- home
- Advanced Search
- Energy Research
- MY
- Energy Research
- MY
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Funded by:UKRI | REFINE: A coordinated mat...UKRI| REFINE: A coordinated materials programme for the sustainable REduction of spent Fuel vital In a closed loop Nuclear Energy cycleJing Wang; Fu Liu; Jun He; Bin Gao; Zheng Lian; Yong Shi; Kai Seng Koh; Yong Ren; Xiaogang Yang; Chaohui Wei; Yuying Yan; Yuying Yan; Yue Chan; George Chen; George Chen;PDMS–MWCNTs/TiO2 microparticles made by microfluidics can achieve 85% removal efficiency of RhB pollutant in wastewater via synergetic treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ra10899h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ra10899h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Efficient Power from Foss...UKRI| Efficient Power from Fossil Energy and Carbon Capture Technologies (EPFECCT)Yong Ren; Kai Seng Koh; Colin E. Snape; Chenggong Sun; Maxine Yew; Yuying Yan; Yuying Yan;“Off-the-shelf” devices have attracted much consideration lately, especially in emulsions production in droplet-based microfluidics. While many simple and cost-effective designs have been proposed and demonstrated, the functionability of these purported simple devices has been questioned, especially in emulsions generation for commercial scale. In this work, a simple needle-based device was used in the production of functional core-shell microcapsules of uniform sizes, typically in the range of 600 to 720 µm, and shell thickness of 20 to 110 µm, and C.V of 0.97 to 3.0%. These core-shell microcapsules are a new form of carbon capture materials, with carbon solvent encapsulated in thin polymeric shell. The microcapsules synthesized were subjected to absorption-desorption tests. This work has successfully demonstrated the use of off-the-shelf microdevice and its reliability for the production of functional microcapsules.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 42 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Jiaju Hong; Jiaju Hong; Yuying Yan; Sheng Liu; Hongtao Gao;Abstract Heat pipe is being widely used nowadays in industry as a high efficiency heat transfer device. For the development of heat pipe, many attempts have been made to enhance its performance by mimicking biology, including the optimization of structure and flow patterns in heat pipe wicks. Constructing biporous, composite, and nanopillar wicks with aim of achieving hierarchical structure has been found through the learning of natural solutions. And bionic approach studying plant water migration provides another path to the fluid flow enhancement inside heat pipe as well. Forces involved in the water migration process in plants include the capillary effect, friction, gravity and transpiration effect, and all these happen in heat pipe as well. The investigation through plant water migration can provide a guidance to the heat transfer performance analysis and wick structure design. Magnetic Resonance Imaging (MRI) technology is used in this paper to scan live plants, providing the possibility of visualizing the internal structures in vivo and obtaining water transport velocity in xylem vessels. In addition, a novel mathematical model on the forces in plant water migration and heat pipe is proposed in this paper. The result from mathematical calculation is compared with the experimental measured result. This paper also successfully put transpiration effect and friction into consideration, as our innovation syntheses of a low level of hierarchical structure and integrates integral wicks includes evaporator, adiabatic, and condenser as well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Royal Society of Chemistry (RSC) Funded by:UKRI | REFINE: A coordinated mat...UKRI| REFINE: A coordinated materials programme for the sustainable REduction of spent Fuel vital In a closed loop Nuclear Energy cycleJing Wang; Fu Liu; Jun He; Bin Gao; Zheng Lian; Yong Shi; Kai Seng Koh; Yong Ren; Xiaogang Yang; Chaohui Wei; Yuying Yan; Yuying Yan; Yue Chan; George Chen; George Chen;PDMS–MWCNTs/TiO2 microparticles made by microfluidics can achieve 85% removal efficiency of RhB pollutant in wastewater via synergetic treatment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ra10899h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c9ra10899h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Efficient Power from Foss...UKRI| Efficient Power from Fossil Energy and Carbon Capture Technologies (EPFECCT)Yong Ren; Kai Seng Koh; Colin E. Snape; Chenggong Sun; Maxine Yew; Yuying Yan; Yuying Yan;“Off-the-shelf” devices have attracted much consideration lately, especially in emulsions production in droplet-based microfluidics. While many simple and cost-effective designs have been proposed and demonstrated, the functionability of these purported simple devices has been questioned, especially in emulsions generation for commercial scale. In this work, a simple needle-based device was used in the production of functional core-shell microcapsules of uniform sizes, typically in the range of 600 to 720 µm, and shell thickness of 20 to 110 µm, and C.V of 0.97 to 3.0%. These core-shell microcapsules are a new form of carbon capture materials, with carbon solvent encapsulated in thin polymeric shell. The microcapsules synthesized were subjected to absorption-desorption tests. This work has successfully demonstrated the use of off-the-shelf microdevice and its reliability for the production of functional microcapsules.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 42 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Jiaju Hong; Jiaju Hong; Yuying Yan; Sheng Liu; Hongtao Gao;Abstract Heat pipe is being widely used nowadays in industry as a high efficiency heat transfer device. For the development of heat pipe, many attempts have been made to enhance its performance by mimicking biology, including the optimization of structure and flow patterns in heat pipe wicks. Constructing biporous, composite, and nanopillar wicks with aim of achieving hierarchical structure has been found through the learning of natural solutions. And bionic approach studying plant water migration provides another path to the fluid flow enhancement inside heat pipe as well. Forces involved in the water migration process in plants include the capillary effect, friction, gravity and transpiration effect, and all these happen in heat pipe as well. The investigation through plant water migration can provide a guidance to the heat transfer performance analysis and wick structure design. Magnetic Resonance Imaging (MRI) technology is used in this paper to scan live plants, providing the possibility of visualizing the internal structures in vivo and obtaining water transport velocity in xylem vessels. In addition, a novel mathematical model on the forces in plant water migration and heat pipe is proposed in this paper. The result from mathematical calculation is compared with the experimental measured result. This paper also successfully put transpiration effect and friction into consideration, as our innovation syntheses of a low level of hierarchical structure and integrates integral wicks includes evaporator, adiabatic, and condenser as well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2019.02.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu