- home
- Advanced Search
- Energy Research
- 2021-2025
- JP
- Applied Energy
- Energy Research
- 2021-2025
- JP
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Nan Li; Nan Li;Farhad Taghizadeh-Hesary;
Farhad Taghizadeh-Hesary
Farhad Taghizadeh-Hesary in OpenAIREXunwen Zhao;
+3 AuthorsXunwen Zhao
Xunwen Zhao in OpenAIRENan Li; Nan Li;Farhad Taghizadeh-Hesary;
Farhad Taghizadeh-Hesary
Farhad Taghizadeh-Hesary in OpenAIREXunwen Zhao;
Zhenwei Pei;Xunwen Zhao
Xunwen Zhao in OpenAIREXunpeng Shi;
Hailin Mu;Xunpeng Shi
Xunpeng Shi in OpenAIREAbstract The present energy system faces at least two challenges. For one thing, the power system’s stability is challenged by the increasing penetration of variable renewable energies, especially wind power, due to its fluctuation and intermittency. For the other, the transport sector is facing enormous difficulty to decarbonize. This paper proposes a new energy system that integrates the hydrogen production and distribution system to the combined cooling, heating and power (CCHP) system with significant wind power to solve these two challenges simultaneously. The new energy system can meet the energy needs of the building. At the same time, the wind power utilization rate reaches 92.6%, and the typical daily hydrogen production capacity in winter, transition season and summer is 500 kg, 500 kg and 266 kg, respectively. The system’s energy efficiency is 72%, and the energy of the system is utilized efficiently. By comparison, the new system can reduce costs and carbon dioxide emissions, save primary energy, and effectively improve energy efficiency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117619&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117619&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Abstract This study proposes a novel analysis framework to investigate the CO2 and SO2 emission efficiency, emission reduction potential, and marginal abatement cost (MAC) of 316 coal-fired power plants in China. The comprehensive analysis framework is based on the combined approach of utilizing the directional output distance function (DODF) and parametric linear programming (PLP). The average emission efficiencies of CO2 and SO2 were 0.48 and 0.61, respectively, which indicates that China’s coal-fired power plants have a large potential to reduce CO2 and SO2 emissions, on average by 52% and 39%, respectively. In 2010, the average CO2 and SO2 emissions reduction potential for the 316 investigated power plants were 1,517 kt and 3,773 t, respectively. The average MAC prices for CO2 and SO2 were estimated to be 598 yuan/tonne and 22,401 yuan/tonne, respectively, indicating that the reduction of such emissions is very expensive. Furthermore, I formulated an optimization problem for maximizing CO2 and SO2 emission reductions under the governmental budget constraint. Solving this optimization problem yielded the total cost for the maximum reductions of CO2 and SO2 emissions, the maximum possible reductions for CO2 and SO2 emissions for each allocated budget scale, and the optimal budget allocation for each power plant at a given budget scale. I finally suggest effective mitigation strategies for CO2 and SO2 emissions generated from China’s coal-fired power plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.116978&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:M.H. Elkholy;
M.H. Elkholy
M.H. Elkholy in OpenAIREMahmoud Elymany;
Mahmoud Elymany
Mahmoud Elymany in OpenAIREHamid Metwally;
M.A. Farahat; +2 AuthorsHamid Metwally
Hamid Metwally in OpenAIREM.H. Elkholy;
M.H. Elkholy
M.H. Elkholy in OpenAIREMahmoud Elymany;
Mahmoud Elymany
Mahmoud Elymany in OpenAIREHamid Metwally;
M.A. Farahat; Tomonobu Senjyu; Mohammed Elsayed Lotfy;Hamid Metwally
Hamid Metwally in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Yuan Gao;
Yuan Gao
Yuan Gao in OpenAIREShohei Miyata;
Shohei Miyata
Shohei Miyata in OpenAIREYasunori Akashi;
Yasunori Akashi
Yasunori Akashi in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Hafiz M. Asfahan;
Hafiz M. Asfahan
Hafiz M. Asfahan in OpenAIREMuhammad Sultan;
Takahiko Miyazaki; Bidyut B. Saha; +3 AuthorsMuhammad Sultan
Muhammad Sultan in OpenAIREHafiz M. Asfahan;
Hafiz M. Asfahan
Hafiz M. Asfahan in OpenAIREMuhammad Sultan;
Takahiko Miyazaki; Bidyut B. Saha; Ahmed A. Askalany;Muhammad Sultan
Muhammad Sultan in OpenAIREMuhammad W. Shahzad;
William Worek;Muhammad W. Shahzad
Muhammad W. Shahzad in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.120101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Jiong Yang; Fanyong Cheng; Zhi Liu; Maxwell Mensah Duodu; Mingyan Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.121650&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV With the coronavirus pandemic wreathing havoc around the world, power industry has been hit hard due to the proposal of lockdown policies. However, the impact of lockdowns and shutdowns on the power system in different regions as well as periods of the pandemic can hardly be reflected on the foundation of current studies. In this paper, a prediction-based analysis method is developed to point out the electricity consumption gap resulted from the pandemic situation. The core of this method is a novel optimized grey prediction model, namely Rolling IMSGM(1,1) (Rolling Mechanism combined with grey model with initial condition as Maclaurin series), which achieves better prediction results in the face of long-term emergencies. A novel initial condition is adopted to track data with various characteristics in the form of higher-order polynomials, which are then determined by intelligent algorithms to realize accurate fitting. Historical power consumption data in China are utilized to carry out the monthly forecasts during COVID-19. Compared with other competitive models' prediction results, the superiority of IMSGM(1,1) are demonstrated. Through analyzing the gap between predicted consumption values and the actual data, it can be found that the impact of the pandemic on electricity varies in different periods, which is related to its severity and the local lockdown policies. This study helps to understand the impact on power industry in the face of such an emergency intuitively so as to respond to possible future events.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116339&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120912&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Jiamin Zhao; Tingting Hou; Qian Wang; Zhenya Zhang; Zhongfang Lei;Kazuya Shimizu;
Wenshan Guo; Huu Hao Ngo;Kazuya Shimizu
Kazuya Shimizu in OpenAIREAbstract This study investigated the possibility of biogas recirculation-driven anaerobic granular sludge system for sewage sludge treatment, aiming to develop an energy sufficient and multifunctional anaerobic digestion (AD) system for sewage sludge with biogas upgrading, sludge stabilization and self-aggregation. Results show that biogas recirculation could enhance the CH4 production rate by 31–44% and shorten the lag-phase duration to 0.08–0.2 day with simultaneous increment of CH4 content (> 83% in this study). The reason is mainly associated with the stronger interspecies electron transfer under the biogas recirculation condition. In addition, 37–40% better dewaterability of the digested sludge was achieved, implying the occurrence of self-aggregation of microbial cells induced by biogas recirculation. Energy balance analysis reflects that this sewage sludge treatment system could enhance the net energy recovery by 78–85%. Moreover, almost no obvious influence was noticed on the seed granules’ composition and properties. These findings suggest that the biogas recirculation-driven anaerobic granular sludge system could be a promising alternative for sewage sludge treatment, which can improve biogas quality and sludge dewaterability simultaneously towards sludge self-aggregation with no addition of other chemicals.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu