Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
2,271 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2025-2025
  • Open Access
  • Restricted
  • Open Source
  • DE
  • EU
  • JP
  • UA

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Aiswarya Krishnakumar Padinjarethil;
    Aiswarya Krishnakumar Padinjarethil
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Aiswarya Krishnakumar Padinjarethil in OpenAIRE
    orcid bw Fiammetta Rita Bianchi;
    Fiammetta Rita Bianchi
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Fiammetta Rita Bianchi in OpenAIRE
    orcid Anke Hagen;
    Anke Hagen
    ORCID
    Harvested from ORCID Public Data File

    Anke Hagen in OpenAIRE
    Barbara Bosio;

    Degradation issues correlated to microstructural changes are the main obstacles to solid oxide fuel cell and electrolyser applications, making their identification and understanding fundamental steps. Coupling experimental activities with modelling, this work analyses the state-of-the-art Ni-YSZ (Yttria-Stabilized Zirconia)/YSZ/CGO (Cerium Gadolinium Oxide)/LSCF (Lanthanum Strontium Cobalt Ferrite)-CGO-based cell after 1000 h of galvanostatic electrolysis operation at fixed temperature and high steam composition in the inlet gas. Following a multiscale approach, the system behaviour is characterized through electrochemical impedance spectra and polarization curves as well as studying microstructure evolution, with a focus on Ni-cermet functional layer in view of Ni instability detected as the main degradation cause. A comparison with a cell consisting of the same initial geometrical structure and materials but aged in fuel cell mode allows to highlight the influence of operating mode and parameters on Ni-YSZ microstructure. Ni particle size and phase fraction variations experimentally observed on the electrode surface are correlated to water content and applied polarization simulated local values. Ni uneven distribution at the electrolyte interface and particle coarsening, above all, lead to an increase in polarization loss under electrolysis and fuel cell mode, respectively, since both penalise the charge transfer reaction and migration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Power Sou...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Power Sources
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Power Sou...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Power Sources
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Aiswarya Krishnakumar Padinjarethil;
    Aiswarya Krishnakumar Padinjarethil
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Aiswarya Krishnakumar Padinjarethil in OpenAIRE
    orcid bw Fiammetta Rita Bianchi;
    Fiammetta Rita Bianchi
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Fiammetta Rita Bianchi in OpenAIRE
    orcid Anke Hagen;
    Anke Hagen
    ORCID
    Harvested from ORCID Public Data File

    Anke Hagen in OpenAIRE
    Barbara Bosio;

    Degradation issues correlated to microstructural changes are the main obstacles to solid oxide fuel cell and electrolyser applications, making their identification and understanding fundamental steps. Coupling experimental activities with modelling, this work analyses the state-of-the-art Ni-YSZ (Yttria-Stabilized Zirconia)/YSZ/CGO (Cerium Gadolinium Oxide)/LSCF (Lanthanum Strontium Cobalt Ferrite)-CGO-based cell after 1000 h of galvanostatic electrolysis operation at fixed temperature and high steam composition in the inlet gas. Following a multiscale approach, the system behaviour is characterized through electrochemical impedance spectra and polarization curves as well as studying microstructure evolution, with a focus on Ni-cermet functional layer in view of Ni instability detected as the main degradation cause. A comparison with a cell consisting of the same initial geometrical structure and materials but aged in fuel cell mode allows to highlight the influence of operating mode and parameters on Ni-YSZ microstructure. Ni particle size and phase fraction variations experimentally observed on the electrode surface are correlated to water content and applied polarization simulated local values. Ni uneven distribution at the electrolyte interface and particle coarsening, above all, lead to an increase in polarization loss under electrolysis and fuel cell mode, respectively, since both penalise the charge transfer reaction and migration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Power Sou...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Power Sources
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Power Sou...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Power Sources
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kibaroglu, Dilay; Katti, Atharva; orcid bw Drebenstedt, Claudia;
    Drebenstedt, Claudia
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Drebenstedt, Claudia in OpenAIRE
    Hipke, Thomas; +2 Authors

    Materials and design 254, 114021 (2025). doi:10.1016/j.matdes.2025.114021 Published by Elsevier Science, Amsterdam [u.a.]

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials & Desi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials & Design
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials & Design
    Article . 2025
    Data sources: DOAJ
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials & Desi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials & Design
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials & Design
      Article . 2025
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Kibaroglu, Dilay; Katti, Atharva; orcid bw Drebenstedt, Claudia;
    Drebenstedt, Claudia
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Drebenstedt, Claudia in OpenAIRE
    Hipke, Thomas; +2 Authors

    Materials and design 254, 114021 (2025). doi:10.1016/j.matdes.2025.114021 Published by Elsevier Science, Amsterdam [u.a.]

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials & Desi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials & Design
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Materials & Design
    Article . 2025
    Data sources: DOAJ
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials & Desi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials & Design
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Materials & Design
      Article . 2025
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Fabian Wüllhorst;
    Fabian Wüllhorst
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Fabian Wüllhorst in OpenAIRE
    orcid bw Sebastian Schwarz;
    Sebastian Schwarz
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sebastian Schwarz in OpenAIRE
    orcid Nico Fuchs;
    Nico Fuchs
    ORCID
    Harvested from ORCID Public Data File

    Nico Fuchs in OpenAIRE
    orcid bw Laura Maier;
    Laura Maier
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Laura Maier in OpenAIRE
    +2 Authors

    Applied energy 388, 125530 (2025). doi:10.1016/j.apenergy.2025.125530 Published by Elsevier Science, Amsterdam [u.a.]

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Energy
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    hybrid
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Energy
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Fabian Wüllhorst;
    Fabian Wüllhorst
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Fabian Wüllhorst in OpenAIRE
    orcid bw Sebastian Schwarz;
    Sebastian Schwarz
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sebastian Schwarz in OpenAIRE
    orcid Nico Fuchs;
    Nico Fuchs
    ORCID
    Harvested from ORCID Public Data File

    Nico Fuchs in OpenAIRE
    orcid bw Laura Maier;
    Laura Maier
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Laura Maier in OpenAIRE
    +2 Authors

    Applied energy 388, 125530 (2025). doi:10.1016/j.apenergy.2025.125530 Published by Elsevier Science, Amsterdam [u.a.]

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Applied Energy
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    hybrid
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Applied Energy
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jasneet Kaur;
    Jasneet Kaur
    ORCID
    Harvested from ORCID Public Data File

    Jasneet Kaur in OpenAIRE
    Matthew Schweinbenz; Kane Ho; orcid bw Adel Malekkhouyan;
    Adel Malekkhouyan
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Adel Malekkhouyan in OpenAIRE
    +5 Authors

    Anion exchange membrane water electrolyser showing the chemical structure of hydroxyl-conductive 2D hBN-based anion exchange membrane (AEM). The developed AEMs exhibit high hydroxyl conductivity, superior mechanical and electrochemical stability.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Energy &...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainable Energy & Fuels
    Article . 2025 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Energy &...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainable Energy & Fuels
      Article . 2025 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jasneet Kaur;
    Jasneet Kaur
    ORCID
    Harvested from ORCID Public Data File

    Jasneet Kaur in OpenAIRE
    Matthew Schweinbenz; Kane Ho; orcid bw Adel Malekkhouyan;
    Adel Malekkhouyan
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Adel Malekkhouyan in OpenAIRE
    +5 Authors

    Anion exchange membrane water electrolyser showing the chemical structure of hydroxyl-conductive 2D hBN-based anion exchange membrane (AEM). The developed AEMs exhibit high hydroxyl conductivity, superior mechanical and electrochemical stability.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Energy &...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainable Energy & Fuels
    Article . 2025 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    hybrid
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainable Energy &...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainable Energy & Fuels
      Article . 2025 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marijn W van de Putte; Jasman Singh Gambhir; orcid Nicolas Gauquelin;
    Nicolas Gauquelin
    ORCID
    Harvested from ORCID Public Data File

    Nicolas Gauquelin in OpenAIRE
    orcid Alexandros Sarantopoulos;
    Alexandros Sarantopoulos
    ORCID
    Harvested from ORCID Public Data File

    Alexandros Sarantopoulos in OpenAIRE
    +5 Authors

    Abstract The phonon-glass electron-crystal paradigm has guided thermoelectric research in recent years. However, the inherent conflict between atomic disorder reducing phonon conduction, and the order required to maintain high electron mobility, creates a significant challenge in material design, which has driven innovation in nanostructuring and composite materials. Here, vertically aligned nanocomposites (VANs) composed of self-assembled metallic La0.7Sr0.3MnO3 (LSMO) nanopillars in a surrounding ZnO matrix are investigated for controllable thermal conductivity. Tuning of the crystal orientation of the substrate controls the epitaxial alignment of the LSMO and ZnO phases along the horizontal and vertical interfaces. The VAN films on (111)-oriented STO substrates exhibit an increased power factor of 0.52 μW·cm−1·K−2 at 600 °C beyond ZnO films of 0.15 μW·cm−1·K−2. Detailed characterization and modeling of the thermal conductivity demonstrates a reduction of about 75% as well as anisotropic behavior for the VAN films with out-of-plane and in-plane thermal conductivities of respectively 9.2 and 1.5 W·m−1·K−1, in strong contrast to the isotropic behavior in ZnO films with a thermal conductivity of 38 W·m−1·K−1. These results show the promising strategy of VAN thin films with a nanopillar-matrix architecture to scatter phonons and to enhance the thermoelectric performance.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JPhys Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    JPhys Energy
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    JPhys Energy
    Article . 2025
    Data sources: DOAJ
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JPhys Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      JPhys Energy
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      JPhys Energy
      Article . 2025
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Marijn W van de Putte; Jasman Singh Gambhir; orcid Nicolas Gauquelin;
    Nicolas Gauquelin
    ORCID
    Harvested from ORCID Public Data File

    Nicolas Gauquelin in OpenAIRE
    orcid Alexandros Sarantopoulos;
    Alexandros Sarantopoulos
    ORCID
    Harvested from ORCID Public Data File

    Alexandros Sarantopoulos in OpenAIRE
    +5 Authors

    Abstract The phonon-glass electron-crystal paradigm has guided thermoelectric research in recent years. However, the inherent conflict between atomic disorder reducing phonon conduction, and the order required to maintain high electron mobility, creates a significant challenge in material design, which has driven innovation in nanostructuring and composite materials. Here, vertically aligned nanocomposites (VANs) composed of self-assembled metallic La0.7Sr0.3MnO3 (LSMO) nanopillars in a surrounding ZnO matrix are investigated for controllable thermal conductivity. Tuning of the crystal orientation of the substrate controls the epitaxial alignment of the LSMO and ZnO phases along the horizontal and vertical interfaces. The VAN films on (111)-oriented STO substrates exhibit an increased power factor of 0.52 μW·cm−1·K−2 at 600 °C beyond ZnO films of 0.15 μW·cm−1·K−2. Detailed characterization and modeling of the thermal conductivity demonstrates a reduction of about 75% as well as anisotropic behavior for the VAN films with out-of-plane and in-plane thermal conductivities of respectively 9.2 and 1.5 W·m−1·K−1, in strong contrast to the isotropic behavior in ZnO films with a thermal conductivity of 38 W·m−1·K−1. These results show the promising strategy of VAN thin films with a nanopillar-matrix architecture to scatter phonons and to enhance the thermoelectric performance.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JPhys Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    JPhys Energy
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    JPhys Energy
    Article . 2025
    Data sources: DOAJ
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JPhys Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      JPhys Energy
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      JPhys Energy
      Article . 2025
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Yutaka Hara;
    Yutaka Hara
    ORCID
    Harvested from ORCID Public Data File

    Yutaka Hara in OpenAIRE
    Md. Shameem Moral; Aoi Ide; orcid Yoshifumi Jodai;
    Yoshifumi Jodai
    ORCID
    Harvested from ORCID Public Data File

    Yoshifumi Jodai in OpenAIRE

    The effects of an increase in output power owing to the close arrangement of vertical-axis wind turbines (VAWTs) are well known. With the ultimate goal of determining the optimal layout of a wind farm (WF) for VAWTs, this study proposes a new method for quickly calculating the flow field and power output of a virtual WF consisting of two-dimensional (2-D) miniature VAWT rotors. This new method constructs a flow field in a WF by superposing 2-D velocity numerical data around an isolated single VAWT obtained through a computational fluid dynamics (CFD) analysis. In the calculation process, the VAWTs were gradually increased one by one from the upstream side, and a calculation subroutine, in which the virtual upstream wind speed at each VAWT position was recalculated with the effects of other VAWTs, was repeated three times for each arrangement with a temporal number of VAWTs. This method includes the effects of the velocity gradient, secondary flow, and wake shift as models of turbine-to-turbine interaction. To verify the accuracy of the method, the VAWT rotor power outputs predicted by the proposed method for several types of rotor pairs, four-rotor tandem, and parallel arrangements were compared with the results of previous CFD analyses. This method was applied to four virtual WFs consisting of 16 miniature VAWTs. It was found that a layout consisting of two linear arrays of eight closely spaced VAWTs with wide spacing between the arrays yielded a significantly higher output than the other three layouts. The high-performance layout had fewer rotors in the wakes of the other rotors, and the induced flow speeds generated by the closely spaced VAWTs probably mutually enhanced their output power.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2025
    Data sources: DOAJ
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2025
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Yutaka Hara;
    Yutaka Hara
    ORCID
    Harvested from ORCID Public Data File

    Yutaka Hara in OpenAIRE
    Md. Shameem Moral; Aoi Ide; orcid Yoshifumi Jodai;
    Yoshifumi Jodai
    ORCID
    Harvested from ORCID Public Data File

    Yoshifumi Jodai in OpenAIRE

    The effects of an increase in output power owing to the close arrangement of vertical-axis wind turbines (VAWTs) are well known. With the ultimate goal of determining the optimal layout of a wind farm (WF) for VAWTs, this study proposes a new method for quickly calculating the flow field and power output of a virtual WF consisting of two-dimensional (2-D) miniature VAWT rotors. This new method constructs a flow field in a WF by superposing 2-D velocity numerical data around an isolated single VAWT obtained through a computational fluid dynamics (CFD) analysis. In the calculation process, the VAWTs were gradually increased one by one from the upstream side, and a calculation subroutine, in which the virtual upstream wind speed at each VAWT position was recalculated with the effects of other VAWTs, was repeated three times for each arrangement with a temporal number of VAWTs. This method includes the effects of the velocity gradient, secondary flow, and wake shift as models of turbine-to-turbine interaction. To verify the accuracy of the method, the VAWT rotor power outputs predicted by the proposed method for several types of rotor pairs, four-rotor tandem, and parallel arrangements were compared with the results of previous CFD analyses. This method was applied to four virtual WFs consisting of 16 miniature VAWTs. It was found that a layout consisting of two linear arrays of eight closely spaced VAWTs with wide spacing between the arrays yielded a significantly higher output than the other three layouts. The high-performance layout had fewer rotors in the wakes of the other rotors, and the induced flow speeds generated by the closely spaced VAWTs probably mutually enhanced their output power.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energies
    Article . 2025
    Data sources: DOAJ
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energiesarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energies
      Article . 2025
      Data sources: DOAJ
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Doney, Scott C.;
    Doney, Scott C.
    ORCID
    Harvested from ORCID Public Data File

    Doney, Scott C. in OpenAIRE
    Wolfe, Wiley H.; McKee, Darren C.; Fuhrman, Jay G.;

    Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods—measurement, monitoring, reporting, and verification—that are essential to demonstrate the safe removal and long-term storage of CO2. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annual Review of Mar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Annual Review of Marine Science
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    OceanRep
    Article . 2024 . Peer-reviewed
    Data sources: OceanRep
    addClaim
    7
    citations7
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annual Review of Mar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Annual Review of Marine Science
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      OceanRep
      Article . 2024 . Peer-reviewed
      Data sources: OceanRep
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Doney, Scott C.;
    Doney, Scott C.
    ORCID
    Harvested from ORCID Public Data File

    Doney, Scott C. in OpenAIRE
    Wolfe, Wiley H.; McKee, Darren C.; Fuhrman, Jay G.;

    Scenarios to stabilize global climate and meet international climate agreements require rapid reductions in human carbon dioxide (CO2) emissions, often augmented by substantial carbon dioxide removal (CDR) from the atmosphere. While some ocean-based removal techniques show potential promise as part of a broader CDR and decarbonization portfolio, no marine approach is ready yet for deployment at scale because of gaps in both scientific and engineering knowledge. Marine CDR spans a wide range of biotic and abiotic methods, with both common and technique-specific limitations. Further targeted research is needed on CDR efficacy, permanence, and additionality as well as on robust validation methods—measurement, monitoring, reporting, and verification—that are essential to demonstrate the safe removal and long-term storage of CO2. Engineering studies are needed on constraints including scalability, costs, resource inputs, energy demands, and technical readiness. Research on possible co-benefits, ocean acidification effects, environmental and social impacts, and governance is also required.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annual Review of Mar...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Annual Review of Marine Science
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    OceanRep
    Article . 2024 . Peer-reviewed
    Data sources: OceanRep
    addClaim
    7
    citations7
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annual Review of Mar...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Annual Review of Marine Science
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      OceanRep
      Article . 2024 . Peer-reviewed
      Data sources: OceanRep
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Melanie Jaeger-Erben;
    Melanie Jaeger-Erben
    ORCID
    Harvested from ORCID Public Data File

    Melanie Jaeger-Erben in OpenAIRE
    orcid Kirsten Gram-Hanssen;
    Kirsten Gram-Hanssen
    ORCID
    Harvested from ORCID Public Data File

    Kirsten Gram-Hanssen in OpenAIRE
    orcid Anders Rhiger Hansen;
    Anders Rhiger Hansen
    ORCID
    Harvested from ORCID Public Data File

    Anders Rhiger Hansen in OpenAIRE
    orcid Maciej Frąckowiak;
    Maciej Frąckowiak
    ORCID
    Harvested from ORCID Public Data File

    Maciej Frąckowiak in OpenAIRE
    +5 Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Policyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Policy
    Article . 2025 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.5...
    Article . 2025 . Peer-reviewed
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Policyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Policy
      Article . 2025 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.5...
      Article . 2025 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Melanie Jaeger-Erben;
    Melanie Jaeger-Erben
    ORCID
    Harvested from ORCID Public Data File

    Melanie Jaeger-Erben in OpenAIRE
    orcid Kirsten Gram-Hanssen;
    Kirsten Gram-Hanssen
    ORCID
    Harvested from ORCID Public Data File

    Kirsten Gram-Hanssen in OpenAIRE
    orcid Anders Rhiger Hansen;
    Anders Rhiger Hansen
    ORCID
    Harvested from ORCID Public Data File

    Anders Rhiger Hansen in OpenAIRE
    orcid Maciej Frąckowiak;
    Maciej Frąckowiak
    ORCID
    Harvested from ORCID Public Data File

    Maciej Frąckowiak in OpenAIRE
    +5 Authors
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Policyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Policy
    Article . 2025 . Peer-reviewed
    License: CC BY NC
    Data sources: Crossref
    https://doi.org/10.2139/ssrn.5...
    Article . 2025 . Peer-reviewed
    Data sources: Crossref
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Policyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Policy
      Article . 2025 . Peer-reviewed
      License: CC BY NC
      Data sources: Crossref
      https://doi.org/10.2139/ssrn.5...
      Article . 2025 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid David Bensason;
    David Bensason
    ORCID
    Harvested from ORCID Public Data File

    David Bensason in OpenAIRE
    Andrea Sciacchitano; orcid Carlos Ferreira;
    Carlos Ferreira
    ORCID
    Harvested from ORCID Public Data File

    Carlos Ferreira in OpenAIRE

    Abstract. Wake losses are a significant source of inefficiencies in wind farm arrays, hindering the development of high-energy density wind farms offshore. Studies have demonstrated the potential of vertical-axis wind turbines (VAWTs) to achieve high-energy density configurations due to their increased rate of wake recovery compared to their horizontal-axis counterparts. Recent works have demonstrated a wake control technique for VAWTs that utilizes blade pitch to accelerate the wake recovery, hereinafter referred to as the "vortex-generator" method. The present work is an experimental investigation of the wake topology using this control technique for the novel X-Rotor VAWT. The time-averaged wake topology of the X-rotor has been measured by stereoscopic particle-image velocimetry at three fixed-pitch conditions of the top blades, namely a pitch-in, pitch-out, and a baseline case with no pitch applied. The results demonstrate the wake recovery mechanism linked to the streamwise vorticity system of the rotor and the mechanisms that lead to a streamwise momentum recovery, where the pitched-in case injects high momentum flow from above the rotor while ejecting the wake from the sides. In contrast, the pitched-out case operates in a mirrored fashion, with high momentum flow injected into the wake from the sides while low-momentum flow is ejected out axially above the rotor. These modes of operation demonstrate a significant increase in the available power for hypothetical downstream turbines, reaching as high as a factor of 2.2 two rotor diameters downstream compared to the baseline case. The pitched-in case exhibits a higher rate of momentum recovery in the wake compared to the pitch-out configuration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/wes-20...
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    Copernicus Publications
    Other literature type . 2025
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5194/wes-20...
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      Copernicus Publications
      Other literature type . 2025
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid David Bensason;
    David Bensason
    ORCID
    Harvested from ORCID Public Data File

    David Bensason in OpenAIRE
    Andrea Sciacchitano; orcid Carlos Ferreira;
    Carlos Ferreira
    ORCID
    Harvested from ORCID Public Data File

    Carlos Ferreira in OpenAIRE

    Abstract. Wake losses are a significant source of inefficiencies in wind farm arrays, hindering the development of high-energy density wind farms offshore. Studies have demonstrated the potential of vertical-axis wind turbines (VAWTs) to achieve high-energy density configurations due to their increased rate of wake recovery compared to their horizontal-axis counterparts. Recent works have demonstrated a wake control technique for VAWTs that utilizes blade pitch to accelerate the wake recovery, hereinafter referred to as the "vortex-generator" method. The present work is an experimental investigation of the wake topology using this control technique for the novel X-Rotor VAWT. The time-averaged wake topology of the X-rotor has been measured by stereoscopic particle-image velocimetry at three fixed-pitch conditions of the top blades, namely a pitch-in, pitch-out, and a baseline case with no pitch applied. The results demonstrate the wake recovery mechanism linked to the streamwise vorticity system of the rotor and the mechanisms that lead to a streamwise momentum recovery, where the pitched-in case injects high momentum flow from above the rotor while ejecting the wake from the sides. In contrast, the pitched-out case operates in a mirrored fashion, with high momentum flow injected into the wake from the sides while low-momentum flow is ejected out axially above the rotor. These modes of operation demonstrate a significant increase in the available power for hypothetical downstream turbines, reaching as high as a factor of 2.2 two rotor diameters downstream compared to the baseline case. The pitched-in case exhibits a higher rate of momentum recovery in the wake compared to the pitch-out configuration.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    https://doi.org/10.5194/wes-20...
    Article . 2025 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    Copernicus Publications
    Other literature type . 2025
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      https://doi.org/10.5194/wes-20...
      Article . 2025 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      Copernicus Publications
      Other literature type . 2025
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Riedesel Freiherr zu Eisenbach, Ludwig;

    Diese Dissertation untersucht die Wechselwirkungen zwischen Getreideproduktion und Klimawandel, um Erkenntnisse für eine gezielte Klimaanpassung und -minderung im Getreideanbau zu gewinnen. Ein zentrales Augenmerk liegt auf der Rolle der Genetik (G), Umwelt (E) und Management (M) in Deutschland. Vier Studien adressieren diese Themen: In Studie 1 wurde eine Lebenszyklusanalyse des Winterweizen- und Winterroggenanbaus mit Sortenversuchsdaten über 30 Jahre durchgeführt. Es konnte erstmals bewiesen werden, dass der Züchtungsfortschritt in Deutschland den CFP von Winterweizen und Winterroggen erheblich reduziert hat. In Studie 2 wurden räumlich dynamische Wetterindizes entwickelt, um die Auswirkungen von Hitze und Trockenheit auf Winterweizen mit Praxisertragsdaten zu untersuchen. Es wurden deutliche Unterschiede in der regionalen Ertragswirkung von Hitze und Trockenheitsstress identifiziert. In Studie 3 wurden standortspezifische Einflüsse auf Hitze und Trockenstresstoleranz von Winterweizen und Winterroggen mit Sortenversuchsdaten vertiefend geprüft. Es wurde bewiesen, dass die Bodengüte einen entscheidenden Einfluss auf die abiotische Stresstoleranz hat. Darüber hinaus konnte keine Verbesserung der abiotischen Stresstoleranz durch den Züchtungsfortschritt nachgewiesen werden. In Studie 4 wurde die Rückkopplung des Klimawandels auf die CFP von Winterweizen, Winterroggen und Wintergerste mit Sortenversuchsdaten analysiert. Die Ergebnisse weisen erstmals nach, dass Hitze und Trockenheit die CO2-Emissionen erhöhen. Außerdem wurde gezeigt, dass hohe Bodenqualität zu geringeren Emissionen pro Fläche und einem geringeren CFP führt. Basierend auf den Ergebnissen der vier Studien wurden wichtige Hebel zum Klimaschutz in der Landwirtschaft unter gleichzeitigen Klimaeinflüssen identifiziert. Hier wurden insbesondere Maßnahmen entlang G × E × M hervorgehoben, die hohe und stabile Erträge sowie maximale Input Effizienzen gewährleisten. This dissertation examines the interactions between cereal production and climate change to gain insights for targeted climate adaptation and mitigation in cereal cultivation. A central focus is on the role of genetics (G), environment (E), and management (M) in Germany. Four studies address these topics: In Study 1, a life cycle assessment of winter wheat and winter rye cultivation was conducted using variety trial data over 30 years. It was demonstrated for the first time that breeding progress in Germany has significantly reduced the carbon footprint (CFP) of winter wheat and winter rye. In Study 2, spatially dynamic weather indices were developed to investigate the effects of heat and drought on winter wheat using on-farm yield data. Significant regional differences in heat and drought stress yield effects were identified across Germany. In Study 3, site-specific influences on heat and drought stress tolerance of winter wheat and winter rye were examined in depth using variety trial data. It was proven that soil quality has a decisive impact on abiotic stress tolerance. Additionally, no improvement in abiotic stress tolerance due to breeding progress was found. In Study 4, the feedback of climate change on the CFP of winter wheat, winter rye, and winter barley was analyzed using variety trial data. The results indicate for the first time that heat and drought increase the CFP of cereal production. It was also shown that high soil quality sites exhibit lower GHG emissions per unit of land (GHGL) and lower CFPs. Based on the results of the four studies, important levers for climate protection in agriculture under simultaneous climate influences were identified. Particularly, measures along G × E × M were emphasized, which ensure high and stable yields as well as maximum input efficiencies.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationsserver d...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationsserver d...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Riedesel Freiherr zu Eisenbach, Ludwig;

    Diese Dissertation untersucht die Wechselwirkungen zwischen Getreideproduktion und Klimawandel, um Erkenntnisse für eine gezielte Klimaanpassung und -minderung im Getreideanbau zu gewinnen. Ein zentrales Augenmerk liegt auf der Rolle der Genetik (G), Umwelt (E) und Management (M) in Deutschland. Vier Studien adressieren diese Themen: In Studie 1 wurde eine Lebenszyklusanalyse des Winterweizen- und Winterroggenanbaus mit Sortenversuchsdaten über 30 Jahre durchgeführt. Es konnte erstmals bewiesen werden, dass der Züchtungsfortschritt in Deutschland den CFP von Winterweizen und Winterroggen erheblich reduziert hat. In Studie 2 wurden räumlich dynamische Wetterindizes entwickelt, um die Auswirkungen von Hitze und Trockenheit auf Winterweizen mit Praxisertragsdaten zu untersuchen. Es wurden deutliche Unterschiede in der regionalen Ertragswirkung von Hitze und Trockenheitsstress identifiziert. In Studie 3 wurden standortspezifische Einflüsse auf Hitze und Trockenstresstoleranz von Winterweizen und Winterroggen mit Sortenversuchsdaten vertiefend geprüft. Es wurde bewiesen, dass die Bodengüte einen entscheidenden Einfluss auf die abiotische Stresstoleranz hat. Darüber hinaus konnte keine Verbesserung der abiotischen Stresstoleranz durch den Züchtungsfortschritt nachgewiesen werden. In Studie 4 wurde die Rückkopplung des Klimawandels auf die CFP von Winterweizen, Winterroggen und Wintergerste mit Sortenversuchsdaten analysiert. Die Ergebnisse weisen erstmals nach, dass Hitze und Trockenheit die CO2-Emissionen erhöhen. Außerdem wurde gezeigt, dass hohe Bodenqualität zu geringeren Emissionen pro Fläche und einem geringeren CFP führt. Basierend auf den Ergebnissen der vier Studien wurden wichtige Hebel zum Klimaschutz in der Landwirtschaft unter gleichzeitigen Klimaeinflüssen identifiziert. Hier wurden insbesondere Maßnahmen entlang G × E × M hervorgehoben, die hohe und stabile Erträge sowie maximale Input Effizienzen gewährleisten. This dissertation examines the interactions between cereal production and climate change to gain insights for targeted climate adaptation and mitigation in cereal cultivation. A central focus is on the role of genetics (G), environment (E), and management (M) in Germany. Four studies address these topics: In Study 1, a life cycle assessment of winter wheat and winter rye cultivation was conducted using variety trial data over 30 years. It was demonstrated for the first time that breeding progress in Germany has significantly reduced the carbon footprint (CFP) of winter wheat and winter rye. In Study 2, spatially dynamic weather indices were developed to investigate the effects of heat and drought on winter wheat using on-farm yield data. Significant regional differences in heat and drought stress yield effects were identified across Germany. In Study 3, site-specific influences on heat and drought stress tolerance of winter wheat and winter rye were examined in depth using variety trial data. It was proven that soil quality has a decisive impact on abiotic stress tolerance. Additionally, no improvement in abiotic stress tolerance due to breeding progress was found. In Study 4, the feedback of climate change on the CFP of winter wheat, winter rye, and winter barley was analyzed using variety trial data. The results indicate for the first time that heat and drought increase the CFP of cereal production. It was also shown that high soil quality sites exhibit lower GHG emissions per unit of land (GHGL) and lower CFPs. Based on the results of the four studies, important levers for climate protection in agriculture under simultaneous climate influences were identified. Particularly, measures along G × E × M were emphasized, which ensure high and stable yields as well as maximum input efficiencies.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationsserver d...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publikationsserver d...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph