- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- 3. Good health
- DE
- JP
- Technical University of Berlin
- Energy Research
- 12. Responsible consumption
- 3. Good health
- DE
- JP
- Technical University of Berlin
description Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.;Blair, M.;
Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Blair, M.
Blair, M. in OpenAIREИсследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Thesis 2018Embargo end date: 01 Aug 2018 GermanyPublisher:Technische Universität Berlin Authors: Bach, Vanessa;Ressourcen stellen die Basis für eine erfolgreiche industrielle und technologische Entwicklung dar und somit auch für den Wohlstand heutiger und zukünftiger Generationen. Mit steigender Ressourcennutzung nehmen auch die (physische und sozio-ökonomische) Verfügbarkeit abiotischer und biotischer Ressourcen, die Umweltverschmutzung und die sozialen Auswirkungen durch den Abbau und Nutzung der Ressourcen zu. Um den Erfolg implementierter Strategien (und deren Maßnahmen) hinsichtlich ihres Beitrags zu einem effizienten und nachhaltigen Umgang mit Ressourcen zu bewerten, bedarf es an entsprechenden Bewertungsmethoden. Diese Dissertation stellt vier Methoden bereit um die Bewertung abiotischer und biotischer Ressourcennutzung im Kontext der Nachhaltigkeit auf Produkt- und regionaler Ebene in konsistenter Weise zu bewerten. Die Methode zur Bewertung abiotischer Ressourcen auf Produktebene betrachtet insgesamt 21 relevante Aspekte und stellt Indikatoren zur Quantifizierung bereit. Für die Bewertung der sozio-ökonomischen Einschränkungen von Lieferketten ist eine neuer Ansatz entwickelt, der geopolitische, politische und regulative Aspekte berücksichtigt. Des Weiteren sind Screening-Indikatoren verfügbar, die die gesellschaftliche Akzeptanz der Ressourcennutzung adressieren. Um die Verfügbarkeit terrestrischer biotischer Ressourcen in Produktsystemen zu bewerten, wurde eine umfassende Methode mit 25 Indikatoren erstellt. Des Weiteren wird ein Ansatz vorgestellt, der es ermöglicht eine konsistente Zusammenführung und somit auch Bewertung verschiedener Ressourcentypen zu ermöglichen. Er findet bei der Zusammenführung der entwickelten Methoden zur Bewertung abiotischer und biotischer Ressourcen Anwendung. Da die Nutzung von Ressourcen auch auf Macro-Ebene betrachtet werden muss, wurde eine Methode zur Bewertung abiotischer Ressourcen auf regionaler Ebene entwickelt, die 25 Indikatoren für die Bewertung der Kritikalität (Verfügbarkeit von Ressourcen und Vulnerabilität der Region) und der gesellschaftlichen Akzeptanz zur Verfügung stellt. Verschiedene Fallstudien wurden durchgeführt um die Anwendbarkeit der entwickelten Methoden aufzuzeigen und zu verdeutlichen, warum eine umfassende Bewertung der Ressourcennutzung notwendig ist. Die Fallstudien umfassen u.a. die Bewertung eines Smartphones, Pkw-Herstellung und Biokraftstoffe. Die Anwendbarkeit der Methoden wird zudem erhöht, indem Indikatorwerte für 36 Metalle und 4 fossile Rohstoffe zur Verfügung gestellt werden. Die Bewertung der Nutzung abiotischer und biotischer Ressourcen auf Produkt- und regionaler Ebene wird mit dieser Dissertation signifikant verbessert, indem vier wissenschaftliche Methoden zur robusten und umfassenden Bewertung aller drei Nachhaltigkeitsdimensionen bereitgestellt werden. Resources are the basis for a thriving industrial and technological development and therefore for prosperity of present and future generations. With increasing resource use, challenges with regard to (physical and socio-economic) availability of abiotic and biotic resources and raw materials, pollution of the environment as well as social impacts associated with resource extraction and use arise. To evaluate the success of strategies managing resource use more efficiently and sustainably methodologies are required to comprehensively assess resource use and related impacts. This thesis provides four methodologies to improve the assessment of abiotic and biotic resource use in the context of sustainability on product and regional level. For the method to assess abiotic resources use on product level overall 21 aspects are considered as relevant and indicator for quantification are provided. In order to determine socio-economic supply chain restrictions a new approach is developed, considering geopolitical, political and regulatory aspects affecting resource extraction and use. Further, screening indicators are established to evaluate the societal acceptance of resources with regard to compliance with social and environmental standards. To assess the availability of terrestrial biotic resources in product systems a comprehensive methodology is established, which includes 25 indicators. Further, an approach is proposed to combine assessment methodologies in a consistent way. This approach is applied to the developed method of this thesis leading to a combined methodology. The use of resources also has to be considered on macro-economic. Thus, a methodology is developed providing 25 indicators for the two dimensions criticality, consisting of the sub-dimensions (physical and socio-economic) availability and vulnerability, as well as societal acceptance. Several case studies are carried out to demonstrate the applicability of the developed methods and to confirm the need for a comprehensive assess of resource use on micro and macro level, e.g. case studies for smart phones and cars, for biofuels produced from rapeseed and soybean. The applicability of the methodologies is further enhanced by providing indicator results for 36 metals and four fossil raw materials. The assessment of abiotic and biotic resource use on product and regional level is improved significantly by establishing four scientifically robust yet applicable methodologies, which consider multiple aspects of resource use in all three sustainability dimensions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14279/depositonce-7214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.14279/depositonce-7214&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 20 Mar 2023Publisher:Elsevier BV Daniel Moore; Vanessa Bach; Matthias Finkbeiner; Theresa Honkomp;Heinz Ahn;
Madlen Sprenger; Linda Froese; Dirk Gratzel;Heinz Ahn
Heinz Ahn in OpenAIRESince the Paris Agreement entered into force, climate neutrality and associated compensation schemes are even more on the agenda of politics and companies. Challenges of existing offsetting schemes include the rather theoretical saving scenario and the limited scope of considered impacts. To address some of these limitations, this paper proposes the Circular Ecosystem Compensation (CEC) approach based on monetization of LCA results and Ecosystem Valuation. CEC consists of six steps: i) carrying out a life cycle assessment, ii) reducing the environmental impacts, iii) determining environmental costs applying monetization methods, iv) deriving the environmental value based on restoration costs methods, v) implementing the ecological restoration of ecosystems and vi) monitoring of the renaturation measures. Thus, CEC allows to offset a broad set of environmental impacts beyond climate change (e.g., acidification, eutrophication, land use, water use) in a real ecosystem by renaturation of degraded ecosystems. Environmental burdens and environmental benefits are balanced on a monetary basis, as the renaturation measures are monetized and used to compensate the monetized LCA results, e.g., of a product, organization or individual. In a case study, the implementation of the approach is presented to show the practical implementation of the CEC. The challenges of CEC include the integration of further impact categories, the availability of up-to-date and reliable monetization methods, the asynchrony and time-lag of the compensation from an ecosystem and biodiversity perspective and the proof of cost-efficiency of the renaturation measures. It is further discussed, if CEC can be a step beyond “climate neutrality” towards “environmental neutrality”. The proposed approach should be further tested and is intended to foster progress in more comprehensive and robust offsetting of environmental impacts beyond climate change.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.117068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.117068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 26 Oct 2021 GermanyPublisher:IOP Publishing Funded by:EC | INNOPATHS, EC | NAVIGATEEC| INNOPATHS ,EC| NAVIGATEAuthors:Gunnar Luderer;
Gunnar Luderer;Gunnar Luderer
Gunnar Luderer in OpenAIRERobert C. Pietzcker;
Robert C. Pietzcker
Robert C. Pietzcker in OpenAIRELavinia Baumstark;
+1 AuthorsLavinia Baumstark
Lavinia Baumstark in OpenAIREGunnar Luderer;
Gunnar Luderer;Gunnar Luderer
Gunnar Luderer in OpenAIRERobert C. Pietzcker;
Robert C. Pietzcker
Robert C. Pietzcker in OpenAIRELavinia Baumstark;
Lavinia Baumstark
Lavinia Baumstark in OpenAIREAntoine Levesque;
Antoine Levesque
Antoine Levesque in OpenAIREAbstract Buildings energy consumption is one of the most important contributors to greenhouse gas (GHG) emissions worldwide, responsible for 23% of energy-related CO2 emissions. Decarbonising the energy demand of buildings will require two types of strategies: first, an overall reduction in energy demand, which could, to some extent, be achieved at negative costs; and second through a reduction of the carbon content of energy via fuel switching and supply-side decarbonisation. This study assesses the contributions of each of these strategies for the decarbonisation of the buildings sector in line with a 1.5°C global warming. We show that in a 1.5°C scenario combining mitigation policies and a reduction of market failures in efficiency markets, 81% of the reductions in buildings emissions are achieved through the reduction of the carbon content of energy, while the remaining 19% are due to efficiency improvements which reduce energy demand by 31%. Without supply-side decarbonisation, efficiency improvements almost entirely suppress the doubling of emissions that would otherwise be expected, but fail to induce an absolute decline in emissions. Our modelling and scenarios show the impact of both climate change mitigation policies and of the alleviation of market failures pervading through energy efficiency markets. The results show that the reduction of the carbon content of energy through fuel switching and supply-side decarbonisation is of paramount importance for the decarbonisation of buildings.
Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1088/1748...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abdf07&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Publication Database... arrow_drop_down Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1088/1748...Article . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abdf07&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors: Raluca Dumitrescu; Sebastian Groh;Nathan Tetteh;
Salma Islam; +1 AuthorsNathan Tetteh
Nathan Tetteh in OpenAIRERaluca Dumitrescu; Sebastian Groh;Nathan Tetteh;
Salma Islam; Sohel Ahmed;Nathan Tetteh
Nathan Tetteh in OpenAIREAbstractIn 2021, Bangladesh reached 97% nation‐wide electricity access. With over 4.1 million solar home systems (SHS) installed by 60 Partner Organisations (POs) providing renewable electricity to more than 22 million rural people, SHS and microfinance have been instrumental in bridging and achieving the country's universal access goal. However, a huge gap remains in achieving the country's 100% use of renewable energy by 2050, with only 3.1% of current electricity generation accounted for by renewables. While at centralised level, governmental institutions are struggling to move past the legacy mandate of grid extension to an energy transformation paradigm at decentralised levels, rural Bangladeshi villages are already leading this transformation. Today, 100 solar peer‐to‐peer microgrids, built following the swarm electrification pathway, allow end‐users to run appliances, charge vehicles, and to trade renewable electricity for income. In this paper, we describe the organisational model of the partnership between Grameen Shakti, Bangladesh's largest PO, and climate‐tech start‐up ME SOLshare, the swarm electrification implementer. We assess, using data from the peer‐to‐peer grids, their socio‐economic and environmental impact, and their contribution to the SDG 2030 Agenda. Finally, we give an outlook towards the potential of achieving sustainable energy development through a scale‐up of the swarm electrification approach, including under a scenario of 100% national grid electrification.
Natural Resources Fo... arrow_drop_down Natural Resources ForumArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1477-8947.12359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Natural Resources Fo... arrow_drop_down Natural Resources ForumArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1477-8947.12359&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Authors: Roel May;With the rapid acceleration of wind energy development there is a growing need to meet the consequences this has for the natural environment. Failing to mitigate environmental impacts is an important cause of conflict in wind energy projects, leading to costly delays in planned wind energy development. It is therefore of the utmost importance to identify effective solutions and measures to reduce such impacts. This requires that the joint responsibility for mitigation across stakeholders is recognized and acted upon. This is exemplified with the black-blade concept that has shown to reduce bird collision rates at the Smøla wind-power plant in Norway by 70%. While presented as a “golden bullet” solution in the media, there remain unanswered challenges that need to be addressed. However, instead of disagreeing on the uncertain efficacy elsewhere, I pose that collaborative and transdisciplinary action is needed to jointly resolve remaining challenges and actively seek for solutions to support the sound implementation of promising wind-turbine collision-reducing solutions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1146324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1146324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Elsevier BV Abstract In this paper, we analyze the consequences of mass and energy conservation and the second law of thermodynamics for economic activity. In contrast to former studies, we deduce our results formally from a general model of production and consumption. We show that in a static setting for economies containing irreversible processes, a non-zero resource input as well as non-zero emissions are necessary to sustain a positive level of consumption. We generalize this result to a dynamic setting and apply it to the growth discussion and the sustainability discourse. Thereby we show that limits to growth of production and consumption are likely to exist and that the concept of weak sustainability is either morally unattractive or physically infeasible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolecon.2005.07.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolecon.2005.07.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Elsevier BV Authors:Gianluca Scaccianoce;
Gianluca Scaccianoce
Gianluca Scaccianoce in OpenAIREVincenzo Franzitta;
Giorgia Peri; Giorgia Peri; +2 AuthorsVincenzo Franzitta
Vincenzo Franzitta in OpenAIREGianluca Scaccianoce;
Gianluca Scaccianoce
Gianluca Scaccianoce in OpenAIREVincenzo Franzitta;
Giorgia Peri; Giorgia Peri;Vincenzo Franzitta
Vincenzo Franzitta in OpenAIREMaria La Gennusa;
Gianfranco Rizzo;Maria La Gennusa
Maria La Gennusa in OpenAIREThe Eco-label scheme is becoming ever more important in the environmental certification of products and services, especially in light of the recent ambitious aim of containing greenhouse emissions and improving the efficiency of utilizing energy sources. A recently introduced hypothesis concerns the European Eco-label scheme relating to buildings, in the awareness that the construction industry is of primary importance to the whole economic and social life of states. This scheme should adopt an integrated approach to environmental problems and include construction, day-to-day management, and the possible disposal of building materials, throughout the life cycle of the building. In addition, in consideration of the particular scope of buildings, the main aim of this new scheme should also be to ensure enhanced conditions of comfort to the occupants of these buildings. In sight of this challenge, the building can be regarded as a summation of components (each of them characterized by a given level of environmental quality) or as a unique physical entity aimed at delivering suitable indoor condition to occupants with an assigned amount of primary energy and with a limited impact on the natural environment. In the paper, both approaches will be investigated, keeping also in mind the initiatives that are currently on the ground in the aim of establishing ecological criteria for the award of the Community Eco-label for buildings.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2011 . Peer-reviewedData sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 57 citations 57 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2011 . Peer-reviewedData sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 KenyaPublisher:Elsevier BV Authors: Sven-Uwe Geißen; Saul Sitati Namango;Milton M. Arimi;
Milton M. Arimi; +3 AuthorsMilton M. Arimi
Milton M. Arimi in OpenAIRESven-Uwe Geißen; Saul Sitati Namango;Milton M. Arimi;
Milton M. Arimi; Ambrose Kiprop;Milton M. Arimi
Milton M. Arimi in OpenAIREYongjun Zhang;
Jan Knodel;Yongjun Zhang
Yongjun Zhang in OpenAIREAbstract Biohydrogen can be produced from organic wastewater but the process is limited by low production yields. The aim of this review is to summarize the production strategies which are recently researched for enhancing biohydrogen yield and productivity from organic wastewater. The survey of published work indicates that the dark hydrogen fermentation is the most promising production mode. Current strategies geared towards improving biohydrogen production include: microbial culture immobilization, bioreactor modifications, the optimization of process conditions (temperature, pH, OLR and HRT), culture selection and enrichments, substrate choice, and the metabolic engineering of biohydrogen specialists. Comparative analysis of energy recovery from anaerobic digestion using vinasse-related substrates indicates that the production of methane has a higher energy yield than production of hydrogen. A sequential combination of biohydrogen and biomethanation production phases has the potential for even higher bioenergy recovery from organic wastewater.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu172 citations 172 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2015.02.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 09 Jan 2023 ItalyPublisher:MDPI AG Authors:Robert Miehe;
Robert Miehe
Robert Miehe in OpenAIREMatthias Finkbeiner;
Alexander Sauer; Thomas Bauernhansl;Matthias Finkbeiner
Matthias Finkbeiner in OpenAIRELife Cycle Assessment (LCA) is increasingly being applied in corporate accounting. Recently, especially carbon footprinting (CF) has been adopted as ‘LCA light’ in accordance with the Greenhouse Gas Protocol. According to the strategy ‘balance, reduce, substitute, compensate’, the approach is intended to provide the basis for optimization towards climate neutrality. However, two major problems arise: (1) due to the predominant focus on climate neutrality, other decisive life-cycle impact categories are often ignored, resulting in a misrecognition of potential trade-offs, and (2) LCA is not perceived as an equal method alongside cost and value-added accounting in everyday business, as it relies on a fundamentally different system understanding. In this paper, we present basic considerations for merging the business and life-cycle perspectives and introduce a novel accounting system that combines elements of traditional operational value-added accounting, process and material flow analysis as well as LCA. The method is based on an extended system thinking, a set of principles, a calculation system, and external cost factors for the impact categories climate change, stratospheric ozone depletion, air pollution, eutrophication and acidification. As a scientifically robust assessment method, the presented approach is intended to be applied in everyday operations in manufacturing companies, providing a foundation for a fundamental change in industrial thought patterns on the way to the total avoidance of negative environmental impacts (i.e., environmental neutrality). Therefore, this is validated in two application examples in the German special tools industry, proving its practicability and reproducibility as well as the suitability of specifically derived indicators for the selective optimization of production systems.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteOnline Publikationen der Universität StuttgartArticle . 2022License: CC BYData sources: Online Publikationen der Universität StuttgartOPUS - Publication Server of the University of StuttgartArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142013603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYData sources: Multidisciplinary Digital Publishing InstituteOnline Publikationen der Universität StuttgartArticle . 2022License: CC BYData sources: Online Publikationen der Universität StuttgartOPUS - Publication Server of the University of StuttgartArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142013603&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu