- home
- Advanced Search
Filters
Clear All- Energy Research
- 2025-2025
- Closed Access
- Open Source
- KR
- JP
- Energy Research
- 2025-2025
- Closed Access
- Open Source
- KR
- JP
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Danbee Kim; Yunjeong Choi; Junho Cha; Huiju Park; Gahyun Baek; Changsoo Lee;pmid: 39984000
Bioavailable organic-rich food waste (FW) is a promising feedstock for renewable hydrogen production. However, its highly suspended and complex nature presents substantial challenges for producing high-purity hydrogen in dual-chamber microbial electrolysis cells (MECs). This study examined the effects of pretreating FW through pre-fermentation and/or filtration on its microbial electrolysis. Both methods enhanced the exoelectrogenic utilization of FW, with pre-fermentation being especially effective by conditioning substrate composition, while filtration alone was less advantageous due to associated energy loss. The MECs fed with pre-fermented FW exhibited significantly higher performances, achieving the highest hydrogen yield of 1,029 mL/g chemical oxygen demand fed (39.1 % increase over raw FW) when pre-fermentation was followed by filtration. Bioanodes across all MECs were dominated by exoelectrogenic bacteria, mainly Geobacter and Desulfovibrio, with significantly greater abundance observed with pre-fermentation. These findings highlight the value of pretreatment, particularly pre-fermentation, and warrant further optimization research to maximize FW conversion into hydrogen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Byungwook Kang; Jonghun Park; Byunghoon Kim; Sung-O Park; Jaekyun Yoo; Seungju Yu; Hyuk-Joon Kim; Jun-Hyuk Song; Kisuk Kang;doi: 10.1039/d4ee04580g
Dependency of lithium diffusion kinetics on the site energy variations in DRX. In DRX, lithium ions occupying larger-volume octahedral sites exhibit more unstable site energies. This instability serves as an activation barrier.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04580g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04580g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Kuber Saxena; Subhransu Ranjan Samantaray; Sarita Nanda;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2025.3550656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2025.3550656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Kaoru, Okishige; Naohiko, Kawaguchi; Takatoshi, Shigeta; Yasuteru, Yamauchi; Takeshi, Sasaki; Takehiko, Keida; Kaoru, Tanno; Kenzo, Hirao; Tetsuo, Sasano;pmid: 38960305
Ethanol infusion into the vein of Marshall (EIVOM) has been performed as an adjunctive atrial fibrillation therapy. However, the time course change, quantitative lesion investigation, and effects on epicardial fat pads and fractionated atrial electrograms created by EIVOM have never been investigated.This study aimed to perform a quantitative analysis of lesions created by EIVOM.We created voltage maps using a 3-dimensional mapping system immediately before and 30 minutes and 60 minutes after performing EIVOM to study the time course change in the lesions. We compared differences in the average contact force value required for successful conduction block in the Marshall vein area of patients with and without EIVOM. We also investigated effects of EIVOM on the area of complex fractionated atrial electrograms before and after EIVOM. We measured the total epicardial fat pad volume before and after EIVOM by computed tomography.Voltage was significantly reduced after EIVOM, and there were significant differences in voltage reduction between the control status and 30 minutes and 60 minutes after EIVOM (P < .05). The average contact force value was significantly lower with vs without EIVOM (P < .05). The total epicardial fat volume and complex fractionated atrial electrogram area also significantly decreased after EIVOM (P < .05).EIVOM provided significant therapeutic effects on the left atrial tissue perpetuating atrial fibrillation, which was demonstrated by a quantitative analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.hrthm.2024.06.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.hrthm.2024.06.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:SAGE Publications Authors: Abigail L. Tice; Choogon Lee; Robert C. Hickner; Jennifer L. Steiner;pmid: 39924857
Binge and chronic alcohol intake impair skeletal muscle and liver circadian clocks. Scheduled exercise is suggested to protect against circadian misalignment, like that induced by alcohol. It was tested whether scheduled, voluntary daily wheel running would protect the gastrocnemius and liver clocks against alcohol-induced perturbations. Female C57BL6/Hsd mice were assigned to 1 of 4 groups: control-sedentary (CON SED, n = 26), control-exercise (CON EX, n = 28), alcohol-sedentary (ETOH SED, n = 27), or alcohol-exercise (ETOH EX, n = 25). Exercise mice were granted access to running wheels for 2 h/day (ZT13-15) while ETOH mice consumed alcohol-containing liquid diet for 6 weeks. Tissues were collected every 4 h starting at ZT12 from 4-5 mice/group and were used for RNA/cDNA/RT-PCR (gastrocnemius and liver) and Western blotting (gastrocnemius). A second cohort of mice were weaned off alcohol, given regular chow, and continued daily exercise (2 h/day) for ~2 weeks. Then, all mice (EX and SED) were given 24-h wheel access for 1 week to assess cyclic running behaviors during abstinence. While alcohol differentially disrupted muscle and liver clocks in sedentary mice, differences between exercised groups were minimized. BMAL1 protein expression increased in the nuclear-enriched fraction in the gastrocnemius of both exercise groups compared to both sedentary groups. In the second cohort, wheel running was increased in ETOH EX compared to ETOH SED in the dark cycle. In the light cycle, ETOH mice ran less than CON mice, and EX mice ran less than SED mice despite all mice receiving chow diet and no EtOH. Overall, scheduled wheel running partially offset the alcohol-induced perturbations in the muscle and liver clock while ETOH and EX both influenced the timing of subsequent activity after the dietary intervention ended.
Journal of Biologica... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/07487304241312461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Biologica... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/07487304241312461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Authors: Hamdan Ahmad; Palanisamy Dhamodharan; Sung Chul Kim;Effective thermal management is a critical challenge in electric vehicles (EVs), influencing the efficiency, reliability, and lifespan of key components such as electric drive motors, inverters, and reducers. This comprehensive review systematically evaluates advanced cooling technologies for EV powertrains, providing a comparative analysis of traditional and emerging solutions. Novel insights are presented on the integration of innovative materials, such as nanofluids and phase‐change materials, and the application of artificial intelligence (AI) for dynamic thermal optimization. The study highlights the enhanced cooling performance achieved through hybrid approaches that synergize liquid and air‐cooling methods. Additionally, the review introduces the transformative potential of AI‐driven systems in optimizing cooling efficiency, predicting thermal loads, and detecting faults in real time. The novelty of this work lies in its focus on the holistic thermal management of multiple EV components, bridging the gap in current literature by addressing the interplay of cooling strategies across the entire powertrain. This analysis underscores the need for continued innovation in thermal management to meet the growing demands of EV technology and sustainability goals.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202401691&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202401691&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:SAGE Publications Sarah Mushtaq; Jechan Lee; Farrukh Jamil; Shahzer Imran; Parveen Akhter; Murid Hussain; Young-Kwon Park;Green hydrogen has been proposed as a clean and sustainable source of energy with unrivaled potential to play a pivotal role in every country's transition toward a low-carbon economy while striving to achieve Sustainable Development Goals. Herein, we provide perspective of using green hydrogen to enhance the sustainability in Pakistan. As renewable energy resources (e.g. solar and wind power) are abundantly available in Pakistan, the production of green hydrogen linked to renewable energy resources is conscious. As a representative case, the green hydrogen project in Sindh, Pakistan was announced—hydrogen is produced by water electrolysis powered by renewable electricity generated from solar or wind power. The potential of a circular economic approach to green hydrogen production in Pakistan is discussed in terms of policy development, public and private participation, public demand, and public awareness. Green hydrogen is indeed the green light of the future for Pakistan, as it can potentially help boost its economy while mitigating climate change. The insights given by this study can be useful to further develop any future green hydrogen roadmap for Pakistan.
Energy & Environment arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x251315405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x251315405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Soheil Valizadeh; Yasin Khani; Behzad Valizadeh; Jeong-Chul Kim; Kanghee Cho; Young-Kwon Park;pmid: 40032191
Widespread reliance on fossil fuels and their increasing costs have necessitated the search for viable alternatives. This study details a reliable method for generating jet fuel-range aromatic hydrocarbons (C8-C16) via catalytic pyrolysis of woody biomass. To do this, HZSM-5 was modified using NaOH (N-HZSM-5) and HCl (H-HZSM-5) and utilized in the pyrolysis of three types of sawdust (S1, S2, and S3). In S1 pyrolysis, HZSM-5 increased C8-C16 aromatics' selectivity despite a lower bio-oil yield compared to the Non-C test. Among sawdust samples, S2 pyrolysis produced the highest C8-C16 aromatics (44.2%) due to its compositional and thermal characteristics. The use of N-HZSM-5 in S2 pyrolysis maximized the yield of bio-oil (46.9 wt%) and the selectivity for C8-C16 aromatics (49.3 %). N-HZSM-5 exhibited stable performance over three cycles, with minimal decline in C8-C16 aromatics. This study proposes a sustainable and feasible method for the generation of biojet fuel from lignocellulosic biomass. Abbreviations: RJF, Renewable jet fuel; LAS, Lewis acid sites; BAS, Brønsted Lowry acid sites; S1, Sawdust 1; S2, Sawdust 2; S3, Sawdust 3; HZSM-5 (80), HZSM-5 (SiO2/Al2O3: 80); N-HZSM-5, NaOH-treated HZSM-5 (80); H-HZSM-5, HCl-treated HZSM-5 (80); XRF, X-ray Fluorescence; XRD, X-ray diffraction (XRD); NH3-TPD, Ammonia temperature-programmed desorption; FT-IR, Pyridine Fourier transform infrared; NMR, Solid-state nuclear magnetic resonance; MAS, Magic angle spinning; FE-SEM, Field emission scanning electron microscopy; HR-TEM, High-resolution transmission electron microscopy; SBET, BET surface area; VTotal, Total pore volume; SMeso, Mesopores' surface area; VMeso, Mesopores' pore volume; SMicro, Micropores' surface area; VMicro, Micropores' pore volume; H+, Proton; Non-C, Non-Catalytic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Jisoo, Kang; Seol Hee, Park; Mushira, Khanam; Seo Bhin, Park; Sumin, Shin; Wonhyo, Seo;pmid: 40035998
Numerous studies have examined the pathophysiological changes induced by chronic alcohol (ethanol) consumption and the underlying mechanisms, while much less attention has been devoted to understanding the health impacts of binge drinking. Binge drinking is defined as the excessive consumption of alcohol within a single drinking episode, and is the typical consumption pattern among young people in Western countries. While most young binge drinkers are not clinically alcohol dependent, binge drinking has emerged as a significant social and public health concern. The circulating alcohol consumed during binge episodes permeates cellular membranes throughout the body, exerting profound effects on multiple organs, and signaling pathways. Regular binge drinking eventually induces hepatic steatosis (fatty liver), initiates acute inflammation, and accelerates neutrophil infiltration, de novo lipogenesis, adipocyte death/lipolysis, and the production of nonoxidative alcohol metabolites, processes that synergize to damage liver tissue and impair liver function. Metabolic abnormalities such as diabetes and obesity can also exacerbate the progression of alcohol-related liver disease among binge drinkers. Several animal models have been developed to evaluate the pathophysiological changes resulting from binge drinking; however, the pathogenesis of binge drinking is not fully understood due to differences in alcohol metabolism between animal models and humans. Thus, given the high prevalence and severe health implications of binge drinking, there is an urgent need for comprehensive experimental and clinical investigations to unravel the associated pathophysiological changes. This review summarizes recent research findings on the impact of binge drinking, specifically focusing on its contributions to alcoholic liver injury.
Archives of Pharmaca... arrow_drop_down Archives of Pharmacal ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12272-025-01537-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archives of Pharmaca... arrow_drop_down Archives of Pharmacal ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12272-025-01537-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Jee Young Kim; Jiwon Kim; Minyoung Kim; Minkyeong Kim; Sun-Mi Lee; Eilhann E. Kwon;pmid: 39826757
Alternative fuels are urgently needed to mitigate greenhouse gas emissions. This study was conducted to recover bioenergy from non-edible feedstock, an oleaginous yeast biomass obtained during fed-batch cultivation of Yarrowia lipolytica. Yeast oil (lipids) was extracted from the harvested biomass and readily converted into biodiesel using the non-catalytic transesterification method. The conversion yield of the convertible lipids was 97.4 wt%, even with a high content of unidentified impurities (> 12.7 wt%). To maximize bioenergy production and minimize waste generation, the yeast biomass residue after oil extraction was used as a feedstock for pyrolysis. The yield of flammable gases (H2, CO, and CH4) produced from catalytic pyrolysis of residual biomass was 194.7 mmol under CO2 conditions, a 14.3 % increase compared to that under N2 conditions. Consequently, the use of a thermochemical platform (non-catalytic transesterification and catalytic pyrolysis under CO2 conditions) for yeast biomass valorization enhances bioenergy production and minimizes waste generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Danbee Kim; Yunjeong Choi; Junho Cha; Huiju Park; Gahyun Baek; Changsoo Lee;pmid: 39984000
Bioavailable organic-rich food waste (FW) is a promising feedstock for renewable hydrogen production. However, its highly suspended and complex nature presents substantial challenges for producing high-purity hydrogen in dual-chamber microbial electrolysis cells (MECs). This study examined the effects of pretreating FW through pre-fermentation and/or filtration on its microbial electrolysis. Both methods enhanced the exoelectrogenic utilization of FW, with pre-fermentation being especially effective by conditioning substrate composition, while filtration alone was less advantageous due to associated energy loss. The MECs fed with pre-fermented FW exhibited significantly higher performances, achieving the highest hydrogen yield of 1,029 mL/g chemical oxygen demand fed (39.1 % increase over raw FW) when pre-fermentation was followed by filtration. Bioanodes across all MECs were dominated by exoelectrogenic bacteria, mainly Geobacter and Desulfovibrio, with significantly greater abundance observed with pre-fermentation. These findings highlight the value of pretreatment, particularly pre-fermentation, and warrant further optimization research to maximize FW conversion into hydrogen.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132267&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Royal Society of Chemistry (RSC) Byungwook Kang; Jonghun Park; Byunghoon Kim; Sung-O Park; Jaekyun Yoo; Seungju Yu; Hyuk-Joon Kim; Jun-Hyuk Song; Kisuk Kang;doi: 10.1039/d4ee04580g
Dependency of lithium diffusion kinetics on the site energy variations in DRX. In DRX, lithium ions occupying larger-volume octahedral sites exhibit more unstable site energies. This instability serves as an activation barrier.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04580g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04580g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Kuber Saxena; Subhransu Ranjan Samantaray; Sarita Nanda;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2025.3550656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2025.3550656&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Kaoru, Okishige; Naohiko, Kawaguchi; Takatoshi, Shigeta; Yasuteru, Yamauchi; Takeshi, Sasaki; Takehiko, Keida; Kaoru, Tanno; Kenzo, Hirao; Tetsuo, Sasano;pmid: 38960305
Ethanol infusion into the vein of Marshall (EIVOM) has been performed as an adjunctive atrial fibrillation therapy. However, the time course change, quantitative lesion investigation, and effects on epicardial fat pads and fractionated atrial electrograms created by EIVOM have never been investigated.This study aimed to perform a quantitative analysis of lesions created by EIVOM.We created voltage maps using a 3-dimensional mapping system immediately before and 30 minutes and 60 minutes after performing EIVOM to study the time course change in the lesions. We compared differences in the average contact force value required for successful conduction block in the Marshall vein area of patients with and without EIVOM. We also investigated effects of EIVOM on the area of complex fractionated atrial electrograms before and after EIVOM. We measured the total epicardial fat pad volume before and after EIVOM by computed tomography.Voltage was significantly reduced after EIVOM, and there were significant differences in voltage reduction between the control status and 30 minutes and 60 minutes after EIVOM (P < .05). The average contact force value was significantly lower with vs without EIVOM (P < .05). The total epicardial fat volume and complex fractionated atrial electrogram area also significantly decreased after EIVOM (P < .05).EIVOM provided significant therapeutic effects on the left atrial tissue perpetuating atrial fibrillation, which was demonstrated by a quantitative analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.hrthm.2024.06.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.hrthm.2024.06.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:SAGE Publications Authors: Abigail L. Tice; Choogon Lee; Robert C. Hickner; Jennifer L. Steiner;pmid: 39924857
Binge and chronic alcohol intake impair skeletal muscle and liver circadian clocks. Scheduled exercise is suggested to protect against circadian misalignment, like that induced by alcohol. It was tested whether scheduled, voluntary daily wheel running would protect the gastrocnemius and liver clocks against alcohol-induced perturbations. Female C57BL6/Hsd mice were assigned to 1 of 4 groups: control-sedentary (CON SED, n = 26), control-exercise (CON EX, n = 28), alcohol-sedentary (ETOH SED, n = 27), or alcohol-exercise (ETOH EX, n = 25). Exercise mice were granted access to running wheels for 2 h/day (ZT13-15) while ETOH mice consumed alcohol-containing liquid diet for 6 weeks. Tissues were collected every 4 h starting at ZT12 from 4-5 mice/group and were used for RNA/cDNA/RT-PCR (gastrocnemius and liver) and Western blotting (gastrocnemius). A second cohort of mice were weaned off alcohol, given regular chow, and continued daily exercise (2 h/day) for ~2 weeks. Then, all mice (EX and SED) were given 24-h wheel access for 1 week to assess cyclic running behaviors during abstinence. While alcohol differentially disrupted muscle and liver clocks in sedentary mice, differences between exercised groups were minimized. BMAL1 protein expression increased in the nuclear-enriched fraction in the gastrocnemius of both exercise groups compared to both sedentary groups. In the second cohort, wheel running was increased in ETOH EX compared to ETOH SED in the dark cycle. In the light cycle, ETOH mice ran less than CON mice, and EX mice ran less than SED mice despite all mice receiving chow diet and no EtOH. Overall, scheduled wheel running partially offset the alcohol-induced perturbations in the muscle and liver clock while ETOH and EX both influenced the timing of subsequent activity after the dietary intervention ended.
Journal of Biologica... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/07487304241312461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Biologica... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/07487304241312461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Authors: Hamdan Ahmad; Palanisamy Dhamodharan; Sung Chul Kim;Effective thermal management is a critical challenge in electric vehicles (EVs), influencing the efficiency, reliability, and lifespan of key components such as electric drive motors, inverters, and reducers. This comprehensive review systematically evaluates advanced cooling technologies for EV powertrains, providing a comparative analysis of traditional and emerging solutions. Novel insights are presented on the integration of innovative materials, such as nanofluids and phase‐change materials, and the application of artificial intelligence (AI) for dynamic thermal optimization. The study highlights the enhanced cooling performance achieved through hybrid approaches that synergize liquid and air‐cooling methods. Additionally, the review introduces the transformative potential of AI‐driven systems in optimizing cooling efficiency, predicting thermal loads, and detecting faults in real time. The novelty of this work lies in its focus on the holistic thermal management of multiple EV components, bridging the gap in current literature by addressing the interplay of cooling strategies across the entire powertrain. This analysis underscores the need for continued innovation in thermal management to meet the growing demands of EV technology and sustainability goals.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202401691&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.202401691&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:SAGE Publications Sarah Mushtaq; Jechan Lee; Farrukh Jamil; Shahzer Imran; Parveen Akhter; Murid Hussain; Young-Kwon Park;Green hydrogen has been proposed as a clean and sustainable source of energy with unrivaled potential to play a pivotal role in every country's transition toward a low-carbon economy while striving to achieve Sustainable Development Goals. Herein, we provide perspective of using green hydrogen to enhance the sustainability in Pakistan. As renewable energy resources (e.g. solar and wind power) are abundantly available in Pakistan, the production of green hydrogen linked to renewable energy resources is conscious. As a representative case, the green hydrogen project in Sindh, Pakistan was announced—hydrogen is produced by water electrolysis powered by renewable electricity generated from solar or wind power. The potential of a circular economic approach to green hydrogen production in Pakistan is discussed in terms of policy development, public and private participation, public demand, and public awareness. Green hydrogen is indeed the green light of the future for Pakistan, as it can potentially help boost its economy while mitigating climate change. The insights given by this study can be useful to further develop any future green hydrogen roadmap for Pakistan.
Energy & Environment arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x251315405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x251315405&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Soheil Valizadeh; Yasin Khani; Behzad Valizadeh; Jeong-Chul Kim; Kanghee Cho; Young-Kwon Park;pmid: 40032191
Widespread reliance on fossil fuels and their increasing costs have necessitated the search for viable alternatives. This study details a reliable method for generating jet fuel-range aromatic hydrocarbons (C8-C16) via catalytic pyrolysis of woody biomass. To do this, HZSM-5 was modified using NaOH (N-HZSM-5) and HCl (H-HZSM-5) and utilized in the pyrolysis of three types of sawdust (S1, S2, and S3). In S1 pyrolysis, HZSM-5 increased C8-C16 aromatics' selectivity despite a lower bio-oil yield compared to the Non-C test. Among sawdust samples, S2 pyrolysis produced the highest C8-C16 aromatics (44.2%) due to its compositional and thermal characteristics. The use of N-HZSM-5 in S2 pyrolysis maximized the yield of bio-oil (46.9 wt%) and the selectivity for C8-C16 aromatics (49.3 %). N-HZSM-5 exhibited stable performance over three cycles, with minimal decline in C8-C16 aromatics. This study proposes a sustainable and feasible method for the generation of biojet fuel from lignocellulosic biomass. Abbreviations: RJF, Renewable jet fuel; LAS, Lewis acid sites; BAS, Brønsted Lowry acid sites; S1, Sawdust 1; S2, Sawdust 2; S3, Sawdust 3; HZSM-5 (80), HZSM-5 (SiO2/Al2O3: 80); N-HZSM-5, NaOH-treated HZSM-5 (80); H-HZSM-5, HCl-treated HZSM-5 (80); XRF, X-ray Fluorescence; XRD, X-ray diffraction (XRD); NH3-TPD, Ammonia temperature-programmed desorption; FT-IR, Pyridine Fourier transform infrared; NMR, Solid-state nuclear magnetic resonance; MAS, Magic angle spinning; FE-SEM, Field emission scanning electron microscopy; HR-TEM, High-resolution transmission electron microscopy; SBET, BET surface area; VTotal, Total pore volume; SMeso, Mesopores' surface area; VMeso, Mesopores' pore volume; SMicro, Micropores' surface area; VMicro, Micropores' pore volume; H+, Proton; Non-C, Non-Catalytic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Jisoo, Kang; Seol Hee, Park; Mushira, Khanam; Seo Bhin, Park; Sumin, Shin; Wonhyo, Seo;pmid: 40035998
Numerous studies have examined the pathophysiological changes induced by chronic alcohol (ethanol) consumption and the underlying mechanisms, while much less attention has been devoted to understanding the health impacts of binge drinking. Binge drinking is defined as the excessive consumption of alcohol within a single drinking episode, and is the typical consumption pattern among young people in Western countries. While most young binge drinkers are not clinically alcohol dependent, binge drinking has emerged as a significant social and public health concern. The circulating alcohol consumed during binge episodes permeates cellular membranes throughout the body, exerting profound effects on multiple organs, and signaling pathways. Regular binge drinking eventually induces hepatic steatosis (fatty liver), initiates acute inflammation, and accelerates neutrophil infiltration, de novo lipogenesis, adipocyte death/lipolysis, and the production of nonoxidative alcohol metabolites, processes that synergize to damage liver tissue and impair liver function. Metabolic abnormalities such as diabetes and obesity can also exacerbate the progression of alcohol-related liver disease among binge drinkers. Several animal models have been developed to evaluate the pathophysiological changes resulting from binge drinking; however, the pathogenesis of binge drinking is not fully understood due to differences in alcohol metabolism between animal models and humans. Thus, given the high prevalence and severe health implications of binge drinking, there is an urgent need for comprehensive experimental and clinical investigations to unravel the associated pathophysiological changes. This review summarizes recent research findings on the impact of binge drinking, specifically focusing on its contributions to alcoholic liver injury.
Archives of Pharmaca... arrow_drop_down Archives of Pharmacal ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12272-025-01537-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archives of Pharmaca... arrow_drop_down Archives of Pharmacal ResearchArticle . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12272-025-01537-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Jee Young Kim; Jiwon Kim; Minyoung Kim; Minkyeong Kim; Sun-Mi Lee; Eilhann E. Kwon;pmid: 39826757
Alternative fuels are urgently needed to mitigate greenhouse gas emissions. This study was conducted to recover bioenergy from non-edible feedstock, an oleaginous yeast biomass obtained during fed-batch cultivation of Yarrowia lipolytica. Yeast oil (lipids) was extracted from the harvested biomass and readily converted into biodiesel using the non-catalytic transesterification method. The conversion yield of the convertible lipids was 97.4 wt%, even with a high content of unidentified impurities (> 12.7 wt%). To maximize bioenergy production and minimize waste generation, the yeast biomass residue after oil extraction was used as a feedstock for pyrolysis. The yield of flammable gases (H2, CO, and CH4) produced from catalytic pyrolysis of residual biomass was 194.7 mmol under CO2 conditions, a 14.3 % increase compared to that under N2 conditions. Consequently, the use of a thermochemical platform (non-catalytic transesterification and catalytic pyrolysis under CO2 conditions) for yeast biomass valorization enhances bioenergy production and minimizes waste generation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2025.132086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu