Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,586 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Restricted
  • Open Source
  • Embargo
  • 12. Responsible consumption
  • JP

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Claes-Göran Granqvist; K. L. Chopra; Greg P. Smestad; Hideyuki Takakura; +3 Authors

    Abstract In order to improve the accuracy, validity, reliability and reproducibility of reported power conversion efficiencies for solar cells, the journal, Solar Energy Materials and Solar Cells (SOLMAT), wishes to define how power conversion efficiencies should be reported. This expands upon what is specified in our Guide for Authors. This editorial also serves as a guide on how efficiency data should be checked within the reporting laboratory before sending cells or materials for testing at an independent laboratory. The threshold where the accuracy of efficiency values is important to the journal is whenever power conversion efficiencies require external quantum efficiencies (EQE) values above 50% over a large range of wavelengths or when reported power conversion efficiencies exceed 2.5%. Extra care should be taken in submitted manuscripts to document the measurement's quality, relevance and independent verification.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    193
    citations193
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tomohiro Tasaki; Yuichi Moriguchi; Masahiro Oguchi;

    SummaryWe conducted a decomposition analysis of material flows in a dynamic system, focusing on factors in the generation of waste consumer durables. A methodology for the analysis of consumer durables was developed and applied to three common consumer durables: cathode ray tube TVs, refrigerators, and passenger cars. The methodology decomposed changes in the numbers of waste products into three factors: changes in lifespan distribution, past trends in replacement sales, and past trends in sales for additional purchases. The decomposed equation clearly showed that the number of waste products would not necessarily be reduced by lifespan extension alone. This is because the number of waste products generated is affected not only by current lifespan distribution but also by past trends in sales for replacement and in additional purchases. The results show that changes in past replacement sales influence the current generation of waste, even if current replacement sales are declining. To reduce the generation of waste products on a short‐term basis, lifespan must be extended until the waste‐reducing effect of lifespan extension exceeds the waste‐increasing effect of the other two factors. From a long‐term perspective, controlling current replacement and additional purchases can be used to prevent future waste product generation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Industrial Ecology
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Industrial Ecology
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mitsutsugu Hamamoto;

    Abstract This paper attempts to measure consumers' perceived net benefits (or net costs) of energy-saving measures in using energy-consuming durable goods. Using the estimated net costs and the volume of CO2 reduced by the measures, a marginal abatement cost (MAC) curve for the average household's CO2 emissions is produced. An analysis using the curve suggests that in order to provide households with an incentive to take actions that can lead to CO2 emission reductions in using energy-consuming durables, a high level of carbon price is needed. In addition, a regression analysis reveals that the net benefits of the measures are larger for households that put a higher priority on energy saving, for those living in detached houses, for those with a smaller number of persons living together, and for those with less income. The result of the analysis using the MAC curve may suggest that promoting energy-saving behavior will require not only a policy to provide economic incentives but also interventions to influence psychological factors of household behavior.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marisamy Muthuraman; Tomoaki Namioka; kunio yoshikawa;

    This study presents an investigation on the influence of hydrothermally treated municipal solid waste (MSW) on the co-combustion characteristics with different rank coals, i.e. Indian, Indonesian and Australian coals. MSW blends of 10%, 20%, 30% and 50% (wt.%) with different rank coals were tested in a thermogravimetric analyser (TGA) in the temperature range from ambient to 700 °C under the heating rate of 10 °C/min. Combustion characteristics such as volatile release, ignition and burnout were studied for the blend fuel. Different ignition behavior was observed depending on the blends composition and the coal rank. The result of this work indicates that the blending of MSW improves devolatization properties of coal. But it was found that the co-combustion characteristics of MSW and coal blend cannot be predicted only from the pyrolytic and or devolatization phenomena as the other factors such as the coal quality also plays a vital role in deciding the blends co-combustion characteristics. The TGA combustion profiles showed that the combustion characteristics of blends followed those of parent fuels in both an additive and non-additive manners. These experimental results help to understand and predict the behavior of coal and MSW blends in practical applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article . 2009
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    148
    citations148
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article . 2009
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mika Goto; Akihiro Otsuka; Toshiyuki Sueyoshi;

    A balance between industrial pollution and economic growth becomes a major policy issue to attain a sustainable society in the world. To discuss the problem from economics and business perspectives, this study proposes a new use of DEA (Data Envelopment Analysis) as a methodology for unified (operational and environmental) assessment. A unique feature of the proposed approach is that it separates outputs into desirable and undesirable categories. Such separation is important because energy industries usually produce both desirable and undesirable outputs. This study discusses how to unify the two types of outputs under natural and managerial disposability. The proposed DEA approach evaluates various organizations by the three efficiency measures such as OE (Operational Efficiency), UEN (Unified Efficiency under Natural disposability) and UENM (Unified Efficiency under Natural and Managerial disposability). An important feature of UENM is that it separates inputs into two categories and unifies them under the two disposability concepts in addition to the proposed output separation and unification. This study incorporates an amount of capital assets for technology innovation, as one of the two input group, into the measurement of UENM. Then, it compares UENM with the other two efficiency measures. This study is the first research effort in which DEA has an analytical capability to quantify the importance of investment on capital assets for technology innovation. To confirm the practicality of the proposed approach, this study applies the three efficiency measures to a data set regarding manufacturing and non-manufacturing industries of 47 prefectures in Japan. This study empirically confirms the validity of Porter hypothesis in Japanese manufacturing industries, so implying that environmental regulation has been effective for betterment on the performance of Japanese manufacturing industries. Another important finding is that the emission of greenhouse gases is a main source of unified inefficiency in the two groups of industries. Therefore, Japanese industries, examined in this study, need to make their efforts to reduce the greenhouse gas emissions and air pollution substances by investing in capital assets for technology innovation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article . 2014
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    125
    citations125
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article . 2014
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrew Chapman; Kenshi Itaoka; Hadi Farabi-Asl; Yasumasa Fujii; +1 Authors

    Abstract Decarbonization of the energy system is a key goal of the Paris Agreements, in order to limit temperature rises to under 2° Celsius. Hydrogen has the potential to play a key role through its versatile production methods, end uses and as a storage medium for renewable energy, engendering the future low-carbon energy system. This research uses a global model cognizant of energy policy, technology learning curves and international carbon reduction targets to optimize the future energy system in terms of cost and carbon emissions to the year 2050. Exploring combinations of four exploratory scenarios incorporating hydrogen city gas blend levels, nuclear restrictions, regional emission reduction obligations and carbon capture and storage deployment timelines, it was identified that hydrogen has the potential to supply approximately two percent of global energy needs by 2050. Irrespective of the quantity of hydrogen produced, the transport sector and passenger fuel cell vehicles are consistently a preferential end use for future hydrogen across regions and modeled scenarios. In addition to the potential contribution of hydrogen, a shift toward renewable energy and a significant role for carbon capture and storage is identified to underpin carbon target achievement by 2050.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Hydrogen Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    125
    citations125
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Hydrogen Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Arif Darmawan; Muhammad W. Ajiwibowo; Kunio Yoshikawa; Muhammad Aziz; +1 Authors

    Abstract One of the strategies to improve environmentally friendly energy harvesting can be realized by using biomass as a primary energy source for generating electricity and H2. In addition, high energy efficiency can be achieved by minimizing exergy loss through process integration and exergy recovery. As an implementation, this study proposes a cogeneration system for black liquor (BL) to co-produce electricity and H2. The system primarily comprises BL drying, circulating fluidized bed gasification, syngas chemical looping (SCL), and power generation. The Aspen Plus V8.8 software package is used for modeling and performing calculations of the proposed integrated system. Furthermore, thermodynamic analysis of gasification is performed by employing Gibbs energy minimization. The effects of target solid content on the required total work and compressor outlet pressure during drying and gasification with different steam-to-fuel ratios are evaluated. Moreover, the SCL process adopts three reactors, namely, the reducer, oxidizer, and combustor. Compared to conventional processes, the integrated drying-gasification-SCL processes are significantly cleaner and more energy efficient. The proposed integrated system can achieve a net energy efficiency of about 70% with almost 100% carbon capture.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    72
    citations72
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: H. Kiyavitskaya; Yoichiro Shimazu; Alfred Lecocq; Yoshio Kato; +13 Authors

    For global survival, we need to launch a rapid regeneration of the nuclear power industry. The replacement of the present fossil fuel industry requires a doubling time for alternative energy sources of 5–7 years and only nuclear energy has the capability to achieve this. The liquid metal cooled fast breeder reactors (LMFBR) have the best breeding criteria but the doubling time exceeds 20 years. Further, the use of plutonium in these systems has the potential of nuclear proliferation. The Thorium Molten-Salt Nuclear Energy Synergetic System [THORIMS-NES], described here is a symbiotic system, based on the thorium–uranium-233 cycle. The production of trans-uranium elements is essentially absent in Th–U system, which simplifies the issue of nuclear waste management. The use of 233 U contaminated with 232 U as fissile material, instead of plutonium/ 235 U makes this system nuclear proliferation resistant. The energy is produced in molten-salt reactors (FUJI) and fissile 233 U is produced by spallation in Accelerator Molten-Salt Breeders (AMSB). This system uses the multi-functional ‘‘single-phase molten-fluoride” circulation system for all operations. There are no difficulties relating to ‘‘radiation-damage”, ‘‘heat-removal” and ‘‘chemical processing” owing to the simple ‘‘idealistic ionic liquid” character of the fuel. FUJI is size-flexible, and can use all kinds of fissile material achieving a nearly fuel self-sustaining condition without continuous chemical processing of fuel salt and without core-graphite replacement for the life of the reactor. The AMSB is based on a single-fluid molten-salt target/blanket concept. Several AMSBs can be accommodated in regional centers for the production of fissile 233 U, with batch chemical processing including radio-waste management. FUJI reactor and the AMSB can also be used for the transmutation of long-lived radioactive elements in the wastes and has a high potential for producing hydrogen-fuel in molten-salt reactors. The development and launching of THORIMS-NES requires the following three programs during the next three decades:

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article . 2008
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    96
    citations96
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article . 2008
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Atsushi Fukuoka; Paresh L. Dhepe;

    AbstractIn view of current problems such as global warming, high oil prices, food crisis, stricter environmental laws, and other geopolitical scenarios surrounding the use of fossil feedstocks and edible resources, the efficient conversion of cellulose, a non‐food biomass, into energy, fuels, and chemicals has received much attention. The application of heterogeneous catalysis could allow researchers to develop environmentally benign processes that lead to selective formation of value‐added products from cellulose under relatively mild conditions. This Minireview gives insight into the importance of biomass utilization, the current status of cellulose conversion, and further transformation of the primary products obtained.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ChemSusChem
    Article . 2008 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    ChemSusChem
    Article . 2009
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    284
    citations284
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ChemSusChem
      Article . 2008 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      ChemSusChem
      Article . 2009
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yasuo Tanaka; M. Waki; Kazuyoshi Suzuki; T. Osada;

    Methane (CH4) can be used as an alternative carbon source for denitrification with added oxygen (O2). However, the off-gas of denitrification reactors using a CH4-O2 mixture contains unused CH4 and O2 in proportions that make it unusable for fuel, carry explosion risks, and, if released into the atmosphere, contribute to the greenhouse effect. This study tested a novel reactor with a partition dividing the headspace completely and extending partly into the liquid layer. When CH4 and O2 were supplied separately to the liquid layer on opposite sides of the partition, the methane-dependent denitrification (MDD) activity was similar to that when the two gases were supplied as a mixture. In reactors with separate gas supplies, the off-gas from the CH4 supply side was high in CH4 and low in O2, and was usable for fuel, and that from the O2 supply side was very low in CH4, and might be released into the atmosphere. MDD activity increased with the O2 supply rate, and separate discharge of CH4 and O2 was maintained. The concentration of dissolved methane in the effluent was decreased by lowering the CH4/O2 supply ratio to 1.0 and drawing the effluent from the O2 supply side. This novel reactor enhances the safety of MDD, allows reuse of methane as fuel, and reduces methane leakage to the atmosphere.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2005 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2005 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,586 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Claes-Göran Granqvist; K. L. Chopra; Greg P. Smestad; Hideyuki Takakura; +3 Authors

    Abstract In order to improve the accuracy, validity, reliability and reproducibility of reported power conversion efficiencies for solar cells, the journal, Solar Energy Materials and Solar Cells (SOLMAT), wishes to define how power conversion efficiencies should be reported. This expands upon what is specified in our Guide for Authors. This editorial also serves as a guide on how efficiency data should be checked within the reporting laboratory before sending cells or materials for testing at an independent laboratory. The threshold where the accuracy of efficiency values is important to the journal is whenever power conversion efficiencies require external quantum efficiencies (EQE) values above 50% over a large range of wavelengths or when reported power conversion efficiencies exceed 2.5%. Extra care should be taken in submitted manuscripts to document the measurement's quality, relevance and independent verification.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy Materials and Solar Cells
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    193
    citations193
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energy Materia...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy Materials and Solar Cells
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tomohiro Tasaki; Yuichi Moriguchi; Masahiro Oguchi;

    SummaryWe conducted a decomposition analysis of material flows in a dynamic system, focusing on factors in the generation of waste consumer durables. A methodology for the analysis of consumer durables was developed and applied to three common consumer durables: cathode ray tube TVs, refrigerators, and passenger cars. The methodology decomposed changes in the numbers of waste products into three factors: changes in lifespan distribution, past trends in replacement sales, and past trends in sales for additional purchases. The decomposed equation clearly showed that the number of waste products would not necessarily be reduced by lifespan extension alone. This is because the number of waste products generated is affected not only by current lifespan distribution but also by past trends in sales for replacement and in additional purchases. The results show that changes in past replacement sales influence the current generation of waste, even if current replacement sales are declining. To reduce the generation of waste products on a short‐term basis, lifespan must be extended until the waste‐reducing effect of lifespan extension exceeds the waste‐increasing effect of the other two factors. From a long‐term perspective, controlling current replacement and additional purchases can be used to prevent future waste product generation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Industrial Ecology
    Article . 2010 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Industrial Ecology
      Article . 2010 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mitsutsugu Hamamoto;

    Abstract This paper attempts to measure consumers' perceived net benefits (or net costs) of energy-saving measures in using energy-consuming durable goods. Using the estimated net costs and the volume of CO2 reduced by the measures, a marginal abatement cost (MAC) curve for the average household's CO2 emissions is produced. An analysis using the curve suggests that in order to provide households with an incentive to take actions that can lead to CO2 emission reductions in using energy-consuming durables, a high level of carbon price is needed. In addition, a regression analysis reveals that the net benefits of the measures are larger for households that put a higher priority on energy saving, for those living in detached houses, for those with a smaller number of persons living together, and for those with less income. The result of the analysis using the MAC curve may suggest that promoting energy-saving behavior will require not only a policy to provide economic incentives but also interventions to influence psychological factors of household behavior.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Policy
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    39
    citations39
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Policyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Policy
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Marisamy Muthuraman; Tomoaki Namioka; kunio yoshikawa;

    This study presents an investigation on the influence of hydrothermally treated municipal solid waste (MSW) on the co-combustion characteristics with different rank coals, i.e. Indian, Indonesian and Australian coals. MSW blends of 10%, 20%, 30% and 50% (wt.%) with different rank coals were tested in a thermogravimetric analyser (TGA) in the temperature range from ambient to 700 °C under the heating rate of 10 °C/min. Combustion characteristics such as volatile release, ignition and burnout were studied for the blend fuel. Different ignition behavior was observed depending on the blends composition and the coal rank. The result of this work indicates that the blending of MSW improves devolatization properties of coal. But it was found that the co-combustion characteristics of MSW and coal blend cannot be predicted only from the pyrolytic and or devolatization phenomena as the other factors such as the coal quality also plays a vital role in deciding the blends co-combustion characteristics. The TGA combustion profiles showed that the combustion characteristics of blends followed those of parent fuels in both an additive and non-additive manners. These experimental results help to understand and predict the behavior of coal and MSW blends in practical applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article . 2009
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    148
    citations148
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article . 2009
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Mika Goto; Akihiro Otsuka; Toshiyuki Sueyoshi;

    A balance between industrial pollution and economic growth becomes a major policy issue to attain a sustainable society in the world. To discuss the problem from economics and business perspectives, this study proposes a new use of DEA (Data Envelopment Analysis) as a methodology for unified (operational and environmental) assessment. A unique feature of the proposed approach is that it separates outputs into desirable and undesirable categories. Such separation is important because energy industries usually produce both desirable and undesirable outputs. This study discusses how to unify the two types of outputs under natural and managerial disposability. The proposed DEA approach evaluates various organizations by the three efficiency measures such as OE (Operational Efficiency), UEN (Unified Efficiency under Natural disposability) and UENM (Unified Efficiency under Natural and Managerial disposability). An important feature of UENM is that it separates inputs into two categories and unifies them under the two disposability concepts in addition to the proposed output separation and unification. This study incorporates an amount of capital assets for technology innovation, as one of the two input group, into the measurement of UENM. Then, it compares UENM with the other two efficiency measures. This study is the first research effort in which DEA has an analytical capability to quantify the importance of investment on capital assets for technology innovation. To confirm the practicality of the proposed approach, this study applies the three efficiency measures to a data set regarding manufacturing and non-manufacturing industries of 47 prefectures in Japan. This study empirically confirms the validity of Porter hypothesis in Japanese manufacturing industries, so implying that environmental regulation has been effective for betterment on the performance of Japanese manufacturing industries. Another important finding is that the emission of greenhouse gases is a main source of unified inefficiency in the two groups of industries. Therefore, Japanese industries, examined in this study, need to make their efforts to reduce the greenhouse gas emissions and air pollution substances by investing in capital assets for technology innovation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article . 2014
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    125
    citations125
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article . 2014
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Andrew Chapman; Kenshi Itaoka; Hadi Farabi-Asl; Yasumasa Fujii; +1 Authors

    Abstract Decarbonization of the energy system is a key goal of the Paris Agreements, in order to limit temperature rises to under 2° Celsius. Hydrogen has the potential to play a key role through its versatile production methods, end uses and as a storage medium for renewable energy, engendering the future low-carbon energy system. This research uses a global model cognizant of energy policy, technology learning curves and international carbon reduction targets to optimize the future energy system in terms of cost and carbon emissions to the year 2050. Exploring combinations of four exploratory scenarios incorporating hydrogen city gas blend levels, nuclear restrictions, regional emission reduction obligations and carbon capture and storage deployment timelines, it was identified that hydrogen has the potential to supply approximately two percent of global energy needs by 2050. Irrespective of the quantity of hydrogen produced, the transport sector and passenger fuel cell vehicles are consistently a preferential end use for future hydrogen across regions and modeled scenarios. In addition to the potential contribution of hydrogen, a shift toward renewable energy and a significant role for carbon capture and storage is identified to underpin carbon target achievement by 2050.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Hydrogen Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    125
    citations125
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Hydrogen Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Arif Darmawan; Muhammad W. Ajiwibowo; Kunio Yoshikawa; Muhammad Aziz; +1 Authors

    Abstract One of the strategies to improve environmentally friendly energy harvesting can be realized by using biomass as a primary energy source for generating electricity and H2. In addition, high energy efficiency can be achieved by minimizing exergy loss through process integration and exergy recovery. As an implementation, this study proposes a cogeneration system for black liquor (BL) to co-produce electricity and H2. The system primarily comprises BL drying, circulating fluidized bed gasification, syngas chemical looping (SCL), and power generation. The Aspen Plus V8.8 software package is used for modeling and performing calculations of the proposed integrated system. Furthermore, thermodynamic analysis of gasification is performed by employing Gibbs energy minimization. The effects of target solid content on the required total work and compressor outlet pressure during drying and gasification with different steam-to-fuel ratios are evaluated. Moreover, the SCL process adopts three reactors, namely, the reducer, oxidizer, and combustor. Compared to conventional processes, the integrated drying-gasification-SCL processes are significantly cleaner and more energy efficient. The proposed integrated system can achieve a net energy efficiency of about 70% with almost 100% carbon capture.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    72
    citations72
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: H. Kiyavitskaya; Yoichiro Shimazu; Alfred Lecocq; Yoshio Kato; +13 Authors

    For global survival, we need to launch a rapid regeneration of the nuclear power industry. The replacement of the present fossil fuel industry requires a doubling time for alternative energy sources of 5–7 years and only nuclear energy has the capability to achieve this. The liquid metal cooled fast breeder reactors (LMFBR) have the best breeding criteria but the doubling time exceeds 20 years. Further, the use of plutonium in these systems has the potential of nuclear proliferation. The Thorium Molten-Salt Nuclear Energy Synergetic System [THORIMS-NES], described here is a symbiotic system, based on the thorium–uranium-233 cycle. The production of trans-uranium elements is essentially absent in Th–U system, which simplifies the issue of nuclear waste management. The use of 233 U contaminated with 232 U as fissile material, instead of plutonium/ 235 U makes this system nuclear proliferation resistant. The energy is produced in molten-salt reactors (FUJI) and fissile 233 U is produced by spallation in Accelerator Molten-Salt Breeders (AMSB). This system uses the multi-functional ‘‘single-phase molten-fluoride” circulation system for all operations. There are no difficulties relating to ‘‘radiation-damage”, ‘‘heat-removal” and ‘‘chemical processing” owing to the simple ‘‘idealistic ionic liquid” character of the fuel. FUJI is size-flexible, and can use all kinds of fissile material achieving a nearly fuel self-sustaining condition without continuous chemical processing of fuel salt and without core-graphite replacement for the life of the reactor. The AMSB is based on a single-fluid molten-salt target/blanket concept. Several AMSBs can be accommodated in regional centers for the production of fissile 233 U, with batch chemical processing including radio-waste management. FUJI reactor and the AMSB can also be used for the transmutation of long-lived radioactive elements in the wastes and has a high potential for producing hydrogen-fuel in molten-salt reactors. The development and launching of THORIMS-NES requires the following three programs during the next three decades:

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Conversion and Management
    Article . 2008 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article . 2008
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    96
    citations96
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energy Conversion an...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Conversion and Management
      Article . 2008 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article . 2008
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Atsushi Fukuoka; Paresh L. Dhepe;

    AbstractIn view of current problems such as global warming, high oil prices, food crisis, stricter environmental laws, and other geopolitical scenarios surrounding the use of fossil feedstocks and edible resources, the efficient conversion of cellulose, a non‐food biomass, into energy, fuels, and chemicals has received much attention. The application of heterogeneous catalysis could allow researchers to develop environmentally benign processes that lead to selective formation of value‐added products from cellulose under relatively mild conditions. This Minireview gives insight into the importance of biomass utilization, the current status of cellulose conversion, and further transformation of the primary products obtained.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ChemSusChem
    Article . 2008 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    ChemSusChem
    Article . 2009
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    284
    citations284
    popularityTop 1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ChemSusChemarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ChemSusChem
      Article . 2008 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      ChemSusChem
      Article . 2009
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yasuo Tanaka; M. Waki; Kazuyoshi Suzuki; T. Osada;

    Methane (CH4) can be used as an alternative carbon source for denitrification with added oxygen (O2). However, the off-gas of denitrification reactors using a CH4-O2 mixture contains unused CH4 and O2 in proportions that make it unusable for fuel, carry explosion risks, and, if released into the atmosphere, contribute to the greenhouse effect. This study tested a novel reactor with a partition dividing the headspace completely and extending partly into the liquid layer. When CH4 and O2 were supplied separately to the liquid layer on opposite sides of the partition, the methane-dependent denitrification (MDD) activity was similar to that when the two gases were supplied as a mixture. In reactors with separate gas supplies, the off-gas from the CH4 supply side was high in CH4 and low in O2, and was usable for fuel, and that from the O2 supply side was very low in CH4, and might be released into the atmosphere. MDD activity increased with the O2 supply rate, and separate discharge of CH4 and O2 was maintained. The concentration of dissolved methane in the effluent was decreased by lowering the CH4/O2 supply ratio to 1.0 and drawing the effluent from the O2 supply side. This novel reactor enhances the safety of MDD, allows reuse of methane as fuel, and reduces methane leakage to the atmosphere.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2005 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    36
    citations36
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2005 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph