- home
- Advanced Search
- Energy Research
- National Institutes of Health
- EU
- Energy Research
- National Institutes of Health
- EU
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012Publisher:Informa UK Limited Funded by:DFG | Exploiting the Potential ..., DFG | Redox-Regulation: Generat..., EC | MITOTARGET +2 projectsDFG| Exploiting the Potential of Natural Compounds: Myxobacteria as Source for Leads, Tools, and Therapeutics in Cancer Research ,DFG| Redox-Regulation: Generatorsysteme und funktionelle Konsequenzen ,EC| MITOTARGET ,NIH| Pharmacogenetics of Membrane Transporters ,EC| FIGHTINGDRUGFAILUREKlaus Golka; Silvia Selinski; Matthias W. Haenel; Meinolf Blaszkewicz; Marie-Louise Lehmann; Oliver Moormann; Daniel Ovsiannikov; Jan G. Hengstler;In the 1990s, an uncommonly high percentage of glutathione S-transferase M1 (GSTM1) negative bladder cancer cases (70%) was reported in the greater Dortmund area. The question arose as to whether this uncommonly high percentage of GSTM1 negative bladder cancer cases was due to environmental and/or occupational exposure decades ago. Thus, 15 years later, another study on bladder cancer was performed in the same area after the coal, iron, and steel industries had finally closed in the 1990s. In total 196 bladder cancer patients from the St.-Josefs-Hospital Dortmund-Hörde and 235 controls with benign urological diseases were assessed by questionnaire and genotyped for GSTM1, glutathione S-transferase T1 (GSTT1), and the N-acetyltransferase 2 (NAT2) tag SNP rs1495741. The frequency of the GSTM1 negative genotype was 52% in bladder cancer cases and thus lower compared to a previous study performed from 1992 to 1995 in the same area (70%). NAT2 genotypes were distributed equally among cases and controls (63% slow acetylators). Fewer GSTT1 negative genotypes were present in cases (17%) than in controls (20%).
Naunyn-Schmiedeberg ... arrow_drop_down Naunyn-Schmiedeberg s Archives of PharmacologyArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Toxicology and Environmental Health Part AArticle . 2012 . Peer-reviewedData sources: CrossrefJournal of Toxicology and Environmental Health Part AArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15287394.2012.675308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Naunyn-Schmiedeberg ... arrow_drop_down Naunyn-Schmiedeberg s Archives of PharmacologyArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Toxicology and Environmental Health Part AArticle . 2012 . Peer-reviewedData sources: CrossrefJournal of Toxicology and Environmental Health Part AArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15287394.2012.675308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:EC | SYNTHPHOTO, UKRI | The Biogenesis Structure ..., NIH | A Resource for Biomedical... +2 projectsEC| SYNTHPHOTO ,UKRI| The Biogenesis Structure and Function of Biological Membranes ,NIH| A Resource for Biomedical Mass Spectrometry ,UKRI| Low-Dimensional Chemistry ,NIH| A Resource for Biomedical Mass SpectrometryChi, S.C.; Mothersole, D.J.; Dilbeck, P.; Niedzwiedzki, D.M.; Zhang, H.; Qian, P.; Vasilev, C.; Grayson, K.J.; Jackson, P.J.; Martin, E.C.; Li, Y.; Holten, D.; Neil Hunter, C.;Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated C = C bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.
CORE arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2014.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2014.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:NIH | Cancer Center Support Gra..., NIH | Autophagy and Drug-Induce..., NIH | Autophagy in Alcoholic Pa... +5 projectsNIH| Cancer Center Support Grant ,NIH| Autophagy and Drug-Induced Liver Injury ,NIH| Autophagy in Alcoholic Pancreatitis ,MIUR ,NIH| Mechanisms Regulating Autophagy in Aging and Alcohol-Induced Brain Injury ,NIH| MODULATION OF CELLULAR CLEARANCE TO TREAT HUMAN DISEASE ,NIH| Mechanisms of Impaired Lysosomal Biogenesis and Autophagy in Alcohol-Associated Alzheimer's Disease ,EC| LYSOSOMICSWen-Xing Ding; Shaogui Wang; Hong-Min Ni; Xiaojuan Chao; Madeline Hlobik; Andrea Ballabio; Andrea Ballabio;Alcohol is a well-known risk factor for hepatocellular carcinoma. Autophagy plays a dual role in liver cancer, as it suppresses tumor initiation and promotes tumor progression. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy, which is impaired in alcohol-related liver disease. However, the role of TFEB in alcohol-associated liver carcinogenesis is unknown. Liver-specific Tfeb knockout (KO) mice and their matched wild-type (WT) littermates were injected with the carcinogen diethylnitrosamine (DEN), followed by chronic ethanol feeding. The numbers of both total and larger tumors increased significantly in DEN-treated mice fed ethanol diet than in mice fed control diet. Although the number of tumors was not different between WT and L-Tfeb KO mice fed either control or ethanol diet, the number of larger tumors was less in L-Tfeb KO mice than in WT mice. No differences were observed in liver injury, steatosis, inflammation, ductular reaction, fibrosis, and tumor cell proliferation in DEN-treated mice fed ethanol. However, the levels of glypican 3, a marker of malignant hepatocellular carcinoma, markedly decreased in DEN-treated L-Tfeb KO mice fed ethanol in comparison to the WT mice. These findings indicate that chronic ethanol feeding promotes DEN-initiated liver tumor development, which is attenuated by genetic deletion of hepatic TFEB.
American Journal Of ... arrow_drop_down American Journal Of PathologyArticle . 2022 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ajpath.2021.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert American Journal Of ... arrow_drop_down American Journal Of PathologyArticle . 2022 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ajpath.2021.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Funded by:EC | CELLUFUEL, NIH | Center for Macromolecular..., NSF | Photobiology of Vision & ... +1 projectsEC| CELLUFUEL ,NIH| Center for Macromolecular Modeling and Bioinformatics ,NSF| Photobiology of Vision & Photosynthesis ,DFG| Nanoagents for spatio-temporal control of molecular and cellular reactionsKlara H. Malinowska; Wolfgang Ott; Hermann E. Gaub; Rafael C. Bernardi; Edward A. Bayer; Daniel B. Fried; Lukas F. Milles; Markus A. Jobst; Ellis Durner; Klaus Schulten; Michael A. Nash; Constantin Schoeler;AbstractChallenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 89 citations 89 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Funded by:NSF | SusChEM: Biomolecular and..., NSF | Mechanism of alkane forma..., NIH | Understanding hydrogen at... +1 projectsNSF| SusChEM: Biomolecular and cellular engineering for hydrocarbon biofuel production ,NSF| Mechanism of alkane formation by cyanobacterial aldehyde decarbonylase ,NIH| Understanding hydrogen atom transfer reactions in enzymes ,EC| DIRECTFUELJeanne A. Stuckey; Bishwajit Paul; Debasis Das; E. Neil G. Marsh; Benjamin C. Buer;The nonheme diiron enzyme cyanobacterial aldehyde deformylating oxygenase, cADO, catalyzes the highly unusual deformylation of aliphatic aldehydes to alkanes and formate. We have determined crystal structures for the enzyme with a long-chain water-soluble aldehyde and medium-chain carboxylic acid bound to the active site. These structures delineate a hydrophobic channel that connects the solvent with the deeply buried active site and reveal a mode of substrate binding that is different from previously determined structures with long-chain fatty acids bound. The structures also identify a water channel leading to the active site that could facilitate the entry of protons required in the reaction. NMR studies examining 1-[(13)C]-octanal binding to cADO indicate that the enzyme binds the aldehyde form rather than the hydrated form. Lastly, the fortuitous cocrystallization of the metal-free form of the protein with aldehyde bound has revealed protein conformation changes that are involved in binding iron.
ACS Chemical Biology arrow_drop_down ACS Chemical BiologyArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefACS Chemical BiologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/cb500343j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Chemical Biology arrow_drop_down ACS Chemical BiologyArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefACS Chemical BiologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/cb500343j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:American Chemical Society (ACS) Funded by:EC | DIRECTFUEL, NIH | Understanding hydrogen at..., NSF | Mechanism of alkane forma...EC| DIRECTFUEL ,NIH| Understanding hydrogen atom transfer reactions in enzymes ,NSF| Mechanism of alkane formation by cyanobacterial aldehyde decarbonylaseAuthors: Bishwajit Paul; Benjamin Ellington; E. Neil G. Marsh; Debasis Das;Cyanobacterial aldehyde decarbonylase (cAD) is a non-heme diiron oxygenase that catalyzes the conversion of fatty aldehydes to alkanes and formate. The mechanism of this chemically unusual reaction is poorly understood. We have investigated the mechanism of C1-C2 bond cleavage by cAD using a fatty aldehyde that incorporates a cyclopropyl group, which can act as a radical clock. When reacted with cAD, the cyclopropyl aldehyde produces 1-octadecene as the rearranged product, providing evidence for a radical mechanism for C-C bond scission. In an alternate pathway, the cyclopropyl aldehyde acts as a mechanism-based irreversible inhibitor of cAD through covalent binding of the alkyl chain to the enzyme.
Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja3115949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja3115949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:EC | SOLENALGAE, NIH | Resource for Biocomputing...EC| SOLENALGAE ,NIH| Resource for Biocomputing Visualization and InformaticsAuthors: Stefano Cazzaniga; Giorgia Beghini; Matteo Ballottari; Federico Perozeni;AbstractMicroalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, their limited biomass productivity represents a bottleneck that needs to be overcome to meet the applicative potential of these organisms. One of the domestication targets for improving their productivity is the proper balance between photoprotection and light conversion for carbon fixation. In the model organism for green algae, Chlamydomonas reinhardtii, a photoprotective mechanism inducing thermal dissipation of absorbed light energy, called Non-photochemical quenching (NPQ), is activated even at relatively low irradiances, resulting in reduced photosynthetic efficiency. Two pigment binding proteins, LHCSR1 and LHCSR3, were previously reported as the main actors during NPQ induction in C. reinhardtii. While previous work characterized in detail the functional properties of LHCSR3, few information is available for the LHCSR1 subunit. Here, we investigated in vitro the functional properties of LHCSR1 and LHCSR3 subunits: despite high sequence identity, the latter resulted as a stronger quencher compared to the former, explaining its predominant role observed in vivo. Pigment analysis, deconvolution of absorption spectra and structural models of LHCSR1 and LHCR3 suggest that different quenching efficiency is related to a different occupancy of L2 carotenoid binding site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-020-78985-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-020-78985-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1986Publisher:American Physiological Society Funded by:NIH | Complete Human Peptide- a..., NSERC, EC | PROTEOMICS V3.0 +1 projectsNIH| Complete Human Peptide- and MRM-Atlas ,NSERC ,EC| PROTEOMICS V3.0 ,SNSF| Development and application of a technology and platform for high throughput quantitative plasma proteome profilingAuthors: S. Ito; M. J. Rutten;pmid: 3766734
Relationships between morphological and electrophysiological changes with low concentrations of ethanol on in vitro guinea pig gastric mucosa were investigated. Tissues mounted in Ussing chambers allowed recording of transepithelial potential difference (PD), resistance (R), short-circuit current (Isc), and acid secretion (H+). At selected times the mucosae were processed for morphological analysis. With luminal 10% ethanol there was a decrease in PD, R, Isc, and H+ within 1 min, and they eventually went to low steady-state values between 10 and 40 min. At 1 min many surface epithelial cells lifted off from the basal lamina but were still anchored by thin basal cell processes. After 10 min in ethanol many surface cells had completely detached from the basal lamina but remained connected to adjacent cells by their junctions. Numerous cytoplasmic blebs formed on both apical and basal cell surfaces. Concurrently, there was a significant increase in microvillus length. After 40 min most of the surface cells were detached from the basal lamina as sheets forming epithelial blisters. Upon ethanol washout there was epithelial cell reattachment to the basal lamina and a return of the PD, R, and Isc to control values within 40 min. Incubation of the luminal surface with 10% ethanol for 5 h resulted in a gradual rise of the PD, R, Isc, and H+ to control values by 4 h with a coincident return of the normal mucosal morphology. These studies indicate that ethanol has reversible and possibly adaptable effects on the in vitro guinea pig gastric mucosa and that the morphological changes are closely correlated with the decline and recovery of the electrical and secretory activity of the tissue.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1152/ajpgi.1986.251.4.g518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1152/ajpgi.1986.251.4.g518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Apr 2021 Spain, United Kingdom, Denmark, ChilePublisher:Springer Science and Business Media LLC Funded by:NIH | Genetic Epidermiology of ..., NHMRC | Molecular determinants of..., NHMRC | Australian melanoma famil... +6 projectsNIH| Genetic Epidermiology of Melanoma ,NHMRC| Molecular determinants of risk, progression and treatement response in melenoma ,NHMRC| Australian melanoma family study ,NHMRC| Practice- and policy-relevant research in skin cancer epidemiology, prevention and screening ,NHMRC| Comprehensive assessment of genetic and environmental risk factors for melanoma: a population-based family study ,NHMRC| Molecular determinants of risk, progression and treatment response in melanoma ,EC| RISK FACTORS CANCER ,NHMRC| Molecular determinants of risk, progression and treatment response in melanoma ,NHMRC| Molecular genetics of melanoma predispositionJulio C. Salas-Alanis; Peter A. Kanetsky; Julia Newton-Bishop; David E. Elder; Montserrat Molgó; Claudia Balestrini; Barbara Perić; Christian Ingvar; Francisco Cuellar; Francisco Cuellar; Elizabeth A. Holland; Luis Alberto Ribeiro Froes; Dace Pjanova; Thaís Corsetti Grazziotin; Alejandra Larre-Borges; Esther Azizi; Esther Azizi; Helen Schmid; Nelleke A. Gruis; Anne-Marie Gerdes; Scarlet H. Doyle; Veronica Höiom; Karin Wadt; Shawn A. Zamani; D. Timothy Bishop; Blanca Carlos-Ortega; Nandita Mitra; Lu Qian; Susana Puig; Susana Puig; Håkan Olsson; Johan Hansson; Luciana Facure Moredo; Paola Ghiorzo; Jacoba J. Out-Luiting; Marko Hočevar; William Bruno; Gilles Landman; John Charles A. Lacson; Anne E. Cust; Graham J. Mann; Graham J. Mann;Abstract Background Individuals from melanoma-prone families have similar or reduced sun-protective behaviors compared to the general population. Studies on trends in sun-related behaviors have been temporally and geographically limited. Methods Individuals from an international consortium of melanoma-prone families (GenoMEL) were retrospectively asked about sunscreen use, sun exposure (time spent outside), sunburns, and sunbed use at several timepoints over their lifetime. Generalized linear mixed models were used to examine the association between these outcomes and birth cohort defined by decade spans, after adjusting for covariates. Results A total of 2407 participants from 547 families across 17 centers were analyzed. Sunscreen use increased across subsequent birth cohorts, and although the likelihood of sunburns increased until the 1950s birth cohort, it decreased thereafter. Average sun exposure did not change across the birth cohorts, and the likelihood of sunbed use increased in more recent birth cohorts. We generally did not find any differences in sun-related behavior when comparing melanoma cases to non-cases. Melanoma cases had increased sunscreen use, decreased sun exposure, and decreased odds of sunburn and sunbed use after melanoma diagnosis compared to before diagnosis. Conclusions Although sunscreen use has increased and the likelihood of sunburns has decreased in more recent birth cohorts, individuals in melanoma-prone families have not reduced their overall sun exposure and had an increased likelihood of sunbed use in more recent birth cohorts. These observations demonstrate partial improvements in melanoma prevention and suggest that additional intervention strategies may be needed to achieve optimal sun-protective behavior in melanoma-prone families.
BMC Public Health arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPontificia Universidad Católica de Chile: Repositorio UCArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12889-021-10424-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 38visibility views 38 download downloads 28 Powered bymore_vert BMC Public Health arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPontificia Universidad Católica de Chile: Repositorio UCArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12889-021-10424-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Cold Spring Harbor Laboratory Funded by:UKRI | Neurobiological underpinn..., NIH | ENIGMA Center for Worldwi..., EC | STRATIFY +12 projectsUKRI| Neurobiological underpinning of eating disorders: integrative biopsychosocial longitudinal analyses in adolescents ,NIH| ENIGMA Center for Worldwide Medicine, Imaging & Genomics ,EC| STRATIFY ,UKRI| Consortium on Vulnerability to Externalizing Disorders and Addictions [c-VEDA] ,NIH| ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD ,ANR| ADODEP ,NIH| ENIGMA World Aging Center ,SFI| The Neurobiology of Voluntary Nicotine Abstinence: Genetics, Environment and Neurocognitive Endophenotypes ,DFG| Volition and Cognitive Control: Mechanisms, Modulators and Dysfunctions ,NIH| ENIGMA Center for Worldwide Medicine, Imaging & Genomics ,NIH| Axon, Testosterone and Mental Health during Adolescence ,NIH| A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers ,UKRI| Establishing causal relationships between biopsychosocial predictors and correlates of eating disorders and their mediation by neural pathways ,NIH| COINSTAC: decentralized, scalable analysis of loosely coupled data ,NSF| CREST Center for Dynamic Multiscale and Multimodal Brain Mapping Over The Lifespan [D-MAP]Harshvardhan Gazula; Kelly Rootes-Murdy; Bharath Holla; Sunitha Basodi; Zuo Zhang; Eric Verner; Ross Kelly; Pratima Murthy; Amit Chakrabarti; Debasish Basu; Subodh Bhagyalakshmi Nanjayya; Rajkumar Lenin Singh; Roshan Lourembam Singh; Kartik Kalyanram; Kamakshi Kartik; Kumaran Kalyanaraman; Krishnaveni Ghattu; Rebecca Kuriyan; Sunita Simon Kurpad; Gareth J Barker; Rose Dawn Bharath; Sylvane Desrivieres; Meera Purushottam; Dimitri Papadopoulos Orfanos; Eesha Sharma; Matthew Hickman; Mireille Toledano; Nilakshi Vaidya; Tobias Banaschewski; Arun L.W. Bokde; Herta Flor; Antoine Grigis; Hugh Garavan; Penny Gowland; Andreas Heinz; Rüdiger Brühl; Jean-Luc Martinot; Marie-Laure Paillère Martinot; Eric Artiges; Frauke Nees; Tomáš Paus; Luise Poustka; Juliane H. Fröhner; Lauren Robinson; Michael N. Smolka; Henrik Walter; Jeanne Winterer; Robert Whelan; Jessica A. Turner; Anand D. Sarwate; Sergey M. Plis; Vivek Benegal; Gunter Schumann; Vince D. Calhoun;pmid: 36434478
AbstractWith the growth of decentralized/federated analysis approaches in neuroimaging, the opportunities to study brain disorders using data from multiple sites has grown multi-fold. One such initiative is the Neuromark, a fully automated spatially constrained independent component analysis (ICA) that is used to link brain network abnormalities among different datasets, studies, and disorders while leveraging subject-specific networks. In this study, we implement the neuromark pipeline in COINSTAC, an open-source neuroimaging framework for collaborative/decentralized analysis. Decentralized analysis of nearly 2000 resting-state functional magnetic resonance imaging datasets collected at different sites across two cohorts and co-located in different countries was performed to study the resting brain functional network connectivity changes in adolescents who smoke and consume alcohol. Results showed hypoconnectivity across the majority of networks including sensory, default mode, and subcortical domains, more for alcohol than smoking, and decreased low frequency power. These findings suggest that global reduced synchronization is associated with both tobacco and alcohol use. This work demonstrates the utility and incentives associated with large-scale decentralized collaborations spanning multiple sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.02.02.478847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.02.02.478847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012Publisher:Informa UK Limited Funded by:DFG | Exploiting the Potential ..., DFG | Redox-Regulation: Generat..., EC | MITOTARGET +2 projectsDFG| Exploiting the Potential of Natural Compounds: Myxobacteria as Source for Leads, Tools, and Therapeutics in Cancer Research ,DFG| Redox-Regulation: Generatorsysteme und funktionelle Konsequenzen ,EC| MITOTARGET ,NIH| Pharmacogenetics of Membrane Transporters ,EC| FIGHTINGDRUGFAILUREKlaus Golka; Silvia Selinski; Matthias W. Haenel; Meinolf Blaszkewicz; Marie-Louise Lehmann; Oliver Moormann; Daniel Ovsiannikov; Jan G. Hengstler;In the 1990s, an uncommonly high percentage of glutathione S-transferase M1 (GSTM1) negative bladder cancer cases (70%) was reported in the greater Dortmund area. The question arose as to whether this uncommonly high percentage of GSTM1 negative bladder cancer cases was due to environmental and/or occupational exposure decades ago. Thus, 15 years later, another study on bladder cancer was performed in the same area after the coal, iron, and steel industries had finally closed in the 1990s. In total 196 bladder cancer patients from the St.-Josefs-Hospital Dortmund-Hörde and 235 controls with benign urological diseases were assessed by questionnaire and genotyped for GSTM1, glutathione S-transferase T1 (GSTT1), and the N-acetyltransferase 2 (NAT2) tag SNP rs1495741. The frequency of the GSTM1 negative genotype was 52% in bladder cancer cases and thus lower compared to a previous study performed from 1992 to 1995 in the same area (70%). NAT2 genotypes were distributed equally among cases and controls (63% slow acetylators). Fewer GSTT1 negative genotypes were present in cases (17%) than in controls (20%).
Naunyn-Schmiedeberg ... arrow_drop_down Naunyn-Schmiedeberg s Archives of PharmacologyArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Toxicology and Environmental Health Part AArticle . 2012 . Peer-reviewedData sources: CrossrefJournal of Toxicology and Environmental Health Part AArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15287394.2012.675308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Naunyn-Schmiedeberg ... arrow_drop_down Naunyn-Schmiedeberg s Archives of PharmacologyArticle . 2012 . Peer-reviewedLicense: Springer TDMData sources: CrossrefJournal of Toxicology and Environmental Health Part AArticle . 2012 . Peer-reviewedData sources: CrossrefJournal of Toxicology and Environmental Health Part AArticle . 2012Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/15287394.2012.675308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015 United KingdomPublisher:Elsevier BV Funded by:EC | SYNTHPHOTO, UKRI | The Biogenesis Structure ..., NIH | A Resource for Biomedical... +2 projectsEC| SYNTHPHOTO ,UKRI| The Biogenesis Structure and Function of Biological Membranes ,NIH| A Resource for Biomedical Mass Spectrometry ,UKRI| Low-Dimensional Chemistry ,NIH| A Resource for Biomedical Mass SpectrometryChi, S.C.; Mothersole, D.J.; Dilbeck, P.; Niedzwiedzki, D.M.; Zhang, H.; Qian, P.; Vasilev, C.; Grayson, K.J.; Jackson, P.J.; Martin, E.C.; Li, Y.; Holten, D.; Neil Hunter, C.;Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon-carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N=10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2'-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC-LH1-PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2'-diketo-spirilloxanthin (15 conjugated C = C bonds; N=15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N=9; 94%), spheroidene (N=10; 96%) and spheroidenone (N=11; 95%), whereas intermediate values were measured for lycopene (N=11; 64%), rhodopin (N=11; 62%) and spirilloxanthin (N=13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis.
CORE arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2014.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Biochimica et Biophysica Acta (BBA) - BioenergeticsArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefBiochimica et Biophysica Acta (BBA) - BioenergeticsConference objectData sources: OpenAPC Global Initiativeadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bbabio.2014.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Funded by:NIH | Cancer Center Support Gra..., NIH | Autophagy and Drug-Induce..., NIH | Autophagy in Alcoholic Pa... +5 projectsNIH| Cancer Center Support Grant ,NIH| Autophagy and Drug-Induced Liver Injury ,NIH| Autophagy in Alcoholic Pancreatitis ,MIUR ,NIH| Mechanisms Regulating Autophagy in Aging and Alcohol-Induced Brain Injury ,NIH| MODULATION OF CELLULAR CLEARANCE TO TREAT HUMAN DISEASE ,NIH| Mechanisms of Impaired Lysosomal Biogenesis and Autophagy in Alcohol-Associated Alzheimer's Disease ,EC| LYSOSOMICSWen-Xing Ding; Shaogui Wang; Hong-Min Ni; Xiaojuan Chao; Madeline Hlobik; Andrea Ballabio; Andrea Ballabio;Alcohol is a well-known risk factor for hepatocellular carcinoma. Autophagy plays a dual role in liver cancer, as it suppresses tumor initiation and promotes tumor progression. Transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy, which is impaired in alcohol-related liver disease. However, the role of TFEB in alcohol-associated liver carcinogenesis is unknown. Liver-specific Tfeb knockout (KO) mice and their matched wild-type (WT) littermates were injected with the carcinogen diethylnitrosamine (DEN), followed by chronic ethanol feeding. The numbers of both total and larger tumors increased significantly in DEN-treated mice fed ethanol diet than in mice fed control diet. Although the number of tumors was not different between WT and L-Tfeb KO mice fed either control or ethanol diet, the number of larger tumors was less in L-Tfeb KO mice than in WT mice. No differences were observed in liver injury, steatosis, inflammation, ductular reaction, fibrosis, and tumor cell proliferation in DEN-treated mice fed ethanol. However, the levels of glypican 3, a marker of malignant hepatocellular carcinoma, markedly decreased in DEN-treated L-Tfeb KO mice fed ethanol in comparison to the WT mice. These findings indicate that chronic ethanol feeding promotes DEN-initiated liver tumor development, which is attenuated by genetic deletion of hepatic TFEB.
American Journal Of ... arrow_drop_down American Journal Of PathologyArticle . 2022 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ajpath.2021.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert American Journal Of ... arrow_drop_down American Journal Of PathologyArticle . 2022 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ajpath.2021.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Funded by:EC | CELLUFUEL, NIH | Center for Macromolecular..., NSF | Photobiology of Vision & ... +1 projectsEC| CELLUFUEL ,NIH| Center for Macromolecular Modeling and Bioinformatics ,NSF| Photobiology of Vision & Photosynthesis ,DFG| Nanoagents for spatio-temporal control of molecular and cellular reactionsKlara H. Malinowska; Wolfgang Ott; Hermann E. Gaub; Rafael C. Bernardi; Edward A. Bayer; Daniel B. Fried; Lukas F. Milles; Markus A. Jobst; Ellis Durner; Klaus Schulten; Michael A. Nash; Constantin Schoeler;AbstractChallenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 89 citations 89 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms6635&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:American Chemical Society (ACS) Funded by:NSF | SusChEM: Biomolecular and..., NSF | Mechanism of alkane forma..., NIH | Understanding hydrogen at... +1 projectsNSF| SusChEM: Biomolecular and cellular engineering for hydrocarbon biofuel production ,NSF| Mechanism of alkane formation by cyanobacterial aldehyde decarbonylase ,NIH| Understanding hydrogen atom transfer reactions in enzymes ,EC| DIRECTFUELJeanne A. Stuckey; Bishwajit Paul; Debasis Das; E. Neil G. Marsh; Benjamin C. Buer;The nonheme diiron enzyme cyanobacterial aldehyde deformylating oxygenase, cADO, catalyzes the highly unusual deformylation of aliphatic aldehydes to alkanes and formate. We have determined crystal structures for the enzyme with a long-chain water-soluble aldehyde and medium-chain carboxylic acid bound to the active site. These structures delineate a hydrophobic channel that connects the solvent with the deeply buried active site and reveal a mode of substrate binding that is different from previously determined structures with long-chain fatty acids bound. The structures also identify a water channel leading to the active site that could facilitate the entry of protons required in the reaction. NMR studies examining 1-[(13)C]-octanal binding to cADO indicate that the enzyme binds the aldehyde form rather than the hydrated form. Lastly, the fortuitous cocrystallization of the metal-free form of the protein with aldehyde bound has revealed protein conformation changes that are involved in binding iron.
ACS Chemical Biology arrow_drop_down ACS Chemical BiologyArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefACS Chemical BiologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/cb500343j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Chemical Biology arrow_drop_down ACS Chemical BiologyArticle . 2014 . Peer-reviewedLicense: Standard ACS AuthorChoice/Editors’ Choice Usage AgreementData sources: CrossrefACS Chemical BiologyArticleLicense: acs-specific: authorchoice/editors choice usage agreementData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/cb500343j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:American Chemical Society (ACS) Funded by:EC | DIRECTFUEL, NIH | Understanding hydrogen at..., NSF | Mechanism of alkane forma...EC| DIRECTFUEL ,NIH| Understanding hydrogen atom transfer reactions in enzymes ,NSF| Mechanism of alkane formation by cyanobacterial aldehyde decarbonylaseAuthors: Bishwajit Paul; Benjamin Ellington; E. Neil G. Marsh; Debasis Das;Cyanobacterial aldehyde decarbonylase (cAD) is a non-heme diiron oxygenase that catalyzes the conversion of fatty aldehydes to alkanes and formate. The mechanism of this chemically unusual reaction is poorly understood. We have investigated the mechanism of C1-C2 bond cleavage by cAD using a fatty aldehyde that incorporates a cyclopropyl group, which can act as a radical clock. When reacted with cAD, the cyclopropyl aldehyde produces 1-octadecene as the rearranged product, providing evidence for a radical mechanism for C-C bond scission. In an alternate pathway, the cyclopropyl aldehyde acts as a mechanism-based irreversible inhibitor of cAD through covalent binding of the alkyl chain to the enzyme.
Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja3115949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 59 citations 59 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2013Data sources: SESAM Publication Database - FP7 ENERGYadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ja3115949&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Springer Science and Business Media LLC Funded by:EC | SOLENALGAE, NIH | Resource for Biocomputing...EC| SOLENALGAE ,NIH| Resource for Biocomputing Visualization and InformaticsAuthors: Stefano Cazzaniga; Giorgia Beghini; Matteo Ballottari; Federico Perozeni;AbstractMicroalgae are unicellular photosynthetic organisms considered as potential alternative sources for biomass, biofuels or high value products. However, their limited biomass productivity represents a bottleneck that needs to be overcome to meet the applicative potential of these organisms. One of the domestication targets for improving their productivity is the proper balance between photoprotection and light conversion for carbon fixation. In the model organism for green algae, Chlamydomonas reinhardtii, a photoprotective mechanism inducing thermal dissipation of absorbed light energy, called Non-photochemical quenching (NPQ), is activated even at relatively low irradiances, resulting in reduced photosynthetic efficiency. Two pigment binding proteins, LHCSR1 and LHCSR3, were previously reported as the main actors during NPQ induction in C. reinhardtii. While previous work characterized in detail the functional properties of LHCSR3, few information is available for the LHCSR1 subunit. Here, we investigated in vitro the functional properties of LHCSR1 and LHCSR3 subunits: despite high sequence identity, the latter resulted as a stronger quencher compared to the former, explaining its predominant role observed in vivo. Pigment analysis, deconvolution of absorption spectra and structural models of LHCSR1 and LHCR3 suggest that different quenching efficiency is related to a different occupancy of L2 carotenoid binding site.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-020-78985-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-020-78985-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1986Publisher:American Physiological Society Funded by:NIH | Complete Human Peptide- a..., NSERC, EC | PROTEOMICS V3.0 +1 projectsNIH| Complete Human Peptide- and MRM-Atlas ,NSERC ,EC| PROTEOMICS V3.0 ,SNSF| Development and application of a technology and platform for high throughput quantitative plasma proteome profilingAuthors: S. Ito; M. J. Rutten;pmid: 3766734
Relationships between morphological and electrophysiological changes with low concentrations of ethanol on in vitro guinea pig gastric mucosa were investigated. Tissues mounted in Ussing chambers allowed recording of transepithelial potential difference (PD), resistance (R), short-circuit current (Isc), and acid secretion (H+). At selected times the mucosae were processed for morphological analysis. With luminal 10% ethanol there was a decrease in PD, R, Isc, and H+ within 1 min, and they eventually went to low steady-state values between 10 and 40 min. At 1 min many surface epithelial cells lifted off from the basal lamina but were still anchored by thin basal cell processes. After 10 min in ethanol many surface cells had completely detached from the basal lamina but remained connected to adjacent cells by their junctions. Numerous cytoplasmic blebs formed on both apical and basal cell surfaces. Concurrently, there was a significant increase in microvillus length. After 40 min most of the surface cells were detached from the basal lamina as sheets forming epithelial blisters. Upon ethanol washout there was epithelial cell reattachment to the basal lamina and a return of the PD, R, and Isc to control values within 40 min. Incubation of the luminal surface with 10% ethanol for 5 h resulted in a gradual rise of the PD, R, Isc, and H+ to control values by 4 h with a coincident return of the normal mucosal morphology. These studies indicate that ethanol has reversible and possibly adaptable effects on the in vitro guinea pig gastric mucosa and that the morphological changes are closely correlated with the decline and recovery of the electrical and secretory activity of the tissue.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1152/ajpgi.1986.251.4.g518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1152/ajpgi.1986.251.4.g518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Apr 2021 Spain, United Kingdom, Denmark, ChilePublisher:Springer Science and Business Media LLC Funded by:NIH | Genetic Epidermiology of ..., NHMRC | Molecular determinants of..., NHMRC | Australian melanoma famil... +6 projectsNIH| Genetic Epidermiology of Melanoma ,NHMRC| Molecular determinants of risk, progression and treatement response in melenoma ,NHMRC| Australian melanoma family study ,NHMRC| Practice- and policy-relevant research in skin cancer epidemiology, prevention and screening ,NHMRC| Comprehensive assessment of genetic and environmental risk factors for melanoma: a population-based family study ,NHMRC| Molecular determinants of risk, progression and treatment response in melanoma ,EC| RISK FACTORS CANCER ,NHMRC| Molecular determinants of risk, progression and treatment response in melanoma ,NHMRC| Molecular genetics of melanoma predispositionJulio C. Salas-Alanis; Peter A. Kanetsky; Julia Newton-Bishop; David E. Elder; Montserrat Molgó; Claudia Balestrini; Barbara Perić; Christian Ingvar; Francisco Cuellar; Francisco Cuellar; Elizabeth A. Holland; Luis Alberto Ribeiro Froes; Dace Pjanova; Thaís Corsetti Grazziotin; Alejandra Larre-Borges; Esther Azizi; Esther Azizi; Helen Schmid; Nelleke A. Gruis; Anne-Marie Gerdes; Scarlet H. Doyle; Veronica Höiom; Karin Wadt; Shawn A. Zamani; D. Timothy Bishop; Blanca Carlos-Ortega; Nandita Mitra; Lu Qian; Susana Puig; Susana Puig; Håkan Olsson; Johan Hansson; Luciana Facure Moredo; Paola Ghiorzo; Jacoba J. Out-Luiting; Marko Hočevar; William Bruno; Gilles Landman; John Charles A. Lacson; Anne E. Cust; Graham J. Mann; Graham J. Mann;Abstract Background Individuals from melanoma-prone families have similar or reduced sun-protective behaviors compared to the general population. Studies on trends in sun-related behaviors have been temporally and geographically limited. Methods Individuals from an international consortium of melanoma-prone families (GenoMEL) were retrospectively asked about sunscreen use, sun exposure (time spent outside), sunburns, and sunbed use at several timepoints over their lifetime. Generalized linear mixed models were used to examine the association between these outcomes and birth cohort defined by decade spans, after adjusting for covariates. Results A total of 2407 participants from 547 families across 17 centers were analyzed. Sunscreen use increased across subsequent birth cohorts, and although the likelihood of sunburns increased until the 1950s birth cohort, it decreased thereafter. Average sun exposure did not change across the birth cohorts, and the likelihood of sunbed use increased in more recent birth cohorts. We generally did not find any differences in sun-related behavior when comparing melanoma cases to non-cases. Melanoma cases had increased sunscreen use, decreased sun exposure, and decreased odds of sunburn and sunbed use after melanoma diagnosis compared to before diagnosis. Conclusions Although sunscreen use has increased and the likelihood of sunburns has decreased in more recent birth cohorts, individuals in melanoma-prone families have not reduced their overall sun exposure and had an increased likelihood of sunbed use in more recent birth cohorts. These observations demonstrate partial improvements in melanoma prevention and suggest that additional intervention strategies may be needed to achieve optimal sun-protective behavior in melanoma-prone families.
BMC Public Health arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPontificia Universidad Católica de Chile: Repositorio UCArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12889-021-10424-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 38visibility views 38 download downloads 28 Powered bymore_vert BMC Public Health arrow_drop_down Diposit Digital de la Universitat de BarcelonaArticle . 2021License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaUniversity of Copenhagen: ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTAPontificia Universidad Católica de Chile: Repositorio UCArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s12889-021-10424-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Cold Spring Harbor Laboratory Funded by:UKRI | Neurobiological underpinn..., NIH | ENIGMA Center for Worldwi..., EC | STRATIFY +12 projectsUKRI| Neurobiological underpinning of eating disorders: integrative biopsychosocial longitudinal analyses in adolescents ,NIH| ENIGMA Center for Worldwide Medicine, Imaging & Genomics ,EC| STRATIFY ,UKRI| Consortium on Vulnerability to Externalizing Disorders and Addictions [c-VEDA] ,NIH| ENIGMA-COINSTAC: Advanced Worldwide Transdiagnostic Analysis of Valence System Brain CircuitsPD ,ANR| ADODEP ,NIH| ENIGMA World Aging Center ,SFI| The Neurobiology of Voluntary Nicotine Abstinence: Genetics, Environment and Neurocognitive Endophenotypes ,DFG| Volition and Cognitive Control: Mechanisms, Modulators and Dysfunctions ,NIH| ENIGMA Center for Worldwide Medicine, Imaging & Genomics ,NIH| Axon, Testosterone and Mental Health during Adolescence ,NIH| A decentralized macro and micro gene-by-environment interaction analysis of substance use behavior and its brain biomarkers ,UKRI| Establishing causal relationships between biopsychosocial predictors and correlates of eating disorders and their mediation by neural pathways ,NIH| COINSTAC: decentralized, scalable analysis of loosely coupled data ,NSF| CREST Center for Dynamic Multiscale and Multimodal Brain Mapping Over The Lifespan [D-MAP]Harshvardhan Gazula; Kelly Rootes-Murdy; Bharath Holla; Sunitha Basodi; Zuo Zhang; Eric Verner; Ross Kelly; Pratima Murthy; Amit Chakrabarti; Debasish Basu; Subodh Bhagyalakshmi Nanjayya; Rajkumar Lenin Singh; Roshan Lourembam Singh; Kartik Kalyanram; Kamakshi Kartik; Kumaran Kalyanaraman; Krishnaveni Ghattu; Rebecca Kuriyan; Sunita Simon Kurpad; Gareth J Barker; Rose Dawn Bharath; Sylvane Desrivieres; Meera Purushottam; Dimitri Papadopoulos Orfanos; Eesha Sharma; Matthew Hickman; Mireille Toledano; Nilakshi Vaidya; Tobias Banaschewski; Arun L.W. Bokde; Herta Flor; Antoine Grigis; Hugh Garavan; Penny Gowland; Andreas Heinz; Rüdiger Brühl; Jean-Luc Martinot; Marie-Laure Paillère Martinot; Eric Artiges; Frauke Nees; Tomáš Paus; Luise Poustka; Juliane H. Fröhner; Lauren Robinson; Michael N. Smolka; Henrik Walter; Jeanne Winterer; Robert Whelan; Jessica A. Turner; Anand D. Sarwate; Sergey M. Plis; Vivek Benegal; Gunter Schumann; Vince D. Calhoun;pmid: 36434478
AbstractWith the growth of decentralized/federated analysis approaches in neuroimaging, the opportunities to study brain disorders using data from multiple sites has grown multi-fold. One such initiative is the Neuromark, a fully automated spatially constrained independent component analysis (ICA) that is used to link brain network abnormalities among different datasets, studies, and disorders while leveraging subject-specific networks. In this study, we implement the neuromark pipeline in COINSTAC, an open-source neuroimaging framework for collaborative/decentralized analysis. Decentralized analysis of nearly 2000 resting-state functional magnetic resonance imaging datasets collected at different sites across two cohorts and co-located in different countries was performed to study the resting brain functional network connectivity changes in adolescents who smoke and consume alcohol. Results showed hypoconnectivity across the majority of networks including sensory, default mode, and subcortical domains, more for alcohol than smoking, and decreased low frequency power. These findings suggest that global reduced synchronization is associated with both tobacco and alcohol use. This work demonstrates the utility and incentives associated with large-scale decentralized collaborations spanning multiple sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.02.02.478847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1101/2022.02.02.478847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu