a large-scale fusion experimental reactor. Three heavily instrumented insert coils were built to cover a wide operational space for testing. The CS Insert, built by Japan, was tested in April-August of 2000. The TF Insert, built by Russian Federation, will be tested in the fall of 2001. The NbAl Insert, built by Japan, will be tested in 2002. The testing takes place in the CSMC Test Facility at the Japan Atomic Energy Research Institute, Naka, Japan. The CSMC was charged successfully without training to its design current of 46 kA to produce 13 T in the magnet bore. The stored energy at 46 kA was 640 MJ. This paper presents the main results of the CSMC and the CS Insert testing-magnet critical parameters, ac losses, joint performance, quench characteristics and some results of the post-test analysis.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Applied SuperconductivityArticle . 2002 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2002.1018475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 75 citations 75 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Applied SuperconductivityArticle . 2002 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2002.1018475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Martovetsky, N.; Michael, P.; Minervini, J.; Radovinsky, A.; Takayasu, M.; Thome, R.; Ando, T.; Isono, T.; Kato, T.; Nakajima, H.; Nishijima, G.; Nunoya, Y.; Sugimoto, M.; Takahashi, Y.; Tsuji, H.; Bessette, D.; Okuno, K.; Ricci, R.;doi: 10.1109/77.920253
The inner and outer modules of the central solenoid model coil (CSMC) were built by US and Japanese home teams in collaboration with European and Russian teams to demonstrate the feasibility of a superconducting central solenoid for ITER and other large tokamak reactors. The CSMC mass is about 120 t; OD is about 3.6 m and the stored energy is 640 MJ at 36 kA and peak field of 13 T. Testing of the CSMC and the CS insert took place at Japan Atomic Energy Research Institute (JAERI) from mid March until mid August 2000. This paper presents the main results of the tests performed,.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Applied SuperconductivityArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/77.920253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Applied SuperconductivityArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/77.920253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:American Nuclear Society Martovetsky, N.; Michael, P.; Minervini, J.; Radovinsky, A.; Takayasu, M.; Thome, R.; Ando, T.; Isono, T.; Kato, T.; Nakajima, H.; Nishijima, G.; Nunoya, Y.; Sugimoto, M.; Takahashi, Y.; Tsuji, H.; Bessette, D.; Okuno, K.; Ricci, M.; Maix, R.;The Inner and Outer modules of the Central Solenoid Model Coil (CSMC) were built by US and Japanese home teams in collaboration with European and Russian teams to demonstrate the feasibility of a superconducting Central Solenoid for ITER and other large tokamak reactors. The CSMC mass is about 120 t, OD is about 3.6 m and the stored energy is 640 MJ at 46 kA and peak field of 13 T. Testing of the CSMC and the CS Insert took place at the Japan Atomic Energy Research Institute (JAERI) from mid March until mid August 2000. This paper presents the main results of the tests performed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13182/fst01-a11963260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13182/fst01-a11963260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2007 United StatesPublisher:EDP Sciences Cinotti, L.; Smith, C. F.; Sienicki, J. J.; Abderrahim, H. A.; Benamati, G.; Locatelli, G.; Monti, S.; Wider, H.; Struwe, D.; Orden, A.; Hwang, I. S.;doi: 10.1051/rgn/20074030
This paper presents the current status of the development of the Lead-cooled Fast Reactor (LFR) in support of Generation IV (GEN IV) Nuclear Energy Systems. The approach being taken by the GIF plan is to address the research priorities of each member state in developing an integrated and coordinated research program to achieve common objectives, while avoiding duplication of effort. The integrated plan being prepared by the LFR Provisional System Steering Committee of the GIF, known as the LFR System research Plan (SRP) recognizes two principal technology tracks for pursuit of LFR technology: (1) a small, transportable system of 10-100 MWe size that features a very long refueling interval, (2) a larger-sized system rated at about 600 MWe, intended for central station power generation and waste transmutation. This paper, in particular, describes the ongoing activities to develop the Small Secure Transportable Autonomous Reactor (SSTAR) and the European Lead-cooled SYstem (ELSY), the two research initiatives closely aligned with the overall tracks of the SRP and outlines the Proliferation-resistant Environment-friendly Accident-tolerant Continual & Economical Reactors (PEACER) conceived with particular focus on burning/transmuting of long-living TRU waste and fission fragments of concern, such as Tc and I. The current reference design for themore » SSTAR is a 20 MWe natural circulation pool-type reactor concept with a small shippable reactor vessel. Specific features of the lead coolant, the nitride fuel containing transuranics, the fast spectrum core, and the small size combine to promote a unique approach to achieve proliferation resistance, while also enabling fissile self-sufficiency, autonomous load following, simplicity of operation, reliability, transportability, as well as a high degree of passive safety. Conversion of the core thermal power into electricity at a high plant efficiency of 44% is accomplished utilizing a supercritical carbon dioxide Brayton cycle power converter. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. This concept has been under development since September 2006, and is sponsored by the Sixth Framework Programme of EURATOM. The ELSY project is being performed by a consortium consisting of twenty organizations including seventeen from Europe, two from Korea and one from the USA. ELSY aims to demonstrate the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features while fully complying with the Generation IV goal of minor actinide (MA) burning capability. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Simplicity is expected to reduce both the capital cost and the construction time; these are also supported by the compactness of the reactor building (reduced footprint and height). The reduced footprint would be possible due to the elimination of the Intermediate Cooling System, the reduced elevation the result of the design approach of reduced-height components.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/rgn/20074030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/rgn/20074030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Report , Other literature type 1996 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Schoonover, Jon R.; Bignozzi, Carlo; Meyer, Thomas;doi: 10.2172/263003
This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). The objective of this project was to explore molecular-level assemblies based on polypyridyl transition metal complexes attached to metal oxide surfaces to provide the basis for applications such as energy conversion and electricity generation, photoremediation of hazardous waste, chemical sensors, and optical storage and photorefractive devices for communications and optical computing. We have elucidated the fundamental factors that determine the photochemistry and photophysics of a series of these photoactive inorganic complexes in solution and on metal oxide substrates by exploiting our unique transient laser capabilities. This data is being utilized to design and fabricate molecular-level photonic devices. The rich chemistry of transition metal polypyridyl complexes can be utilized to prepare molecular assemblies having well-defined redox or excited-state properties that can be finely tuned to produce desired materials properties. We plan to explore other novel applications such as photorefractive switches and optical sensors using this molecular engineering approach.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/263003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/263003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 United StatesPublisher:Elsevier BV Authors: Mainardi, E.; Premuda, F.; Lee, E.;Inertial confinement fusion (ICF) aims to induce implosions of D–T pellets to obtain a extremely dense and hot plasma with lasers or heavy-ion beams. For heavy-ion fusion (HIF), recent research has focused on “liquid-protected” designs that allow highly compact target chambers. In the design of a reactor such as HYLIFE-II [Fus. Techol. 25 (1984); HYLIFE-II Progress Report, UCID-21816, 4.82-100], the liquid used is a molten salt made of F10, Li6, Li7, Be9 (called flibe). Flibe allows the final-focus magnets to be closer to the target, which helps to reduce the focus spot size and in turn the size of the driver, with a large reduction of the cost of HIF electricity. Consequently the superconducting coils of the magnets closer to the D–T neutron source will potentially suffer higher damage though they can stand only a certain amount of energy deposited before quenching. This work has been primarily focusing on verifying that total energy deposited by fusion neutrons and induced γ rays remain under such limit values and the final purpose is the optimization of the shielding of the magnetic lens system from the points of view of the geometrical configuration and of the physical nature of the materials adopted. The system is analyzed in terms of six geometrical models going from simplified up to much more realistic representations of a system of 192 beam lines, each focused by six magnets. A 3-D transport calculation of the radiation penetrating through ducts, that takes into account the complexity of the system, requires Monte Carlo methods. The technical nature of the design problem and the methodology followed were presented in a previous paper [Nucl. Instr. and Meth. A 464 (2001) 410] by summarizing briefly the results for the deposited energy distribution on the six focal magnets of a beam line. Now a comparison of the performances of the two codes TART98 [TART98: A Coupled Neutron-Photon 3-D Combinational Geometry Monte Carlo Transport Code, Lawrence Livermore National Laboratory, UCRL-ID-126455, Rev. 1, November, 1997] and MCNP4B [MCNP – A General Monte Carlo N-Particle Transport Code, Version 4B, La-12625-m, March 1997, Los Alamos National Laboratory] for two different configurations of the system is discussed, separating the n and γ contributions, in the light of the physical interpretation of the results in terms of first flight and of scattered neutron fluxes, of primary γ and of secondary γ generated by inelastically scattered or radiatively captured neutrons. The final conclusions indicate some guidelines and suggest possible improvements for the future neutronic shielding design for a HIF facility.
eScholarship - Unive... arrow_drop_down eScholarship - University of CaliforniaArticle . 2002Data sources: eScholarship - University of CaliforniaNuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and AtomsArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0168-583x(03)01602-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert eScholarship - Unive... arrow_drop_down eScholarship - University of CaliforniaArticle . 2002Data sources: eScholarship - University of CaliforniaNuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and AtomsArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0168-583x(03)01602-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1989 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Tuninetti; G. (Ansaldo S.p.A.; Genoa (Italy). Research Div.); Botta, E.; Criscuolo, C.; Riscossa; P. (Ansaldo S.p.A.; Genoa (Italy). Nuclear Div.); Giammanco; F. (Pisa Univ. (Italy). Dipt. di Fisica); Rosa-Clot; M. (Florence Univ. (Italy). Dipt. di Fisica);doi: 10.2172/5062941
This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statement of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5062941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5062941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2003 United Kingdom, United States, United StatesPublisher:IEEE Krieger, B.; Alfonsi, S.; Bacchetta, N.; Centro, S.; Christofek, L.; Garcia-Sciveres, M.; Haber, C.; Hanagaki, K.; Hoff, J.; Johnson, M.; vonderLippe, H.; Lujan, P.; Mandelli, E.; Meng, G.; Nomerotski, A.; Pellet, D.; Rapidis, P.; Utes, M.; Walder, J.-P.; Weber, M.; Wester, W.; /LBL; Berkeley /Padua U. /INFN; Padua /Kansas U. /Fermilab /UC; Davis;SVX4 is the new silicon strip readout IC designed to meet the increased radiation tolerance requirements for Run IIb at the Tevatron collider. Devices have been fabricated, tested, and approved for production. The SVX4 design is a technology migration of the SVX3D design currently in use by CDF. Whereas SVX3D was fabricated in a 0.8-/spl mu/m radiation-hard process, SVX4 was fabricated in a standard 0.25-/spl mu/m mixed-signal CMOS technology using the "radiation tolerant by design" transistor topologies devised by the CERN RD49 collaboration. The specific cell layouts include digital cells developed by the ATLAS Pixel group, and full-custom analog blocks. Unlike its predecessors, the new design also includes the necessary features required for generic use by both the CDF and D0 experiments at Fermilab. Performance of the IC includes >20 MRad total dose tolerance, and /spl sim/2000 e-rms equivalent input noise charge with 40-pF input capacitance, when sampled at 132-ns period with an 80-ns preamp risetime. At the nominal digitize/readout rate of 106/53 MHz, the 9 mm/spl times/6.3 mm die dissipates /spl sim/2 mW/channel average at 2.5 V. A review of typical operation, details of the design conversion process, and performance measurements are covered.
https://digital.libr... arrow_drop_down IEEE Transactions on Nuclear ScienceArticle . 2004 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/nssmic.2003.1352072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert https://digital.libr... arrow_drop_down IEEE Transactions on Nuclear ScienceArticle . 2004 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/nssmic.2003.1352072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1989 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Bhat, C. M.; Mokhov, N. V.;doi: 10.2172/6233939
The problems arising from targeting high intensity small-sigma proton pulses for antiproton production can be reduced by the beam sweeping on the target. The presented results of analytical estimations and of the full-scale Monte Carlo studies indicate a significant efficiency of diluting the beam energy deposition. These results are useful to obtain optimum design parameters for various magnetic elements to be put in at the upstream end of the target to develop a beam sweeping system. 8 refs., 4 figs., 1 tab.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/6233939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/6233939&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Gabriel, T.A.; Bishop, B.L.; Brau, J.; Di Ciaccio, A.; Goodman, M.; Wilson, R.;The pros and cons of utilizing a fissionable material such as 238U to compensate for the nuclear binding energy losses in a hadron calorimeter are discussed. Fissionable material can return some lost energy to the particle cascade in terms of low-energy neutrons and gamma rays, but electromagnetic sampling inefficiencies (often called transition effects) and the detection medium which tries to convert this energy to a useable signal are just as important.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Nuclear ScienceArticle . 1985 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tns.1985.4336925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Nuclear ScienceArticle . 1985 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tns.1985.4336925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Martovetsky, N.; Michael, P.; Minervini, J.; Radovinsky, A.; Takayasu, M.; Gung, C. Y.; Thome, R.; Ando, T.; Isono, T.; Hamada, K.; Kato, T.; Kawano, K.; Koizumi, N.; Matsui, K.; Nakajima, H.; Nishijima, G.; Nunoya, Y.; Sugimoto, M.; Takahasi, Y.; Hsuji, H.; Bessette, D.; Okuno, K.; Mitchell, N.; Ricci, M.; Zanino, R.; Savoldi, L.; Arai, K.; Ninomiya, A.;The Central Solenoid Model Coil (CSMC) was designed and built from 1993 to 1999 by an ITER collaboration between the U.S. and Japan, with contributions from the European Union and the Russian Federation. The main goal of the project was to establish the superconducting magnet technology necessary for a large-scale fusion experimental reactor. Three heavily instrumented insert coils were built to cover a wide operational space for testing. The CS Insert, built by Japan, was tested in April-August of 2000. The TF Insert, built by Russian Federation, will be tested in the fall of 2001. The NbAl Insert, built by Japan, will be tested in 2002. The testing takes place in the CSMC Test Facility at the Japan Atomic Energy Research Institute, Naka, Japan. The CSMC was charged successfully without training to its design current of 46 kA to produce 13 T in the magnet bore. The stored energy at 46 kA was 640 MJ. This paper presents the main results of the CSMC and the CS Insert testing-magnet critical parameters, ac losses, joint performance, quench characteristics and some results of the post-test analysis.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Applied SuperconductivityArticle . 2002 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2002.1018475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 75 citations 75 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Applied SuperconductivityArticle . 2002 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tasc.2002.1018475&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:Institute of Electrical and Electronics Engineers (IEEE) Martovetsky, N.; Michael, P.; Minervini, J.; Radovinsky, A.; Takayasu, M.; Thome, R.; Ando, T.; Isono, T.; Kato, T.; Nakajima, H.; Nishijima, G.; Nunoya, Y.; Sugimoto, M.; Takahashi, Y.; Tsuji, H.; Bessette, D.; Okuno, K.; Ricci, R.;doi: 10.1109/77.920253
The inner and outer modules of the central solenoid model coil (CSMC) were built by US and Japanese home teams in collaboration with European and Russian teams to demonstrate the feasibility of a superconducting central solenoid for ITER and other large tokamak reactors. The CSMC mass is about 120 t; OD is about 3.6 m and the stored energy is 640 MJ at 36 kA and peak field of 13 T. Testing of the CSMC and the CS insert took place at Japan Atomic Energy Research Institute (JAERI) from mid March until mid August 2000. This paper presents the main results of the tests performed,.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Applied SuperconductivityArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/77.920253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Applied SuperconductivityArticle . 2001 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/77.920253&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001 United StatesPublisher:American Nuclear Society Martovetsky, N.; Michael, P.; Minervini, J.; Radovinsky, A.; Takayasu, M.; Thome, R.; Ando, T.; Isono, T.; Kato, T.; Nakajima, H.; Nishijima, G.; Nunoya, Y.; Sugimoto, M.; Takahashi, Y.; Tsuji, H.; Bessette, D.; Okuno, K.; Ricci, M.; Maix, R.;The Inner and Outer modules of the Central Solenoid Model Coil (CSMC) were built by US and Japanese home teams in collaboration with European and Russian teams to demonstrate the feasibility of a superconducting Central Solenoid for ITER and other large tokamak reactors. The CSMC mass is about 120 t, OD is about 3.6 m and the stored energy is 640 MJ at 46 kA and peak field of 13 T. Testing of the CSMC and the CS Insert took place at the Japan Atomic Energy Research Institute (JAERI) from mid March until mid August 2000. This paper presents the main results of the tests performed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13182/fst01-a11963260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13182/fst01-a11963260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2007 United StatesPublisher:EDP Sciences Cinotti, L.; Smith, C. F.; Sienicki, J. J.; Abderrahim, H. A.; Benamati, G.; Locatelli, G.; Monti, S.; Wider, H.; Struwe, D.; Orden, A.; Hwang, I. S.;doi: 10.1051/rgn/20074030
This paper presents the current status of the development of the Lead-cooled Fast Reactor (LFR) in support of Generation IV (GEN IV) Nuclear Energy Systems. The approach being taken by the GIF plan is to address the research priorities of each member state in developing an integrated and coordinated research program to achieve common objectives, while avoiding duplication of effort. The integrated plan being prepared by the LFR Provisional System Steering Committee of the GIF, known as the LFR System research Plan (SRP) recognizes two principal technology tracks for pursuit of LFR technology: (1) a small, transportable system of 10-100 MWe size that features a very long refueling interval, (2) a larger-sized system rated at about 600 MWe, intended for central station power generation and waste transmutation. This paper, in particular, describes the ongoing activities to develop the Small Secure Transportable Autonomous Reactor (SSTAR) and the European Lead-cooled SYstem (ELSY), the two research initiatives closely aligned with the overall tracks of the SRP and outlines the Proliferation-resistant Environment-friendly Accident-tolerant Continual & Economical Reactors (PEACER) conceived with particular focus on burning/transmuting of long-living TRU waste and fission fragments of concern, such as Tc and I. The current reference design for themore » SSTAR is a 20 MWe natural circulation pool-type reactor concept with a small shippable reactor vessel. Specific features of the lead coolant, the nitride fuel containing transuranics, the fast spectrum core, and the small size combine to promote a unique approach to achieve proliferation resistance, while also enabling fissile self-sufficiency, autonomous load following, simplicity of operation, reliability, transportability, as well as a high degree of passive safety. Conversion of the core thermal power into electricity at a high plant efficiency of 44% is accomplished utilizing a supercritical carbon dioxide Brayton cycle power converter. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. This concept has been under development since September 2006, and is sponsored by the Sixth Framework Programme of EURATOM. The ELSY project is being performed by a consortium consisting of twenty organizations including seventeen from Europe, two from Korea and one from the USA. ELSY aims to demonstrate the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features while fully complying with the Generation IV goal of minor actinide (MA) burning capability. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Simplicity is expected to reduce both the capital cost and the construction time; these are also supported by the compactness of the reactor building (reduced footprint and height). The reduced footprint would be possible due to the elimination of the Intermediate Cooling System, the reduced elevation the result of the design approach of reduced-height components.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/rgn/20074030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/rgn/20074030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu