- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOSDG [Beta]
Organization
- Energy Research
- KR
- Energy Research
- KR
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Yilma Hunde Gonfa; Fekade Beshah Tessema; Archana Bachheti; Mesfin Getachew Tadesse; +7 AuthorsYilma Hunde Gonfa; Fekade Beshah Tessema; Archana Bachheti; Mesfin Getachew Tadesse; Ebrahem M. Eid; Sami Abou Fayssal; Bashir Adelodun; Kyung Sook Choi; Ivan Širić; Pankaj Kumar; Rakesh Kumar Bachheti;doi: 10.3390/su142315785
In this study, essential oil of the aerial part of Pluchea ovalis (POEO) was isolated and employed for the synthesis of AgNPs (POEO-AgNPs). Then, larvicidal activities of POEO and PEO-AgNPs were evaluated against the larvae of fall armyworm (FAW), Spodoptera frugiderda (J. E. Smith); (Lepidoptera: Noctuidae). The potential medicinal values of P. ovalis and the lack of scientific reports on the applications of essential oils and nanoparticles of the plant species from the ecology of Ethiopia motivated the authors to carry out this research activity. The hydrodistillation technique was used for the isolation of POEO. Characterization of samples was done using gas chromatography/mass spectrometry (GC/MS), ultraviolet–visible spectroscopy (UV–Vis), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and zeta nanoanalyzer instruments. GC/MS analysis showed that sesquiterpenes (91.27%) are the dominant chemical constituents of POEO. The characteristic UV–Vis spectra absorption of POEO-AgNPs is observed at 428 nm. SEM imaging reveals that POEO-AgNPs have a dominantly spherical shape. A strong peak of EDX at 3.0 keV shows the existence of Ag element in POEO-AgNPs. XRD analysis determines the diffraction peaks of POEO-AgNPs at 2θ of 38.2°, 44.1°, 64.6°, and 77.8° which are indexed to (111), (200), (220), and (311), respectively. The average particle size and surface potential of POEO-AgNPs are 132 nm and −64.7 mV, respectively. POEO-AgNPs were stored at room temperature and 4 °C and showed good stability for about 6 months without aggregation or dissolution. The larvicidal activity was tested at 500, 250, and 125 µg/mL of POEO solution and 100% (full strength = 0.083 g/mL), 50%, and 25% POEO-AgNPs solution against 2nd instar larvae of S. frugiderda for 3 consecutive days. LC50 and LC90 are determined as 154.88 and 11,749.00 µg/mL for POEO and 69.18 and 1318.26% for POEO-AgNPs solutions, respectively. This finding will benefit the applications of POEO and POEO-AgNPs for a sustainable eco-friendly crop pest management method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Arwa A. AL-Huqail; Piyush Kumar; Ebrahem M. Eid; Mostafa A. Taher; Pankaj Kumar; Bashir Adelodun; Željko Andabaka; Boro Mioč; Valentino Držaić; Archana Bachheti; Jogendra Singh; Vinod Kumar; Ivan Širić;doi: 10.3390/su14159500
This study investigates the phytoremediation of composite industrial effluent (CIE) released from multiple industries within the SIIDCUL cluster, Haridwar, India, using the sacred lotus (Nelumbo nucifera Gaertn) plant. Batch-mode phytoremediation experiments were conducted using three selected concentrations (0%: borewell water as control, 50%, and 100%) of CIE for 45 days. Results show that the N. nucifera plant significantly reduced loads of physicochemical and heavy metal pollutants of CIE. In particular, the maximal removal of total dissolved solids (TDS: 89.56%), biochemical oxygen demand (BOD: 78.20%), chemical oxygen demand (COD: 79.41%), total Kjeldahl’s nitrogen (TKN: 86.48%), phosphorus (P: 76.37%), cadmium (Cd: 70.37%), copper (Cu: 85.82%), chromium (Cr: 68.61%), iron (Fe: 72.86%), lead (Pb: 76.92%), and zinc (Zn: 74.51%) pollutants was noted in the 50% CIE concentration treatment. Heavy metal bioaccumulation and translocation factor values (>1) for root and leaf parts show that the N. nucifera plant was a hyperaccumulator. However, the contents of heavy metals were higher in the root than the leaf part of the N. nucifera plant. Moreover, the selected plant growth attributes such as fresh plant biomass (760.70 ± 8.77 g/plant; without flowers), chlorophyll content (4.30 ± 0.22 mg/g fwt.), plant height (154.05 ± 4.55 cm), root length (70.35 ± 2.42 cm), leaf spread (41.58 ± 0.26 cm), number of leaves (10.00 ± 1.00 per plant), and number of flowers (16.00 ± 2.00) were also maximal in the 50% CIE concentration. This study provides a sustainable approach towards the effective biotreatment of noxious mixed effluent using plant-based green technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Pankaj Kumar; Ebrahem M. Eid; Mostafa A. Taher; Mohamed H. E. El-Morsy; Hanan E. M. Osman; Dhafer A. Al-Bakre; Bashir Adelodun; Sami Abou Fayssal; Madhumita Goala; Boro Mioč; Valentino Držaić; Fidelis O. Ajibade; Kyung Sook Choi; Vinod Kumar; Ivan Širić;Agro-wastes, such as crop residues, leaf litter, and sawdust, are major contributors to global greenhouse gas emissions, and consequently a major concern for climate change. Nowadays, mushroom cultivation has appeared as an emerging agribusiness that helps in the sustainable management of agro-wastes. However, partial utilization of agro-wastes by mushrooms results in the generation of a significant quantity of spent mushroom substrates (SMS) that have continued to become an environmental problem. In particular, Shiitake (Lentinula edodes Berk.) mushrooms can be grown on different types of agro-wastes and also generate a considerable amount of SMS. Therefore, this study investigates the biotransformation of SMS obtained after Shiitake mushroom cultivation into biogas and attendant utilization of slurry digestate (SD) in tomato (Solanum lycopersicum L.) crop fertilization. Biogas production experiments were conducted anaerobically using four treatments of SMS, i.e., 0% (control), 25, 50, and 75% inoculated with a proportional amount of cow dung (CD) as inoculum. The results on biogas production revealed that SMS 50% treatment yielded the highest biogas volume (8834 mL or 11.93 mL/g of organic carbon) and methane contents (61%) along with maximum reduction of physicochemical and proximate parameters of slurry. Furthermore, the biogas digestate from 50% treatment further helped to increase the seed germination (93.25%), seedling length (9.2 cm), seedling root length (4.19 cm), plant height (53.10 cm), chlorophyll content (3.38 mg/g), total yield (1.86 kg/plant), flavonoids (5.06 mg/g), phenolics (2.78 mg/g), and tannin (3.40 mg/g) contents of tomato significantly (p < 0.05) in the 10% loading rate. The findings of this study suggest sustainable upcycling of SMS inspired by a circular economy approach through synergistic production of bioenergy and secondary fruit crops, which could potentially contribute to minimize the carbon footprints of the mushroom production sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/horticulturae8060479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/horticulturae8060479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Arwa A. AL-Huqail; Vinod Kumar; Rohit Kumar; Ebrahem M. Eid; Mostafa A. Taher; Bashir Adelodun; Sami Abou Fayssal; Boro Mioč; Valentino Držaić; Madhumita Goala; Pankaj Kumar; Ivan Širić;doi: 10.3390/su141610224
Food waste has become a challenging global issue due to its inefficient management, particularly in low and middle-income countries. Among food waste items, fruit peel waste (FPW) is generated in enormous quantities, especially from juice vendors, resulting in arduous tasks for waste management personnel and authorities. However, considering the nutrient and digestible content of organic wastes, in this study four types of FPW (pineapple: PA; sweet lemon: SL; kinnow: KN; and pomegranate: PG) were investigated for their potential use within biogas production, using conventional and electro-assisted anaerobic reactors (CAR and EAR). In addition, the FPW digestate obtained after the biogas production experiments was considered as a soil bio-fertilizer under radish (Raphanussativus L. cv. Pusa Himani) cultivation. In the results, all four types of FPW had digestible organic fractions, as revealed from physicochemical and proximate analysis. However, PA-based FPW yielded the maximum biogas (1422.76 ± 3.10 mL/62.21 ± 0.13% CH4) using the EAR system, compared to all other FPW. Overall, the decreasing order of biogas yield obtained from FPW was observed as PA > PG > SL > KN. The kinetic analysis of the biogas production process showed that the modified Gompertz model best fitted in terms of coefficient of determination (R2 > 0.99) to predict cumulative biogas production (y), lag phase (λ), and specific biogas production rate (µm). Moreover, fertilizer application of spent FPW digestate obtained after biogas production significantly improved the arable soil properties (p < 0.05). Further, KN-based FPW digestate mixing showed maximum improvement in radish plant height (36.50 ± 0.82 cm), plant spread (70.80 ± 3.79 cm2), number of leaves (16.12 ± 0.05), fresh weight of leaves (158.08 ± 2.85 g/plant), fruit yield (140.10 ± 2.13 g/plant), and fruit length (25.05 ± 0.15 cm). Thus, this study suggests an efficient method of FPW management through biogas and crop production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Ivan Širić; Sami Abou Fayssal; Bashir Adelodun; Boro Mioč; Željko Andabaka; Archana Bachheti; Madhumita Goala; Pankaj Kumar; Arwa A. AL-Huqail; Mostafa A. Taher; Ebrahem M. Eid;The potential use of carbon dioxide (CO2) and wastewater released from a mushroom farm for the cultivation of Chlorella vulgaris microalga was investigated in this study. For this purpose, a microcontroller-based aided CO2 capture and mixing prototype was constructed for the cultivation of C. vulgaris under varying concentrations of mushroom farm wastewater (0 as control, 50 and 100%). The results showed that the constructed prototype was helpful to maintain desirable CO2 levels (6000 ppm) in the mushroom cultivation chamber with constant CO2 supply to algal culture, i.e., 0.6% at an airflow rate of 50 mL/min. After 16 days of algal cultivation, it was observed that the maximum significant (p < 0.05) algal biomass production of 2.550 ± 0.073 mg/L was recorded in 50% wastewater concentration followed by 100% and control. Also, the maximum removal of selected mushroom farm wastewater pollutants, such as total dissolved solids (84.00 ± 1.37%), biochemical oxygen demand (90.17 ± 2.42%), chemical oxygen demand (91.53 ± 0.97%), total nitrogen (86.27 ± 1.60%) and total phosphorus (94.19 ± 2.33%), was achieved in 50% concentration of wastewater treatment with maximum first-order rate constant (k) values. In addition, the algal growth kinetics results showed that the logistic model fit best compared to the modified Gompertz model, based on selected validation tools, such as experimental vs. predicted values, coefficient of determination (R2 > 0.9938), model efficiency (ME > 0.98) and root mean square error (RMSE < 0.03). The post-harvest characterization of algal biomass revealed that the proximate, biochemical, ultimate elements (carbon, oxygen and nitrogen) and structural properties were significantly higher in 50% treatment than those in 100% and control treatments. Therefore, the findings of this study are novel and provide significant insight into the synergistic use of CO2 and wastewater produced by mushroom farms for algal cultivation and biological wastewater treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/horticulturae9030308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/horticulturae9030308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Yilma Hunde Gonfa; Fekade Beshah Tessema; Archana Bachheti; Mesfin Getachew Tadesse; +7 AuthorsYilma Hunde Gonfa; Fekade Beshah Tessema; Archana Bachheti; Mesfin Getachew Tadesse; Ebrahem M. Eid; Sami Abou Fayssal; Bashir Adelodun; Kyung Sook Choi; Ivan Širić; Pankaj Kumar; Rakesh Kumar Bachheti;doi: 10.3390/su142315785
In this study, essential oil of the aerial part of Pluchea ovalis (POEO) was isolated and employed for the synthesis of AgNPs (POEO-AgNPs). Then, larvicidal activities of POEO and PEO-AgNPs were evaluated against the larvae of fall armyworm (FAW), Spodoptera frugiderda (J. E. Smith); (Lepidoptera: Noctuidae). The potential medicinal values of P. ovalis and the lack of scientific reports on the applications of essential oils and nanoparticles of the plant species from the ecology of Ethiopia motivated the authors to carry out this research activity. The hydrodistillation technique was used for the isolation of POEO. Characterization of samples was done using gas chromatography/mass spectrometry (GC/MS), ultraviolet–visible spectroscopy (UV–Vis), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and zeta nanoanalyzer instruments. GC/MS analysis showed that sesquiterpenes (91.27%) are the dominant chemical constituents of POEO. The characteristic UV–Vis spectra absorption of POEO-AgNPs is observed at 428 nm. SEM imaging reveals that POEO-AgNPs have a dominantly spherical shape. A strong peak of EDX at 3.0 keV shows the existence of Ag element in POEO-AgNPs. XRD analysis determines the diffraction peaks of POEO-AgNPs at 2θ of 38.2°, 44.1°, 64.6°, and 77.8° which are indexed to (111), (200), (220), and (311), respectively. The average particle size and surface potential of POEO-AgNPs are 132 nm and −64.7 mV, respectively. POEO-AgNPs were stored at room temperature and 4 °C and showed good stability for about 6 months without aggregation or dissolution. The larvicidal activity was tested at 500, 250, and 125 µg/mL of POEO solution and 100% (full strength = 0.083 g/mL), 50%, and 25% POEO-AgNPs solution against 2nd instar larvae of S. frugiderda for 3 consecutive days. LC50 and LC90 are determined as 154.88 and 11,749.00 µg/mL for POEO and 69.18 and 1318.26% for POEO-AgNPs solutions, respectively. This finding will benefit the applications of POEO and POEO-AgNPs for a sustainable eco-friendly crop pest management method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142315785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Arwa A. AL-Huqail; Piyush Kumar; Ebrahem M. Eid; Mostafa A. Taher; Pankaj Kumar; Bashir Adelodun; Željko Andabaka; Boro Mioč; Valentino Držaić; Archana Bachheti; Jogendra Singh; Vinod Kumar; Ivan Širić;doi: 10.3390/su14159500
This study investigates the phytoremediation of composite industrial effluent (CIE) released from multiple industries within the SIIDCUL cluster, Haridwar, India, using the sacred lotus (Nelumbo nucifera Gaertn) plant. Batch-mode phytoremediation experiments were conducted using three selected concentrations (0%: borewell water as control, 50%, and 100%) of CIE for 45 days. Results show that the N. nucifera plant significantly reduced loads of physicochemical and heavy metal pollutants of CIE. In particular, the maximal removal of total dissolved solids (TDS: 89.56%), biochemical oxygen demand (BOD: 78.20%), chemical oxygen demand (COD: 79.41%), total Kjeldahl’s nitrogen (TKN: 86.48%), phosphorus (P: 76.37%), cadmium (Cd: 70.37%), copper (Cu: 85.82%), chromium (Cr: 68.61%), iron (Fe: 72.86%), lead (Pb: 76.92%), and zinc (Zn: 74.51%) pollutants was noted in the 50% CIE concentration treatment. Heavy metal bioaccumulation and translocation factor values (>1) for root and leaf parts show that the N. nucifera plant was a hyperaccumulator. However, the contents of heavy metals were higher in the root than the leaf part of the N. nucifera plant. Moreover, the selected plant growth attributes such as fresh plant biomass (760.70 ± 8.77 g/plant; without flowers), chlorophyll content (4.30 ± 0.22 mg/g fwt.), plant height (154.05 ± 4.55 cm), root length (70.35 ± 2.42 cm), leaf spread (41.58 ± 0.26 cm), number of leaves (10.00 ± 1.00 per plant), and number of flowers (16.00 ± 2.00) were also maximal in the 50% CIE concentration. This study provides a sustainable approach towards the effective biotreatment of noxious mixed effluent using plant-based green technology.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14159500&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Pankaj Kumar; Ebrahem M. Eid; Mostafa A. Taher; Mohamed H. E. El-Morsy; Hanan E. M. Osman; Dhafer A. Al-Bakre; Bashir Adelodun; Sami Abou Fayssal; Madhumita Goala; Boro Mioč; Valentino Držaić; Fidelis O. Ajibade; Kyung Sook Choi; Vinod Kumar; Ivan Širić;Agro-wastes, such as crop residues, leaf litter, and sawdust, are major contributors to global greenhouse gas emissions, and consequently a major concern for climate change. Nowadays, mushroom cultivation has appeared as an emerging agribusiness that helps in the sustainable management of agro-wastes. However, partial utilization of agro-wastes by mushrooms results in the generation of a significant quantity of spent mushroom substrates (SMS) that have continued to become an environmental problem. In particular, Shiitake (Lentinula edodes Berk.) mushrooms can be grown on different types of agro-wastes and also generate a considerable amount of SMS. Therefore, this study investigates the biotransformation of SMS obtained after Shiitake mushroom cultivation into biogas and attendant utilization of slurry digestate (SD) in tomato (Solanum lycopersicum L.) crop fertilization. Biogas production experiments were conducted anaerobically using four treatments of SMS, i.e., 0% (control), 25, 50, and 75% inoculated with a proportional amount of cow dung (CD) as inoculum. The results on biogas production revealed that SMS 50% treatment yielded the highest biogas volume (8834 mL or 11.93 mL/g of organic carbon) and methane contents (61%) along with maximum reduction of physicochemical and proximate parameters of slurry. Furthermore, the biogas digestate from 50% treatment further helped to increase the seed germination (93.25%), seedling length (9.2 cm), seedling root length (4.19 cm), plant height (53.10 cm), chlorophyll content (3.38 mg/g), total yield (1.86 kg/plant), flavonoids (5.06 mg/g), phenolics (2.78 mg/g), and tannin (3.40 mg/g) contents of tomato significantly (p < 0.05) in the 10% loading rate. The findings of this study suggest sustainable upcycling of SMS inspired by a circular economy approach through synergistic production of bioenergy and secondary fruit crops, which could potentially contribute to minimize the carbon footprints of the mushroom production sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/horticulturae8060479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/horticulturae8060479&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Arwa A. AL-Huqail; Vinod Kumar; Rohit Kumar; Ebrahem M. Eid; Mostafa A. Taher; Bashir Adelodun; Sami Abou Fayssal; Boro Mioč; Valentino Držaić; Madhumita Goala; Pankaj Kumar; Ivan Širić;doi: 10.3390/su141610224
Food waste has become a challenging global issue due to its inefficient management, particularly in low and middle-income countries. Among food waste items, fruit peel waste (FPW) is generated in enormous quantities, especially from juice vendors, resulting in arduous tasks for waste management personnel and authorities. However, considering the nutrient and digestible content of organic wastes, in this study four types of FPW (pineapple: PA; sweet lemon: SL; kinnow: KN; and pomegranate: PG) were investigated for their potential use within biogas production, using conventional and electro-assisted anaerobic reactors (CAR and EAR). In addition, the FPW digestate obtained after the biogas production experiments was considered as a soil bio-fertilizer under radish (Raphanussativus L. cv. Pusa Himani) cultivation. In the results, all four types of FPW had digestible organic fractions, as revealed from physicochemical and proximate analysis. However, PA-based FPW yielded the maximum biogas (1422.76 ± 3.10 mL/62.21 ± 0.13% CH4) using the EAR system, compared to all other FPW. Overall, the decreasing order of biogas yield obtained from FPW was observed as PA > PG > SL > KN. The kinetic analysis of the biogas production process showed that the modified Gompertz model best fitted in terms of coefficient of determination (R2 > 0.99) to predict cumulative biogas production (y), lag phase (λ), and specific biogas production rate (µm). Moreover, fertilizer application of spent FPW digestate obtained after biogas production significantly improved the arable soil properties (p < 0.05). Further, KN-based FPW digestate mixing showed maximum improvement in radish plant height (36.50 ± 0.82 cm), plant spread (70.80 ± 3.79 cm2), number of leaves (16.12 ± 0.05), fresh weight of leaves (158.08 ± 2.85 g/plant), fruit yield (140.10 ± 2.13 g/plant), and fruit length (25.05 ± 0.15 cm). Thus, this study suggests an efficient method of FPW management through biogas and crop production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su141610224&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Ivan Širić; Sami Abou Fayssal; Bashir Adelodun; Boro Mioč; Željko Andabaka; Archana Bachheti; Madhumita Goala; Pankaj Kumar; Arwa A. AL-Huqail; Mostafa A. Taher; Ebrahem M. Eid;The potential use of carbon dioxide (CO2) and wastewater released from a mushroom farm for the cultivation of Chlorella vulgaris microalga was investigated in this study. For this purpose, a microcontroller-based aided CO2 capture and mixing prototype was constructed for the cultivation of C. vulgaris under varying concentrations of mushroom farm wastewater (0 as control, 50 and 100%). The results showed that the constructed prototype was helpful to maintain desirable CO2 levels (6000 ppm) in the mushroom cultivation chamber with constant CO2 supply to algal culture, i.e., 0.6% at an airflow rate of 50 mL/min. After 16 days of algal cultivation, it was observed that the maximum significant (p < 0.05) algal biomass production of 2.550 ± 0.073 mg/L was recorded in 50% wastewater concentration followed by 100% and control. Also, the maximum removal of selected mushroom farm wastewater pollutants, such as total dissolved solids (84.00 ± 1.37%), biochemical oxygen demand (90.17 ± 2.42%), chemical oxygen demand (91.53 ± 0.97%), total nitrogen (86.27 ± 1.60%) and total phosphorus (94.19 ± 2.33%), was achieved in 50% concentration of wastewater treatment with maximum first-order rate constant (k) values. In addition, the algal growth kinetics results showed that the logistic model fit best compared to the modified Gompertz model, based on selected validation tools, such as experimental vs. predicted values, coefficient of determination (R2 > 0.9938), model efficiency (ME > 0.98) and root mean square error (RMSE < 0.03). The post-harvest characterization of algal biomass revealed that the proximate, biochemical, ultimate elements (carbon, oxygen and nitrogen) and structural properties were significantly higher in 50% treatment than those in 100% and control treatments. Therefore, the findings of this study are novel and provide significant insight into the synergistic use of CO2 and wastewater produced by mushroom farms for algal cultivation and biological wastewater treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/horticulturae9030308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/horticulturae9030308&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu