- home
- Advanced Search
Filters
Clear All- Energy Research
- 12. Responsible consumption
- KG
- Energies
- Energy Research
- 12. Responsible consumption
- KG
- Energies
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Olha Prokopenko; Tetiana Kurbatova; Marina Khalilova; Anastasiia Zerkal; Gunnar Prause; Jacek Binda; Temur Berdiyorov; Yuriy Klapkiv; Sabina Sanetra-Półgrabi; Igor Komarnitskyi;doi: 10.3390/en16031021
Renewable energy technologies play a crucial role in solving global energy and environmental issues, and the pace of the energy transition directly depends on improving their efficiency. Presently, the development and implementation of renewable energy systems are ensured mainly through state funding, the possibilities of which are limited. The potential of attracting private investments depends directly on their impact on companies’ profitability indicators, and the uncertainty regarding the return on investments is one of the main barriers affecting investors’ decision-making. Based on a vector autoregressive model for analysing the stationary time series, the paper explores the impact of long-term investments and research and development costs in renewable energy technologies on the financial performance of ten of the largest companies operating in this field. The study’s results showed that investments and spending on research and development positively affect such companies’ profitability indicators as earnings before interest, taxes, depreciation and amortisation, earnings before interest and tax, net income, and return on investment. The obtained results can be used to substantiate the economic effectiveness of investments in developing and improving renewable energy technologies when forming the companies’ financial policies to support them.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Muhammad Shuaib Qureshi; Muhammad Bilal Qureshi; Muhammad Fayaz; Muhammad Zakarya; +2 AuthorsMuhammad Shuaib Qureshi; Muhammad Bilal Qureshi; Muhammad Fayaz; Muhammad Zakarya; Sheraz Aslam; Asadullah Shah;doi: 10.3390/en13215706
Cloud computing is the de facto platform for deploying resource- and data-intensive real-time applications due to the collaboration of large scale resources operating in cross-administrative domains. For example, real-time systems are generated by smart devices (e.g., sensors in smart homes that monitor surroundings in real-time, security cameras that produce video streams in real-time, cloud gaming, social media streams, etc.). Such low-end devices form a microgrid which has low computational and storage capacity and hence offload data unto the cloud for processing. Cloud computing still lacks mature time-oriented scheduling and resource allocation strategies which thoroughly deliberate stringent QoS. Traditional approaches are sufficient only when applications have real-time and data constraints, and cloud storage resources are located with computational resources where the data are locally available for task execution. Such approaches mainly focus on resource provision and latency, and are prone to missing deadlines during tasks execution due to the urgency of the tasks and limited user budget constraints. The timing and data requirements exacerbate the efficient task scheduling and resource allocation problems. To cope with the aforementioned gaps, we propose a time- and cost-efficient resource allocation strategy for smart systems that periodically offload computational and data-intensive load to the cloud. The proposed strategy minimizes the data files transfer overhead to computing resources by selecting appropriate pairs of computing and storage resources. The celebrated results show the effectiveness of the proposed technique in terms of resource selection and tasks processing within time and budget constraints when compared with the other counterparts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Olha Prokopenko; Tetiana Kurbatova; Marina Khalilova; Anastasiia Zerkal; Gunnar Prause; Jacek Binda; Temur Berdiyorov; Yuriy Klapkiv; Sabina Sanetra-Półgrabi; Igor Komarnitskyi;doi: 10.3390/en16031021
Renewable energy technologies play a crucial role in solving global energy and environmental issues, and the pace of the energy transition directly depends on improving their efficiency. Presently, the development and implementation of renewable energy systems are ensured mainly through state funding, the possibilities of which are limited. The potential of attracting private investments depends directly on their impact on companies’ profitability indicators, and the uncertainty regarding the return on investments is one of the main barriers affecting investors’ decision-making. Based on a vector autoregressive model for analysing the stationary time series, the paper explores the impact of long-term investments and research and development costs in renewable energy technologies on the financial performance of ten of the largest companies operating in this field. The study’s results showed that investments and spending on research and development positively affect such companies’ profitability indicators as earnings before interest, taxes, depreciation and amortisation, earnings before interest and tax, net income, and return on investment. The obtained results can be used to substantiate the economic effectiveness of investments in developing and improving renewable energy technologies when forming the companies’ financial policies to support them.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Muhammad Shuaib Qureshi; Muhammad Bilal Qureshi; Muhammad Fayaz; Muhammad Zakarya; +2 AuthorsMuhammad Shuaib Qureshi; Muhammad Bilal Qureshi; Muhammad Fayaz; Muhammad Zakarya; Sheraz Aslam; Asadullah Shah;doi: 10.3390/en13215706
Cloud computing is the de facto platform for deploying resource- and data-intensive real-time applications due to the collaboration of large scale resources operating in cross-administrative domains. For example, real-time systems are generated by smart devices (e.g., sensors in smart homes that monitor surroundings in real-time, security cameras that produce video streams in real-time, cloud gaming, social media streams, etc.). Such low-end devices form a microgrid which has low computational and storage capacity and hence offload data unto the cloud for processing. Cloud computing still lacks mature time-oriented scheduling and resource allocation strategies which thoroughly deliberate stringent QoS. Traditional approaches are sufficient only when applications have real-time and data constraints, and cloud storage resources are located with computational resources where the data are locally available for task execution. Such approaches mainly focus on resource provision and latency, and are prone to missing deadlines during tasks execution due to the urgency of the tasks and limited user budget constraints. The timing and data requirements exacerbate the efficient task scheduling and resource allocation problems. To cope with the aforementioned gaps, we propose a time- and cost-efficient resource allocation strategy for smart systems that periodically offload computational and data-intensive load to the cloud. The proposed strategy minimizes the data files transfer overhead to computing resources by selecting appropriate pairs of computing and storage resources. The celebrated results show the effectiveness of the proposed technique in terms of resource selection and tasks processing within time and budget constraints when compared with the other counterparts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu