Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
945 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Open Source
  • Embargo
  • JP
  • Tohoku University

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wu Jin; Shuang Chen; Meng Zhang; orcid Hideaki Kobayashi;
    Hideaki Kobayashi
    ORCID
    Harvested from ORCID Public Data File

    Hideaki Kobayashi in OpenAIRE
    +3 Authors

    Abstract Statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa was measured on a nozzle-type Bunsen burner with OH-PLIF technique. Turbulent burning velocity, flame surface density and flame brush thickness, as well as the local curvature and radius of curvature were derived from the experimental OH-PLIF images. Turbulence–flame interaction was analyzed based on the geometric parameters combined with laminar flame properties and turbulence length scales. Results show that the flame wrinkles at high pressure are dominated by small scale cusps superimposed with large scale flame branches which is a general characteristic of the turbulent premixed flames at high pressure. S T / S L increases remarkably with u ′/ S L and the influence of elevated pressure on S T / S L is significant. This is mainly due to the increase of flame front area caused by the turbulence wrinkling. Flame surface density significantly increases with the increase of pressure indicating that there is a large amount of fine cusps and small wrinkles in the flame front at high pressure. This would be due to the enhancement of the flame instability represented by effective Lewis number Le eff and flame intrinsic instability scale l i . With the increase of turbulence intensity, the Σ at high pressure increases while slightly decreases at normal pressure. The most frequent length scale of the flame front moves to smaller value and the possibility increases with the increase of u ′/ S L for all pressures. The effect of flame intrinsic instability on finer flame front at high pressure is mainly on the formation of a large number of convex structures which enlarge the effective contact surface between flame front and unburned reactants, resulting in the increase of S T / S L .

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Thermal...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Experimental Thermal and Fluid Science
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    34
    citations34
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Thermal...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Experimental Thermal and Fluid Science
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Takuji Harada; orcid Hirotatsu Watanabe;
    Hirotatsu Watanabe
    ORCID
    Harvested from ORCID Public Data File

    Hirotatsu Watanabe in OpenAIRE
    Yoshiyuki Suzuki; Haruyuki Kamata; +3 Authors

    Abstract Numerical simulations of combined natural convection–conduction in a droplet of n-dodecane suspended from a thermocouple were carried out, taking into consideration evaporation, and the effect of thermocouple diameter on the evaporation characteristics was investigated. The calculated temperature history of the droplet is in good agreement with experimental results; both show that the rate of heating decreases with increasing thermocouple diameter. The maximum error in temperature due to the thermocouple increases linearly with increasing thermocouple diameter. Thus, in investigations involving a droplet suspended from a thermocouple, it is preferable to use a thermocouple with the smallest possible diameter.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Heat and Mass Transfer
    Article . 2011 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article . 2010
    Data sources: IRDB
    addClaim
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Heat and Mass Transfer
      Article . 2011 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article . 2010
      Data sources: IRDB
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Risaburo Sato; N. Nishizuka;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrical Engineeri...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Electrical Engineering in Japan
    Article . 1975 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Electrical Engineeri...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Electrical Engineering in Japan
      Article . 1975 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yasukatsu Tamai; Takayuki Takarada; Akira Tomita;

    The reactivities of 34 coal chars of varying rank with H2O have been determined to examine the effect of coal rank on the gasification rate of coal char. The reactivities of chars derived from caking coals and anthracites (carbon content > 78 wt%, daf) were very small compared with those from non-caking (lower-rank) coals. The reactivities of low-rank chars do not correlate with the carbon content of the parent coals. To clarify which factor is more important in determining the reactivity, the evolution of CO and CO2 from char, the moisture content of char and the amount of exchangeable cations were determined for these low-rank coals or their chars. These values were considered to represent the amount of active carbon sties, the porosity and the catalysis by inherent mineral matters, respectively. It was concluded that the amount of surface active sites and/or the amount of exchangeable Ca and Na control the reactivity of low-rank chars in H2O.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 1985 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    227
    citations227
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 1985 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Satoshi Kadowaki; Taku Kudo; Yuki Otawara; orcid Hideaki Kobayashi;
    Hideaki Kobayashi
    ORCID
    Harvested from ORCID Public Data File

    Hideaki Kobayashi in OpenAIRE
    +5 Authors

    Abstract Characteristics of turbulent premixed flames of a CO/H2/O2 mixture highly diluted with CO2 (CO/H2/CO2/O2 flame) at high pressures up to 1.0 MPa were experimentally investigated. The CO/H2 ratio, equivalence ratio and CO2 mole fraction were determined considering the typical composition of coal gasification syngas, laminar burning velocity, adiabatic flame temperature and stoichiometry for IGCC gas-turbine combustors connected to CCS systems. OH–PLIF and flame radiation measurement were performed for Bunsen-type flames stabilized in a high-pressure chamber. Using OH–PLIF images, flame surface density, mean volume of turbulent flame regions and turbulent burning velocity were calculated and compared with those for CH4/air flames and model coal gasification syngas flames burnt with air (CO/H2/CO2/air flame). The flame surface density for the CO/H2/CO2/O2 flames was much greater than that for the CH4/air flames, even greater than that of the CO/H2/CO2/air flames, presumably due to less flame passivity against turbulent vortex motion caused by smaller Markstein length and smaller scales of flame wrinkles at high pressure. The mean volume of the turbulent flame region for the CO/H2/CO2/O2 flames was close to that of CO/H2/CO2/air flames, while much smaller than that of the CH4/air flames, which was also explicable based on the Markstein length effects on turbulent flames at high pressure. ST/SL of the model syngas flames was larger than that of the CH4/air flames and it was noted that the difference in turbulence Reynolds number caused by smaller kinematic viscosity of the CO/H2/CO2/O2 mixture should be considered to understand the ST/SL characteristics. Total radiation intensity of the CO/H2/CO2/O2 flame was about 1.6 times stronger than that of CH4/air flames due to the very high CO2 concentration, CO2 being a highly radiative species, indicating very high heat-load for gas-turbine combustors that should be considered for combustor design.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the C...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Proceedings of the Combustion Institute
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    47
    citations47
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Proceedings of the C...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Proceedings of the Combustion Institute
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shuhei Yoshida; orcid Hiroki Nagai;
    Hiroki Nagai
    ORCID
    Harvested from ORCID Public Data File

    Hiroki Nagai in OpenAIRE
    orcid Takurou Daimaru;
    Takurou Daimaru
    ORCID
    Harvested from ORCID Public Data File

    Takurou Daimaru in OpenAIRE

    Abstract This paper discusses the thermal cycle found within oscillating heat pipes (OHPs). An OHP is a two-phase heat transfer device using self-exited oscillation. Over the past few decades, a considerable number of studies have been conducted to understand the physics of OHP phenomena. However, little is known about the thermal cycle in OHPs. In this study, we developed a one-dimensional slug flow model to reproduce thermal and hydrodynamic phenomena in OHPs. Fast Fourier transform (FFT) and cross-correlation analysis were used to process oscillation waveform data. A multi-branch OHP consisting of a stainless steel pipe wall and R134a working fluid was simulated. The numerical results revealed pressure propagation within the OHP. Moreover, the results indicated that the vapor volume oscillated with the same frequency as the pressure. Additionally, the vapor plug obtained energy or performed work depending on the direction of pressure propagation. As a result, the propagation of energy was identified as a reason for pressure propagation within the OHP.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    46
    citations46
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Jun Cheng; Liangchen Yue; orcid Yu You Li;
    Yu You Li
    ORCID
    Harvested from ORCID Public Data File

    Yu You Li in OpenAIRE
    Haiquan Dong; +2 Authors

    In order to relieve the suppression problems of methanogenesis with microorganisms surrounded by undegraded lipids in food waste, hydrothermal alkali pretreatment was utilized to degrade lipids for promoted methane production through the co-production process of hydrogen with methane. GC-MS results demonstrated that oleic acids and hexadecanoic acids derived from degraded glycerol trioleate increased (from 43.29% to 58.22%, and from 1.06% to 8.25%, respectively) when the pretreatment temperature was increased from 160 °C to 220 °C. SEM, TEM and FTIR analyses showed that the pre-treatment at 220 °C effectively degraded 87.56% of glycerol trioleate and drastically relieved the covering of methanogens by non-degraded lipids. The methane yield and the production peak rate of glycerol trioleate also increased (from 636.85 to 877.47 mL CH4/g-total volatile solid (VS), and from 32.60 to 51.22 mL CH4/g-VS/d, respectively), which led to an increased energy conversion efficiency from 48.05% to 66.21% through the co-production of hydrogen with methane.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    22
    citations22
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tatsuo Nakano; Kazuo Yamamoto; Susumu Akasaka; Hideki Matsumoto; +4 Authors

    A shuttle vector, pZ189, carrying a bacterial suppressor tRNA marker gene (supF) was dissolved in Tris-EDTA buffer containing 0.3 M 10B-enriched boric acid and then irradiated with boron neutron captured beam (BNCB) produced by the nuclear reaction 10B (n,alpha) 7Li with thermal neutrons. A DNA repair-deficient mutant, KS46 (uvrA-), of Escherichia coli was transformed with the plasmid DNA, and the transformants carrying mutations on the supF gene were selected as nalidixic acid-resistant colonies. The mutation frequency (2.4 x 10(-4)) of pZ189 at the D10 dose was about 70 times greater than the spontaneous rate (3.5 x 10(-6)). The plasmid mutations were analyzed using DNA sequencers; 88% of them were base substitutions. A few minus-one frameshifts (7%) and deletions (5%) were detected. Among these base substitutions, transversions of G:C to T:A (42%) and G:C to C:G (29%) predominated. Twenty-seven percent of the base substitutions were G:C to A:T transitions; no A:T to G:C transitions were detected.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/DN...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Mutation Research/DNA Repair
    Article . 1995 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    12
    citations12
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/DN...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Mutation Research/DNA Repair
      Article . 1995 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Huang Xuan; Jing Liu; orcid Weirong Zhang;
    Weirong Zhang
    ORCID
    Harvested from ORCID Public Data File

    Weirong Zhang in OpenAIRE
    Hiroshi Yoshino; +2 Authors

    Abstract Indoor humidity levels play an important role on occupants’ health, durability of the building envelope, and energy consumption levels. To achieve a sustainable, durable, healthy, and comfortable building environment, it is essential to maintain proper indoor humidity levels. Hygroscopic materials are typically used as finishing materials in some houses to control humidity, however, there is no criterion established to evaluate the moisture buffering effect of these. In this research, a series of experiments examining the moisture buffering effect of three types of hygroscopic materials were conducted in an actual room using different air change rates, hygroscopic material loading ratios, and moisture loads. A new index is proposed to evaluate the moisture adsorption effect ( MBE a ) and moisture desorption effect ( MBE d ) of hygroscopic materials at the room scale. Using the proposed index of MBE a / MBE d , multivariate linear regression analysis was performed to find the relationship between MBE a / MBE d and the major parameters that influence this. The model results show that the moisture adsorption/desorption effect of the hygroscopic materials in real-world conditions increased exponentially when the ambient air change rate decreased or the loading ratio of hygroscopic material increased.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy and Buildingsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nobuyoshi Hara; Hyunsoo Kim; Katsuhisa Sugimoto;

    Fe{sub 2}O{sub 3}-Cr{sub 2}O{sub 3} artificial passivation films were formed on Pt substrates by low pressure metal organic chemical vapor deposition technique using iron(III) acetylacetonate [Fe(O{sub 2}C{sub 5}H{sub 7}){sub 3}] and chromium(III) acetylacetonate [Cr(O{sub 2}C{sub 5}H{sub 7}){sub 3}] as precursors at substrate temperatures on 150--350 C. Relationships between the crystal structure, and also the chemical state of constituent elements, and the corrosion resistance were examined on the films in acid solutions. The films deposited above 300 C had crystalline structures, and those deposited below 250 C had amorphous structures. The films deposited above 250 C had a high amount of M-O-type chemical bonds, and those deposited below 200 C had a high amount of M-OH-type chemical bonds. The films deposited above 300 C hardly dissolved in 1.0 M HCl and those deposited below 250 C, however, easily dissolved in the solution. The dissolution rate of the films in the solution increased with decreasing substrate temperature. Passive and transpassive current densities of the films in 1.0 M H{sub 2}SO{sub 4} were dependent on the substrate temperature and increased with decreasing the temperature. When polarized cathodically in 1.0 M H{sub 2}SO{sub 4} and 0.5 M HCl, the films deposited below 250 Cmore » dissolved due to the reduction of the Fe{sub 2}O{sub 3} component in the films. The reduction of Fe{sub 2}O{sub 3} component was, however, suppressed on the films deposited above 300 C. Therefore, with increasing crystallinity and amount of M-O-type chemical bonds, the corrosion resistance of the films increases in HCl and H{sub 2}SO{sub 4} solutions.« less

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of The Elect...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of The Electrochemical Society
    Article . 1999 . Peer-reviewed
    License: IOP Copyright Policies
    Data sources: Crossref
    addClaim
    13
    citations13
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of The Elect...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of The Electrochemical Society
      Article . 1999 . Peer-reviewed
      License: IOP Copyright Policies
      Data sources: Crossref
      addClaim