- home
- Advanced Search
- Energy Research
- US
- DE
- FR
- KR
- Chinese Academy of Sciences
- Energy Research
- US
- DE
- FR
- KR
- Chinese Academy of Sciences
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Lei Yang;Zhonghua Tang;
Yuangang Zu; Wei-Wei Cong; +1 AuthorsZhonghua Tang
Zhonghua Tang in OpenAIRELei Yang;Zhonghua Tang;
Yuangang Zu; Wei-Wei Cong; Bo-Wen Chang;Zhonghua Tang
Zhonghua Tang in OpenAIREpmid: 24589477
The effects of exogenous trehalose (Tre) on salt tolerance of pharmaceutical plant Catharanthus roseus and the physiological mechanisms were both investigated in this study. The results showed that the supplement of Tre in saline condition (250 mM NaCl) largely alleviated the inhibitory effects of salinity on plant growth, namely biomass accumulation and total leaf area per plant. In this saline condition, the decreased level of relative water content (RWC) and photosynthetic rate were also greatly rescued by exogenous Tre. This improved performance of plants under high salinity induced by Tre could be partly ascribed to its ability to decrease accumulation of sodium, and increase potassium in leaves. The exogenous Tre led to high levels of fructose, glucose, sucrose and Tre inside the salt-stressed plants during whole the three-week treatment. The major free amino acids such as proline, arginine, threonine and glutamate were also largely elevated in the first two-week course of treatment with Tre in saline solution. It was proposed here that Tre might act as signal to make the salt-stressed plants actively increase internal compatible solutes, including soluble sugars and free amino acids, to control water loss, leaf gas exchange and ionic flow at the onset of salt stress. The application of Tre in saline condition also promoted the accumulation of alkaloids. The regulatory role of Tre in improving salt tolerance was optimal with an exogenous concentration of 10 mM Tre. Larger concentrations of Tre were supra-optimum and adversely affected plant growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2014.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2014.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Lei Yang;Zhonghua Tang;
Yuangang Zu; Wei-Wei Cong; +1 AuthorsZhonghua Tang
Zhonghua Tang in OpenAIRELei Yang;Zhonghua Tang;
Yuangang Zu; Wei-Wei Cong; Bo-Wen Chang;Zhonghua Tang
Zhonghua Tang in OpenAIREpmid: 24589477
The effects of exogenous trehalose (Tre) on salt tolerance of pharmaceutical plant Catharanthus roseus and the physiological mechanisms were both investigated in this study. The results showed that the supplement of Tre in saline condition (250 mM NaCl) largely alleviated the inhibitory effects of salinity on plant growth, namely biomass accumulation and total leaf area per plant. In this saline condition, the decreased level of relative water content (RWC) and photosynthetic rate were also greatly rescued by exogenous Tre. This improved performance of plants under high salinity induced by Tre could be partly ascribed to its ability to decrease accumulation of sodium, and increase potassium in leaves. The exogenous Tre led to high levels of fructose, glucose, sucrose and Tre inside the salt-stressed plants during whole the three-week treatment. The major free amino acids such as proline, arginine, threonine and glutamate were also largely elevated in the first two-week course of treatment with Tre in saline solution. It was proposed here that Tre might act as signal to make the salt-stressed plants actively increase internal compatible solutes, including soluble sugars and free amino acids, to control water loss, leaf gas exchange and ionic flow at the onset of salt stress. The application of Tre in saline condition also promoted the accumulation of alkaloids. The regulatory role of Tre in improving salt tolerance was optimal with an exogenous concentration of 10 mM Tre. Larger concentrations of Tre were supra-optimum and adversely affected plant growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2014.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.plaphy.2014.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.;Blair, M.;
Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Blair, M.
Blair, M. in OpenAIREИсследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2018Publisher:ВНИИ агрохимии Lothar, M.; Winfried, B.; Winfried, S.; Vladimir, R.; Victor, S.; Michael, J.; Ingo, K.; Bruce, B.;Blair, M.;
Maria, G.; Nikolai, D.; Lev, K.; Valery, K.; Elena, B.; Denis, C.; Askhad, S.; Abdulla, S.; Konstantin, P.; Jilili, A.; Vladimir, K.; Uwe, S.; Wilfried, M.; Ewald, S.; Gunnar, L.; Frank, E.;Blair, M.
Blair, M. in OpenAIREИсследование ландшафтов всегда было традиционным научным направлением географии. В России подобная направленность исследований остаётся актуальной, несмотря на то, что термины «геоэкология» и «ландшафтная экология» сегодня более распространены в англоязычном научном сообществе. Наш краткий обзор показывает значительное ускорение антропогенных ландшафтных изменений в Европе, Центральной Азии и азиатской части России за последние пять десятилетий. Ландшафтные исследования в антропоцене должны быть направлены на достижение и сохранение устойчивости ландшафта при его высокой производительности, что включает в себя прекращение деградации ландшафтов, развитие культурных и сохранение природных ландшафтов. Чистая вода и чистый воздух, плодородные и здоровые почвы для производства продуктов питания и других экосистемных услуг, а также биологически разнообразная зеленая среда являются атрибутами ландшафтов, обеспечивающих выживание и благополучие населения. Дисциплинарные и междисциплинарные исследования должны генерировать знания, инновации и правила принятия действенных решений. Генерация знаний в глобализованном мире основана на сборе больших массивов данных и моделировании сценариев. Международные длительные полевые опыты и системы агроэкологического мониторинга будут предоставлять данные для экосистемных моделей и систем поддержки принимаемых решений. Landscape research has been a traditional scientific discipline of geography. This is still the case in Russia, whilst the terms geo-ecology and landscape ecology have become established in the English speaking scientific community. Our short review reveals huge and accelerating anthropogenic landscape transformations in Europe, Central Asia and Asian Russia since the end the 1960s. Landscape research in the Anthropocene has to focus on achieving landscape sustainability at high productivity. This includes halting landscape degradation, developing cultural landscapes, and maintaining semi-natural landscapes. Clean water and air, fertile and healthy soils for food and other ecosystem services and a green and bio-diverse environment are attributes of landscapes for the survival and well-being of humans. Research has to generate knowledge, innovations and decision rules by disciplinary, interdisciplinary and trans-disciplinary work. Knowledge generation in a globalized world is based on big data gathering and scenario modelling. International long-term experiments and agri-environmental monitoring systems will deliver data for ecosystem models and decision support systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.25680/8367.2018.47.69.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesAuthors:Silvio Marta;
Silvio Marta
Silvio Marta in OpenAIRERoberto Sergio Azzoni;
Roberto Sergio Azzoni
Roberto Sergio Azzoni in OpenAIREDavide Fugazza;
Davide Fugazza
Davide Fugazza in OpenAIRELevan Tielidze;
+41 AuthorsLevan Tielidze
Levan Tielidze in OpenAIRESilvio Marta;
Silvio Marta
Silvio Marta in OpenAIRERoberto Sergio Azzoni;
Roberto Sergio Azzoni
Roberto Sergio Azzoni in OpenAIREDavide Fugazza;
Davide Fugazza
Davide Fugazza in OpenAIRELevan Tielidze;
Levan Tielidze
Levan Tielidze in OpenAIREPritam Chand;
Pritam Chand
Pritam Chand in OpenAIREKatrin Sieron;
Katrin Sieron
Katrin Sieron in OpenAIREPeter Almond;
Roberto Ambrosini;Peter Almond
Peter Almond in OpenAIREFabien Anthelme;
Pablo Alviz Gazitúa;Fabien Anthelme
Fabien Anthelme in OpenAIRERakesh Bhambri;
Rakesh Bhambri
Rakesh Bhambri in OpenAIREAurélie Bonin;
Marco Caccianiga;Aurélie Bonin
Aurélie Bonin in OpenAIRESophie Cauvy-Fraunié;
Jorge Luis Ceballos Lievano;Sophie Cauvy-Fraunié
Sophie Cauvy-Fraunié in OpenAIREJohn Clague;
Justiniano Alejo Cochachín Rapre;John Clague
John Clague in OpenAIREOlivier Dangles;
Olivier Dangles
Olivier Dangles in OpenAIREPhilip Deline;
Andre Eger;Philip Deline
Philip Deline in OpenAIRERolando Cruz Encarnación;
Sergey Erokhin;Rolando Cruz Encarnación
Rolando Cruz Encarnación in OpenAIREAndrea Franzetti;
Andrea Franzetti
Andrea Franzetti in OpenAIRELudovic Gielly;
Ludovic Gielly
Ludovic Gielly in OpenAIREFabrizio Gili;
Fabrizio Gili
Fabrizio Gili in OpenAIREMauro Gobbi;
Mauro Gobbi
Mauro Gobbi in OpenAIREAlessia Guerrieri;
Sigmund Hågvar;Alessia Guerrieri
Alessia Guerrieri in OpenAIRENorine Khedim;
Norine Khedim
Norine Khedim in OpenAIRERahab Kinyanjui;
Rahab Kinyanjui
Rahab Kinyanjui in OpenAIREErwan Messager;
Marco Aurelio Morales-Martínez;Erwan Messager
Erwan Messager in OpenAIREGwendolyn Peyre;
Francesca Pittino;Gwendolyn Peyre
Gwendolyn Peyre in OpenAIREJerome Poulenard;
Jerome Poulenard
Jerome Poulenard in OpenAIRERoberto Seppi;
Milap Chand Sharma; Nurai Urseitova; Blake Weissling;Roberto Seppi
Roberto Seppi in OpenAIREYan Yang;
Vitalii Zaginaev;Yan Yang
Yan Yang in OpenAIREAnaïs Zimmer;
Anaïs Zimmer
Anaïs Zimmer in OpenAIREGuglielmina Adele Diolaiuti;
Guglielmina Adele Diolaiuti
Guglielmina Adele Diolaiuti in OpenAIREAntoine Rabatel;
Antoine Rabatel
Antoine Rabatel in OpenAIREGentile Francesco Ficetola;
Gentile Francesco Ficetola
Gentile Francesco Ficetola in OpenAIREdoi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Data Paper 2021 Italy, Italy, New Zealand, France, Italy, ItalyPublisher:MDPI AG Funded by:EC | IceCommunitiesEC| IceCommunitiesAuthors:Silvio Marta;
Silvio Marta
Silvio Marta in OpenAIRERoberto Sergio Azzoni;
Roberto Sergio Azzoni
Roberto Sergio Azzoni in OpenAIREDavide Fugazza;
Davide Fugazza
Davide Fugazza in OpenAIRELevan Tielidze;
+41 AuthorsLevan Tielidze
Levan Tielidze in OpenAIRESilvio Marta;
Silvio Marta
Silvio Marta in OpenAIRERoberto Sergio Azzoni;
Roberto Sergio Azzoni
Roberto Sergio Azzoni in OpenAIREDavide Fugazza;
Davide Fugazza
Davide Fugazza in OpenAIRELevan Tielidze;
Levan Tielidze
Levan Tielidze in OpenAIREPritam Chand;
Pritam Chand
Pritam Chand in OpenAIREKatrin Sieron;
Katrin Sieron
Katrin Sieron in OpenAIREPeter Almond;
Roberto Ambrosini;Peter Almond
Peter Almond in OpenAIREFabien Anthelme;
Pablo Alviz Gazitúa;Fabien Anthelme
Fabien Anthelme in OpenAIRERakesh Bhambri;
Rakesh Bhambri
Rakesh Bhambri in OpenAIREAurélie Bonin;
Marco Caccianiga;Aurélie Bonin
Aurélie Bonin in OpenAIRESophie Cauvy-Fraunié;
Jorge Luis Ceballos Lievano;Sophie Cauvy-Fraunié
Sophie Cauvy-Fraunié in OpenAIREJohn Clague;
Justiniano Alejo Cochachín Rapre;John Clague
John Clague in OpenAIREOlivier Dangles;
Olivier Dangles
Olivier Dangles in OpenAIREPhilip Deline;
Andre Eger;Philip Deline
Philip Deline in OpenAIRERolando Cruz Encarnación;
Sergey Erokhin;Rolando Cruz Encarnación
Rolando Cruz Encarnación in OpenAIREAndrea Franzetti;
Andrea Franzetti
Andrea Franzetti in OpenAIRELudovic Gielly;
Ludovic Gielly
Ludovic Gielly in OpenAIREFabrizio Gili;
Fabrizio Gili
Fabrizio Gili in OpenAIREMauro Gobbi;
Mauro Gobbi
Mauro Gobbi in OpenAIREAlessia Guerrieri;
Sigmund Hågvar;Alessia Guerrieri
Alessia Guerrieri in OpenAIRENorine Khedim;
Norine Khedim
Norine Khedim in OpenAIRERahab Kinyanjui;
Rahab Kinyanjui
Rahab Kinyanjui in OpenAIREErwan Messager;
Marco Aurelio Morales-Martínez;Erwan Messager
Erwan Messager in OpenAIREGwendolyn Peyre;
Francesca Pittino;Gwendolyn Peyre
Gwendolyn Peyre in OpenAIREJerome Poulenard;
Jerome Poulenard
Jerome Poulenard in OpenAIRERoberto Seppi;
Milap Chand Sharma; Nurai Urseitova; Blake Weissling;Roberto Seppi
Roberto Seppi in OpenAIREYan Yang;
Vitalii Zaginaev;Yan Yang
Yan Yang in OpenAIREAnaïs Zimmer;
Anaïs Zimmer
Anaïs Zimmer in OpenAIREGuglielmina Adele Diolaiuti;
Guglielmina Adele Diolaiuti
Guglielmina Adele Diolaiuti in OpenAIREAntoine Rabatel;
Antoine Rabatel
Antoine Rabatel in OpenAIREGentile Francesco Ficetola;
Gentile Francesco Ficetola
Gentile Francesco Ficetola in OpenAIREdoi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
doi: 10.3390/data6100107
handle: 2434/890495 , 10281/396892 , 2318/1880490 , 11571/1446474 , 10182/14353
Most of the world’s mountain glaciers have been retreating for more than a century in response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has accelerated during recent decades. Accurate, spatially explicit information on the position of glacier margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in glacier surface area. This information is also essential for evaluating how mountain ecosystems are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on multiple historical archival records including topographical maps; repeated photographs, paintings, and aerial or satellite images with a supplement of geochronology; and own field data. We provide ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica, covering the period between the Little Ice Age maxima and the present. On average, the time series span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).
Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down DataArticleLicense: CC BYFull-Text: https://www.mdpi.com/2306-5729/6/10/107/pdfData sources: SygmaCIRAD: HAL (Agricultural Research for Development)Article . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Lincoln University (New Zealand): Lincoln U Research ArchiveArticle . 2021License: CC BYFull-Text: https://doi.org/10.3390/data6100107Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.inrae.fr/hal-03377264Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/data6100107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Meng, Qu;Yingyi, Zhang;
Yingyi, Zhang
Yingyi, Zhang in OpenAIREZexia, Gao;
Zhixin, Zhang; +9 AuthorsZexia, Gao
Zexia, Gao in OpenAIREMeng, Qu;Yingyi, Zhang;
Yingyi, Zhang
Yingyi, Zhang in OpenAIREZexia, Gao;
Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;Zexia, Gao
Zexia, Gao in OpenAIREpmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Springer Science and Business Media LLC Authors: Meng, Qu;Yingyi, Zhang;
Yingyi, Zhang
Yingyi, Zhang in OpenAIREZexia, Gao;
Zhixin, Zhang; +9 AuthorsZexia, Gao
Zexia, Gao in OpenAIREMeng, Qu;Yingyi, Zhang;
Yingyi, Zhang
Yingyi, Zhang in OpenAIREZexia, Gao;
Zhixin, Zhang; Yali, Liu; Shiming, Wan; Xin, Wang; Haiyan, Yu; Huixian, Zhang; Yuhong, Liu; Ralf, Schneider; Axel, Meyer; Qiang, Lin;Zexia, Gao
Zexia, Gao in OpenAIREpmid: 37204606
The leafy seadragon certainly is among evolution's most "beautiful and wonderful" species aptly named for its extraordinary camouflage mimicking its coastal seaweed habitat. However, limited information is known about the genetic basis of its phenotypes and conspicuous camouflage. Here, we revealed genomic signatures of rapid evolution and positive selection in core genes related to its camouflage, which allowed us to predict population dynamics for this species. Comparative genomic analysis revealed that seadragons have the smallest olfactory repertoires among all ray-finned fishes, suggesting adaptations to the highly specialized habitat. Other positively selected and rapidly evolving genes that serve in bone development and coloration are highly expressed in the leaf-like appendages, supporting a recent adaptive shift in camouflage appendage formation. Knock-out of bmp6 results in dysplastic intermuscular bones with a significantly reduced number in zebrafish, implying its important function in bone formation. Global climate change-induced loss of seagrass beds now severely threatens the continued existence of this enigmatic species. The leafy seadragon has a historically small population size likely due to its specific habitat requirements that further exacerbate its vulnerability to climate change. Therefore, taking climate change-induced range shifts into account while developing future protection strategies.
Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Science China Life S... arrow_drop_down Science China Life SciencesArticle . 2023 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11427-022-2317-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 FrancePublisher:Elsevier BV Publicly fundedCao, Zhen; Aharonian, F; An, Q; Axikegu, M; Bai, Y.X; Bao, Y.W;Bastieri, D;
Bi, X.J; Bi, Y.J; Cai, J.T; Cao, Q;Bastieri, D
Bastieri, D in OpenAIRECao, W.Y;
Cao, Zhe; Chang, J; Chang, J.F; Chen, A.M;Cao, W.Y
Cao, W.Y in OpenAIREChen, E.S;
Chen, Liang; Chen, Lin; Chen, Long; Chen, M.J; Chen, M.L; Chen, Q.H; Chen, S.H; Chen, S.Z;Chen, E.S
Chen, E.S in OpenAIREChen, T.L;
Chen, Y; Cheng, N; Cheng, Y.D; Cui, M.Y; Cui, S.W; Cui, X.H; Cui, Y.D; Dai, B.Z; Dai, H.L; Dai, Z.G; Danzengluobu, M; Della Volpe, D; Dong, X.Q; Duan, K.K; Fan, J.H; Fan, Y.Z; Fang, J; Fang, K; Feng, C.F; Feng, L; Feng, S.H; Feng, X.T; Feng, Y.L; Gabici, S; Gao, B; Gao, C.D; Gao, L.Q; Gao, Q;Chen, T.L
Chen, T.L in OpenAIREGao, W;
Gao, W.K; Ge, M.M; Geng, L.S; Giacinti, G; Gong, G.H; Gou, Q.B; Gu, M.H; Guo, F.L; Guo, X.L; Guo, Y.Q; Guo, Y.Y; Han, Y.A; He, H.H; He, H.N; He, J.Y; He, X.B; He, Y; Heller, M; Hor, Y.K; Hou, B.W; Hou, C; Hou, X; Hu, H.B; Hu, Q; Hu, S.C; Huang, D.H; Huang, T.Q; Huang, W.J; Huang, X.T; Huang, X.Y; Huang, Y; Huang, Z.C; Ji, X.L; Jia, H.Y; Jia, K; Jiang, K; Jiang, X.W; Jiang, Z.J; Jin, M; Kang, M.M; Ke, T; Kuleshov, D; Kurinov, K; Li, B.B; Li, Cheng;Li, Cong;
Li, D; Li, F; Li, H.B; Li, H.C; Li, H.Y; Li, J; Li, Jian; Li, Jie; Li, K; Li, W.L; Li, W.L; Li, X.R; Li, Xin; Li, Y.Z; Li, Zhe; Li, Zhuo; Liang, E.W; Liang, Y.F; Lin, S.J; Liu, B; Liu, C; Liu, D; Liu, H; Liu, H.D; Liu, J; Liu, J.L; Liu, J.Y; Liu, M.Y; Liu, R.Y; Liu, S.M; Liu, W; Liu, Y; Liu, Y.N; Lu, R; Luo, Q; Lv, H.K; Ma, B.Q; Ma, L.L; Ma, X.H; Mao, J.R; Min, Z; Mitthumsiri, W; Mu, H.J; Nan, Y.C; Neronov, A; Ou, Z.W; Pang, B.Y; Pattarakijwanich, P; Pei, Z.Y; Qi, M.Y; Qi, Y.Q; Qiao, B.Q; Qin, J.J;Li, Cong
Li, Cong in OpenAIRERuffolo, D;
Saiz, A; Semikoz, D; Shao, C.Y; Shao, L; Shchegolev, O; Sheng, X.D; Shu, F.W; Song, H.C; Stenkin, Yu.V; Stepanov, V; Su, Y; Sun, Q.N; Sun, X.N; Sun, Z.B; Tam, P.H.T; Tang, Q.W; Tang, Z.B; Tian, W.W; Wang, C; Wang, C.B; Wang, G.W; Wang, H.G; Wang, H.H; Wang, J.C; Wang, K; Wang, L.P; Wang, L.Y; Wang, P.H; Wang, R; Wang, W; Wang, X.G; Wang, X.Y; Wang, Y; Wang, Y.D; Wang, Y.J; Wang, Z.H; Wang, Z.X; Wang, Zhen; Wang, Zheng; Wei, D.M; Wei, J.J; Wei, Y.J; Wen, T; Wu, C.Y; Wu, H.R;Ruffolo, D
Ruffolo, D in OpenAIREWe report the detection of a $γ$-ray bubble spanning at least 100$\rm deg^2$ in ultra high energy (UHE) up to a few PeV in the direction of the star-forming region Cygnus X, implying the presence Super PeVatron(s) accelerating protons to at least 10 PeV. A log-parabola form with the photon index $Γ(E) = (2.71 \pm 0.02) + (0.11 \pm 0.02) \times \log_{10} (E/10 \ {\rm TeV})$ is found fitting the gamma-ray energy spectrum of the bubble well. UHE sources, `hot spots' correlated with very massive molecular clouds, and a quasi-spherical amorphous $γ$-ray emitter with a sharp central brightening are observed in the bubble. In the core of $\sim 0.5^{\circ}$, spatially associating with a region containing massive OB association (Cygnus OB2) and a microquasar (Cygnus X-3), as well as previously reported multi-TeV sources, an enhanced concentration of UHE $γ$-rays are observed with 2 photons at energies above 1 PeV. The general feature of the bubble, the morphology and the energy spectrum, are reasonably reproduced by the assumption of a particle accelerator in the core, continuously injecting protons into the ambient medium.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: DataciteArchive de l'Observatoire de Paris (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scib.2023.12.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: DataciteArchive de l'Observatoire de Paris (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scib.2023.12.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2023 FrancePublisher:Elsevier BV Publicly fundedCao, Zhen; Aharonian, F; An, Q; Axikegu, M; Bai, Y.X; Bao, Y.W;Bastieri, D;
Bi, X.J; Bi, Y.J; Cai, J.T; Cao, Q;Bastieri, D
Bastieri, D in OpenAIRECao, W.Y;
Cao, Zhe; Chang, J; Chang, J.F; Chen, A.M;Cao, W.Y
Cao, W.Y in OpenAIREChen, E.S;
Chen, Liang; Chen, Lin; Chen, Long; Chen, M.J; Chen, M.L; Chen, Q.H; Chen, S.H; Chen, S.Z;Chen, E.S
Chen, E.S in OpenAIREChen, T.L;
Chen, Y; Cheng, N; Cheng, Y.D; Cui, M.Y; Cui, S.W; Cui, X.H; Cui, Y.D; Dai, B.Z; Dai, H.L; Dai, Z.G; Danzengluobu, M; Della Volpe, D; Dong, X.Q; Duan, K.K; Fan, J.H; Fan, Y.Z; Fang, J; Fang, K; Feng, C.F; Feng, L; Feng, S.H; Feng, X.T; Feng, Y.L; Gabici, S; Gao, B; Gao, C.D; Gao, L.Q; Gao, Q;Chen, T.L
Chen, T.L in OpenAIREGao, W;
Gao, W.K; Ge, M.M; Geng, L.S; Giacinti, G; Gong, G.H; Gou, Q.B; Gu, M.H; Guo, F.L; Guo, X.L; Guo, Y.Q; Guo, Y.Y; Han, Y.A; He, H.H; He, H.N; He, J.Y; He, X.B; He, Y; Heller, M; Hor, Y.K; Hou, B.W; Hou, C; Hou, X; Hu, H.B; Hu, Q; Hu, S.C; Huang, D.H; Huang, T.Q; Huang, W.J; Huang, X.T; Huang, X.Y; Huang, Y; Huang, Z.C; Ji, X.L; Jia, H.Y; Jia, K; Jiang, K; Jiang, X.W; Jiang, Z.J; Jin, M; Kang, M.M; Ke, T; Kuleshov, D; Kurinov, K; Li, B.B; Li, Cheng;Li, Cong;
Li, D; Li, F; Li, H.B; Li, H.C; Li, H.Y; Li, J; Li, Jian; Li, Jie; Li, K; Li, W.L; Li, W.L; Li, X.R; Li, Xin; Li, Y.Z; Li, Zhe; Li, Zhuo; Liang, E.W; Liang, Y.F; Lin, S.J; Liu, B; Liu, C; Liu, D; Liu, H; Liu, H.D; Liu, J; Liu, J.L; Liu, J.Y; Liu, M.Y; Liu, R.Y; Liu, S.M; Liu, W; Liu, Y; Liu, Y.N; Lu, R; Luo, Q; Lv, H.K; Ma, B.Q; Ma, L.L; Ma, X.H; Mao, J.R; Min, Z; Mitthumsiri, W; Mu, H.J; Nan, Y.C; Neronov, A; Ou, Z.W; Pang, B.Y; Pattarakijwanich, P; Pei, Z.Y; Qi, M.Y; Qi, Y.Q; Qiao, B.Q; Qin, J.J;Li, Cong
Li, Cong in OpenAIRERuffolo, D;
Saiz, A; Semikoz, D; Shao, C.Y; Shao, L; Shchegolev, O; Sheng, X.D; Shu, F.W; Song, H.C; Stenkin, Yu.V; Stepanov, V; Su, Y; Sun, Q.N; Sun, X.N; Sun, Z.B; Tam, P.H.T; Tang, Q.W; Tang, Z.B; Tian, W.W; Wang, C; Wang, C.B; Wang, G.W; Wang, H.G; Wang, H.H; Wang, J.C; Wang, K; Wang, L.P; Wang, L.Y; Wang, P.H; Wang, R; Wang, W; Wang, X.G; Wang, X.Y; Wang, Y; Wang, Y.D; Wang, Y.J; Wang, Z.H; Wang, Z.X; Wang, Zhen; Wang, Zheng; Wei, D.M; Wei, J.J; Wei, Y.J; Wen, T; Wu, C.Y; Wu, H.R;Ruffolo, D
Ruffolo, D in OpenAIREWe report the detection of a $γ$-ray bubble spanning at least 100$\rm deg^2$ in ultra high energy (UHE) up to a few PeV in the direction of the star-forming region Cygnus X, implying the presence Super PeVatron(s) accelerating protons to at least 10 PeV. A log-parabola form with the photon index $Γ(E) = (2.71 \pm 0.02) + (0.11 \pm 0.02) \times \log_{10} (E/10 \ {\rm TeV})$ is found fitting the gamma-ray energy spectrum of the bubble well. UHE sources, `hot spots' correlated with very massive molecular clouds, and a quasi-spherical amorphous $γ$-ray emitter with a sharp central brightening are observed in the bubble. In the core of $\sim 0.5^{\circ}$, spatially associating with a region containing massive OB association (Cygnus OB2) and a microquasar (Cygnus X-3), as well as previously reported multi-TeV sources, an enhanced concentration of UHE $γ$-rays are observed with 2 photons at energies above 1 PeV. The general feature of the bubble, the morphology and the energy spectrum, are reasonably reproduced by the assumption of a particle accelerator in the core, continuously injecting protons into the ambient medium.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: DataciteArchive de l'Observatoire de Paris (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scib.2023.12.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 40 citations 40 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2023License: arXiv Non-Exclusive DistributionData sources: DataciteArchive de l'Observatoire de Paris (HAL)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scib.2023.12.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 AustraliaPublisher:Elsevier BV Funded by:EC | MARSEC| MARSAuthors:Zhou, Y.;
Ma, J.;Zhou, Y.
Zhou, Y. in OpenAIREZhang, Y.;
Qin, B.; +6 AuthorsZhang, Y.
Zhang, Y. in OpenAIREZhou, Y.;
Ma, J.;Zhou, Y.
Zhou, Y. in OpenAIREZhang, Y.;
Qin, B.;Zhang, Y.
Zhang, Y. in OpenAIREJeppesen, E.;
Jeppesen, E.
Jeppesen, E. in OpenAIREShi, K.;
Brookes, J.D.;
Spencer, R.G.M.; Zhu, G.; Gao, G.;Brookes, J.D.
Brookes, J.D. in OpenAIREThis study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.
PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 AustraliaPublisher:Elsevier BV Funded by:EC | MARSEC| MARSAuthors:Zhou, Y.;
Ma, J.;Zhou, Y.
Zhou, Y. in OpenAIREZhang, Y.;
Qin, B.; +6 AuthorsZhang, Y.
Zhang, Y. in OpenAIREZhou, Y.;
Ma, J.;Zhou, Y.
Zhou, Y. in OpenAIREZhang, Y.;
Qin, B.;Zhang, Y.
Zhang, Y. in OpenAIREJeppesen, E.;
Jeppesen, E.
Jeppesen, E. in OpenAIREShi, K.;
Brookes, J.D.;
Spencer, R.G.M.; Zhu, G.; Gao, G.;Brookes, J.D.
Brookes, J.D. in OpenAIREThis study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH4+-N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge.
PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu161 citations 161 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert PURE Aarhus Universi... arrow_drop_down http://dx.doi.org/10.1016/j.wa...Other literature typeData sources: European Union Open Data PortalThe University of Adelaide: Digital LibraryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.watres.2017.04.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 07 Oct 2024 Spain, Germany, United KingdomPublisher:Wiley Funded by:NSF | CAREER: Integrating a Mic...NSF| CAREER: Integrating a Microbial Data System with an Earth System Model for Evaluating Microbial BiogeochemistryAuthors:Yongxing Cui;
Junxi Hu; Shushi Peng;Yongxing Cui
Yongxing Cui in OpenAIREManuel Delgado‐Baquerizo;
+9 AuthorsManuel Delgado‐Baquerizo
Manuel Delgado‐Baquerizo in OpenAIREYongxing Cui;
Junxi Hu; Shushi Peng;Yongxing Cui
Yongxing Cui in OpenAIREManuel Delgado‐Baquerizo;
Daryl L. Moorhead; Robert L. Sinsabaugh;Manuel Delgado‐Baquerizo
Manuel Delgado‐Baquerizo in OpenAIREXiaofeng Xu;
Kevin M. Geyer; Linchuan Fang;Xiaofeng Xu
Xiaofeng Xu in OpenAIREPete Smith;
Josep Peñuelas;Pete Smith
Pete Smith in OpenAIREYakov Kuzyakov;
Yakov Kuzyakov
Yakov Kuzyakov in OpenAIREJi Chen;
AbstractMicrobial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 57visibility views 57 download downloads 122 Powered bymore_vert Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Embargo end date: 07 Oct 2024 Spain, Germany, United KingdomPublisher:Wiley Funded by:NSF | CAREER: Integrating a Mic...NSF| CAREER: Integrating a Microbial Data System with an Earth System Model for Evaluating Microbial BiogeochemistryAuthors:Yongxing Cui;
Junxi Hu; Shushi Peng;Yongxing Cui
Yongxing Cui in OpenAIREManuel Delgado‐Baquerizo;
+9 AuthorsManuel Delgado‐Baquerizo
Manuel Delgado‐Baquerizo in OpenAIREYongxing Cui;
Junxi Hu; Shushi Peng;Yongxing Cui
Yongxing Cui in OpenAIREManuel Delgado‐Baquerizo;
Daryl L. Moorhead; Robert L. Sinsabaugh;Manuel Delgado‐Baquerizo
Manuel Delgado‐Baquerizo in OpenAIREXiaofeng Xu;
Kevin M. Geyer; Linchuan Fang;Xiaofeng Xu
Xiaofeng Xu in OpenAIREPete Smith;
Josep Peñuelas;Pete Smith
Pete Smith in OpenAIREYakov Kuzyakov;
Yakov Kuzyakov
Yakov Kuzyakov in OpenAIREJi Chen;
AbstractMicrobial carbon (C) use efficiency (CUE) delineates the proportion of organic C used by microorganisms for anabolism and ultimately influences the amount of C sequestered in soils. However, the key factors controlling CUE remain enigmatic, leading to considerable uncertainty in understanding soil C retention and predicting its responses to global change factors. Here, we investigate the global patterns of CUE estimate by stoichiometric modeling in surface soils of natural ecosystems, and examine its associations with temperature, precipitation, plant‐derived C and soil nutrient availability. We found that CUE is determined by the most limiting resource among these four basic environmental resources within specific climate zones (i.e., tropical, temperate, arid, and cold zones). Higher CUE is common in arid and cold zones and corresponds to limitations in temperature, water, and plant‐derived C input, while lower CUE is observed in tropical and temperate zones with widespread limitation of nutrients (e.g., nitrogen or phosphorus) in soil. The contrasting resource limitations among climate zones led to an apparent increase in CUE with increasing latitude. The resource‐specific dependence of CUE implies that soils in high latitudes with arid and cold environments may retain less organic C in the future, as warming and increased precipitation can reduce CUE. In contrast, oligotrophic soils in low latitudes may increase organic C retention, as CUE could be increased with concurrent anthropogenic nutrient inputs. The findings underscore the importance of resource limitations for CUE and suggest asymmetric responses of organic C retention in soils across latitudes to global change factors.
Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 57visibility views 57 download downloads 122 Powered bymore_vert Advanced Science arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARefubium - Repositorium der Freien Universität BerlinArticle . 2024License: CC BYData sources: Refubium - Repositorium der Freien Universität BerlinAberdeen University Research Archive (AURA)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/advs.202308176&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:Wiley Authors:Qi Li;
Hejuan Liu;Zhengmeng Hou;
Zhengmeng Hou; +3 AuthorsZhengmeng Hou
Zhengmeng Hou in OpenAIREQi Li;
Hejuan Liu;Zhengmeng Hou;
Zhengmeng Hou; Patrick Were;Zhengmeng Hou
Zhengmeng Hou in OpenAIREYang Gou;
Yang Gou;Yang Gou
Yang Gou in OpenAIREdoi: 10.1155/2017/6126505
Carbon capture, utilization, and storage (CCUS) is a gas injection technology that enables the storage of CO2 underground. The aims are twofold, on one hand to reduce the emissions of CO2 into the atmosphere and on the other hand to increase oil/gas/heat recovery. Different types of CCUS technologies and related engineering projects have a long history of research and operation in the USA. However, in China they have a short development period ca. 10 years. Unlike CO2 capture and CO2-EOR technologies that are already operating on a commercial scale in China, research into other CCUS technologies is still in its infancy or at the pilot-scale. This paper first reviews the status and development of the different types of CCUS technologies and related engineering projects worldwide. Then it focuses on their developments in China in the last decade. The main research projects, international cooperation, and pilot-scale engineering projects in China are summarized and compared. Finally, the paper examines the challenges and prospects to be experienced through the industrialization of CCUS engineering projects in China. It can be concluded that the CCUS technologies have still large potential in China. It can only be unlocked by overcoming the technical and social challenges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:Wiley Authors:Qi Li;
Hejuan Liu;Zhengmeng Hou;
Zhengmeng Hou; +3 AuthorsZhengmeng Hou
Zhengmeng Hou in OpenAIREQi Li;
Hejuan Liu;Zhengmeng Hou;
Zhengmeng Hou; Patrick Were;Zhengmeng Hou
Zhengmeng Hou in OpenAIREYang Gou;
Yang Gou;Yang Gou
Yang Gou in OpenAIREdoi: 10.1155/2017/6126505
Carbon capture, utilization, and storage (CCUS) is a gas injection technology that enables the storage of CO2 underground. The aims are twofold, on one hand to reduce the emissions of CO2 into the atmosphere and on the other hand to increase oil/gas/heat recovery. Different types of CCUS technologies and related engineering projects have a long history of research and operation in the USA. However, in China they have a short development period ca. 10 years. Unlike CO2 capture and CO2-EOR technologies that are already operating on a commercial scale in China, research into other CCUS technologies is still in its infancy or at the pilot-scale. This paper first reviews the status and development of the different types of CCUS technologies and related engineering projects worldwide. Then it focuses on their developments in China in the last decade. The main research projects, international cooperation, and pilot-scale engineering projects in China are summarized and compared. Finally, the paper examines the challenges and prospects to be experienced through the industrialization of CCUS engineering projects in China. It can be concluded that the CCUS technologies have still large potential in China. It can only be unlocked by overcoming the technical and social challenges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Kuenzer, Claudia;Heimhuber, Valentin;
Day, John;Heimhuber, Valentin
Heimhuber, Valentin in OpenAIREVaris, Olli;
+7 AuthorsVaris, Olli
Varis, Olli in OpenAIREKuenzer, Claudia;Heimhuber, Valentin;
Day, John;Heimhuber, Valentin
Heimhuber, Valentin in OpenAIREVaris, Olli;
Varis, Olli
Varis, Olli in OpenAIREBucx, Tom;
Bucx, Tom
Bucx, Tom in OpenAIRERenaud, Fabrice;
Gaohuan, Liu;Renaud, Fabrice
Renaud, Fabrice in OpenAIRETuan, Vo Quoc;
Schlurmann, Thorsten; Glamore; William;Tuan, Vo Quoc
Tuan, Vo Quoc in OpenAIRERiver deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Kuenzer, Claudia;Heimhuber, Valentin;
Day, John;Heimhuber, Valentin
Heimhuber, Valentin in OpenAIREVaris, Olli;
+7 AuthorsVaris, Olli
Varis, Olli in OpenAIREKuenzer, Claudia;Heimhuber, Valentin;
Day, John;Heimhuber, Valentin
Heimhuber, Valentin in OpenAIREVaris, Olli;
Varis, Olli
Varis, Olli in OpenAIREBucx, Tom;
Bucx, Tom
Bucx, Tom in OpenAIRERenaud, Fabrice;
Gaohuan, Liu;Renaud, Fabrice
Renaud, Fabrice in OpenAIRETuan, Vo Quoc;
Schlurmann, Thorsten; Glamore; William;Tuan, Vo Quoc
Tuan, Vo Quoc in OpenAIRERiver deltas and estuaries are disproportionally-significant coastal landforms that are inhabited by nearly 600 M people globally. In recent history, rapid socio-economic development has dramatically changed many of the World's mega deltas, which have typically undergone agricultural intensification and expansion, land-use change, urbanization, water resources engineering and exploitation of natural resources. As a result, mega deltas have evolved into complex and potentially vulnerable socio-ecological systems with unique threats and coping capabilities. The goal of this research was to establish a holistic understanding of threats, resilience, and adaptation for four mega deltas of variable geography and levels of socio-economic development, namely the Mekong, Yellow River, Yangtze, and Rhine deltas. Compiling this kind of information is critical for managing and developing these complex coastal areas sustainably but is typically hindered by a lack of consistent quantitative data across the ecological, social and economic sectors. To overcome this limitation, we adopted a qualitative approach, where delta characteristics across all sectors were assessed through systematic expert surveys. This approach enabled us to generate a comparative assessment of threats, resilience, and resilience-strengthening adaptation across the four deltas. Our assessment provides novel insights into the various components that dominate the overall risk situation in each delta and, for the first time, illustrates how each of these components differ across the four mega deltas. As such, our findings can guide a more detailed, sector specific, risk assessment or assist in better targeting the implementation of risk mitigation and adaptation strategies.
CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)Ocean & Coastal ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2020.105362&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu