- home
- Advanced Search
- Energy Research
- Restricted
- NL
- CA
- Applied Energy
- Energy Research
- Restricted
- NL
- CA
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 NetherlandsPublisher:Elsevier BV Authors: van Beveren, P.J.M.; Bontsema, J.; van Straten, G.; van Henten, E.J.;Saving energy in greenhouses is an important issue for growers. Here, we present a method to minimize the total energy that is required to heat and cool a greenhouse. Using this method, the grower can define bounds for temperature, humidity, CO2 concentration, and the maximum amount of CO2 available. Given these settings, optimal control techniques can be used to minimize energy input. To do this, an existing greenhouse climate model for temperature and humidity was expanded to include a CO2 balance. Heating, cooling, the amount of natural ventilation, and the injection of industrial CO2 were used as control variables.Standard optimization settings were defined in order to compare the grower's strategy with the optimal solution. This optimization resulted in a theoretical 47% reduction in heating, 15% reduction in cooling, and 10% reduction in CO2 injection for the year 2012. The optimal control does not need to maintain a minimum pipe temperature, in contrast to current practice. When the minimum pipe temperature strategy of the grower was implemented, heating and CO2 were reduced by 28% and 10% respectively.We also analyzed the effect of different bounds on optimal energy input. We found that as more freedom is given to the climate variables, the higher the potential energy savings. However, in practice the grower is in charge of defining the bounds. Thus, the potential energy savings critically depend on the choice of these bounds. This effect was analyzed by varying the bounds. However, because the effect can be demonstrated to the grower, the outcome has value to the grower with respect to decision making, an option that is not currently available in practice today.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu117 citations 117 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 NetherlandsPublisher:Elsevier BV Authors: van Beveren, P.J.M.; Bontsema, J.; van Straten, G.; van Henten, E.J.;Saving energy in greenhouses is an important issue for growers. Here, we present a method to minimize the total energy that is required to heat and cool a greenhouse. Using this method, the grower can define bounds for temperature, humidity, CO2 concentration, and the maximum amount of CO2 available. Given these settings, optimal control techniques can be used to minimize energy input. To do this, an existing greenhouse climate model for temperature and humidity was expanded to include a CO2 balance. Heating, cooling, the amount of natural ventilation, and the injection of industrial CO2 were used as control variables.Standard optimization settings were defined in order to compare the grower's strategy with the optimal solution. This optimization resulted in a theoretical 47% reduction in heating, 15% reduction in cooling, and 10% reduction in CO2 injection for the year 2012. The optimal control does not need to maintain a minimum pipe temperature, in contrast to current practice. When the minimum pipe temperature strategy of the grower was implemented, heating and CO2 were reduced by 28% and 10% respectively.We also analyzed the effect of different bounds on optimal energy input. We found that as more freedom is given to the climate variables, the higher the potential energy savings. However, in practice the grower is in charge of defining the bounds. Thus, the potential energy savings critically depend on the choice of these bounds. This effect was analyzed by varying the bounds. However, because the effect can be demonstrated to the grower, the outcome has value to the grower with respect to decision making, an option that is not currently available in practice today.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu117 citations 117 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Elsevier BV Hao Wang; Junguo Liu; Ganquan Mao; Jinyue Yan; Jinyue Yan; Chunmiao Zheng; Arjen Ysbert Hoekstra; Michelle T. H. van Vliet; Benjamin L. Ruddell; Jianhua Wang; May Wu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Elsevier BV Hao Wang; Junguo Liu; Ganquan Mao; Jinyue Yan; Jinyue Yan; Chunmiao Zheng; Arjen Ysbert Hoekstra; Michelle T. H. van Vliet; Benjamin L. Ruddell; Jianhua Wang; May Wu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: René Kemp; Hongguang Nie; Hongguang Nie;Residential energy consumption in China increased dramatically over the period of 2002-2010. In this paper, we undertake a decomposition analysis of changes in energy use by Chinese households for five energy-using activities: space heating/cooling, cooking, lighting and electric appliances. We investigate to what extent changes in energy use are due to changes from appliances and to change in floor space, population and energy mix. Our decomposition analysis is based on the logarithmic mean Divisia index technique using data from the China statistical yearbook and China energy statistical yearbook in the period of 2002-2010. According to our results, the increase in energy-using appliances is the biggest contributor to the increase of residential energy consumption during 2002-2010 but the effect declines over time, due to energy efficiency improvements in those appliances. The second most important contributor is floor space per capita, which increased with 28%. Of the four factors, population is the most stable factor and energy mix is the least important factor. We predicted electricity use, with the help of regression-based predictions for ownership of appliances and the energy efficiency of appliances. We found that electricity use will continue to rise despite a gradual saturation of demand
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: René Kemp; Hongguang Nie; Hongguang Nie;Residential energy consumption in China increased dramatically over the period of 2002-2010. In this paper, we undertake a decomposition analysis of changes in energy use by Chinese households for five energy-using activities: space heating/cooling, cooking, lighting and electric appliances. We investigate to what extent changes in energy use are due to changes from appliances and to change in floor space, population and energy mix. Our decomposition analysis is based on the logarithmic mean Divisia index technique using data from the China statistical yearbook and China energy statistical yearbook in the period of 2002-2010. According to our results, the increase in energy-using appliances is the biggest contributor to the increase of residential energy consumption during 2002-2010 but the effect declines over time, due to energy efficiency improvements in those appliances. The second most important contributor is floor space per capita, which increased with 28%. Of the four factors, population is the most stable factor and energy mix is the least important factor. We predicted electricity use, with the help of regression-based predictions for ownership of appliances and the energy efficiency of appliances. We found that electricity use will continue to rise despite a gradual saturation of demand
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Italy, NetherlandsPublisher:Elsevier BV Authors: Stefano Amaducci; Xinyou Yin; Michele Colauzzi;handle: 10807/118957
A system combining soil grown crops with photovoltaic panels (PV) installed several meters above the ground is referred to as agrivoltaic systems. In this work a patented agrivoltaic solar tracking system named Agrovoltaico® was examined in combination with a maize crop in a simulation study. To this purpose a software platform was developed coupling a radiation and shading model to the generic crop growth simulator GECROS. The simulation was conducted using a 40-year climate dataset from a location in North Italy, rainfed maize and different Agrovoltaico configurations (that differ according to panel density and sun-tracking set up). Control simulations for an irrigated maize crop under full light were added to results. Reduction of global radiation under the Agrovoltaico system was more affected by panel density (29.5% and 13.4% respectively for double density and single density), than by panel management (23.2% and 20.0% for sun-track and static panels, respectively). Radiation reduction, under Agrovoltaico, affected mean soil temperature, evapotranspiration and soil water balance, on average providing more favorable conditions for plant growth than in full light. As a consequence, in rainfed conditions, average grain yield was higher and more stable under agrivoltaic than under full light. The advantage of growing maize in the shade of Agrovoltaico increased proportionally to drought stress, which indicates that agrivoltaic systems could increase crop resilience to climate change. The benefit of producing renewable energy with Agrovoltaico was assessed using the Land Equivalent Ratio, comparing the electric energy produced by Agrovoltaico cultivated with biogas maize to that produced by a combination of conventional ground mounted PV systems and biogas maize in monoculture. Land Equivalent Ratio was always above 1, it increased with panel density and it was higher with sun tracking than with static panels. The best Agrivoltaico scenario produced twice as much energy, per unit area, as the combination of ground mounted PV systems and biogas maize in monoculture. For this Agrivoltaico can be considered a valuable system to produce renewable energy on farm without negatively affecting land productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu364 citations 364 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Italy, NetherlandsPublisher:Elsevier BV Authors: Stefano Amaducci; Xinyou Yin; Michele Colauzzi;handle: 10807/118957
A system combining soil grown crops with photovoltaic panels (PV) installed several meters above the ground is referred to as agrivoltaic systems. In this work a patented agrivoltaic solar tracking system named Agrovoltaico® was examined in combination with a maize crop in a simulation study. To this purpose a software platform was developed coupling a radiation and shading model to the generic crop growth simulator GECROS. The simulation was conducted using a 40-year climate dataset from a location in North Italy, rainfed maize and different Agrovoltaico configurations (that differ according to panel density and sun-tracking set up). Control simulations for an irrigated maize crop under full light were added to results. Reduction of global radiation under the Agrovoltaico system was more affected by panel density (29.5% and 13.4% respectively for double density and single density), than by panel management (23.2% and 20.0% for sun-track and static panels, respectively). Radiation reduction, under Agrovoltaico, affected mean soil temperature, evapotranspiration and soil water balance, on average providing more favorable conditions for plant growth than in full light. As a consequence, in rainfed conditions, average grain yield was higher and more stable under agrivoltaic than under full light. The advantage of growing maize in the shade of Agrovoltaico increased proportionally to drought stress, which indicates that agrivoltaic systems could increase crop resilience to climate change. The benefit of producing renewable energy with Agrovoltaico was assessed using the Land Equivalent Ratio, comparing the electric energy produced by Agrovoltaico cultivated with biogas maize to that produced by a combination of conventional ground mounted PV systems and biogas maize in monoculture. Land Equivalent Ratio was always above 1, it increased with panel density and it was higher with sun tracking than with static panels. The best Agrivoltaico scenario produced twice as much energy, per unit area, as the combination of ground mounted PV systems and biogas maize in monoculture. For this Agrivoltaico can be considered a valuable system to produce renewable energy on farm without negatively affecting land productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu364 citations 364 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Frauke Urban; René M.J. Benders; Henri Moll;About 72 million households in rural India do not have access to electricity and rely primarily on traditional biofuels. This research investigates how rural electrification could be achieved in India using different energy sources and what the effects for climate change mitigation could be We use the. Regional Energy Model (REM) to develop scenarios for rural electrification for the period 2005-2030 and to assess the effects on greenhouse gas emissions, primary energy use and costs. We compare the business-as-usual scenario (BAU) with different electrification scenarios based on electricity from renewable energy, diesel and the grid. Our results indicate that diesel systems tend to have the highest CO2 emissions, followed by grid systems. Rural electrification with primarily renewable energy-based end-uses could save up to 99% of total CO2 emissions and 35% of primary energy use in 2030 compared to BAU. Our research indicates that electrification with decentralised diesel systems is likely to be the most expensive option. Rural electrification with renewable energy tends to be the most cost-effective option when end-uses are predominantly based on renewable energy, but turns out to be more costly than grid extensions when electric end-use devices are predominantly used. This research therefore elaborates whether renewable energy is a viable option for rural electrification and climate change mitigation in rural India and gives policy recommendations. (C) 2009 Elsevier Ltd. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Frauke Urban; René M.J. Benders; Henri Moll;About 72 million households in rural India do not have access to electricity and rely primarily on traditional biofuels. This research investigates how rural electrification could be achieved in India using different energy sources and what the effects for climate change mitigation could be We use the. Regional Energy Model (REM) to develop scenarios for rural electrification for the period 2005-2030 and to assess the effects on greenhouse gas emissions, primary energy use and costs. We compare the business-as-usual scenario (BAU) with different electrification scenarios based on electricity from renewable energy, diesel and the grid. Our results indicate that diesel systems tend to have the highest CO2 emissions, followed by grid systems. Rural electrification with primarily renewable energy-based end-uses could save up to 99% of total CO2 emissions and 35% of primary energy use in 2030 compared to BAU. Our research indicates that electrification with decentralised diesel systems is likely to be the most expensive option. Rural electrification with renewable energy tends to be the most cost-effective option when end-uses are predominantly based on renewable energy, but turns out to be more costly than grid extensions when electric end-use devices are predominantly used. This research therefore elaborates whether renewable energy is a viable option for rural electrification and climate change mitigation in rural India and gives policy recommendations. (C) 2009 Elsevier Ltd. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Lin, Fang Yi; Lin, Yao Yu; Li, Hsin Tien; Ni, Chung Sheng; Liu, Chao I.; Guan, Chung Yu; Chang, Chao Chin; Yu, Chang Ping; Chen, Wei Shan; Liu, Tzu Yin; Chen, Han Yi;The plant microbial fuel cell (PMFC) is a novel technology that can be used to convert solar energy into electrical energy using microbes in the rhizosphere of plants. However, low power density is one of the major obstacles to the development of PMFCs. In this study, we show that the Trapa natans husk-derived carbon (TNH-GBG) is a potential sustainable electrode material for the Canna indica-based PMFCs. The results of the polarization curve measurements showed that the maximum power density of the PMFC utilizing the TNH-GBG-coated graphite felt as the electrodes could reach 55 mW m−2. This was considerably higher than that of the PMFC with pure graphite felt electrodes (22 mW m−2). The enhanced power density of the TNH-GBG was attributed to its high surface area and high content of oxygen-containing groups on the surface of carbon, which enhanced the hydrophilicity and possibly enhanced the microbial attachment, thereby reducing the activation polarization. Furthermore, when the PMFC (with TNH-GBG-coated graphite felt electrodes) was connected to an external load (1000 Ω), a power density of 20 mW m−2 was maintained for over 10 days, which is also higher than that of the PMFC with the graphite felt electrodes. The PMFC with the TNH-GBG-coated graphite felt electrodes shows a similar performance with the one with commercial activated carbon-coated graphite felt electrodes. However, the price of the TNH-GBG is only one-fifth of the commercially activated carbon. Furthermore, the TNH-based PMFC-supercapacitor system was assembled, and it demonstrated that TNH is a potential low-cost electrode material for sustainable power generation-energy storage applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Lin, Fang Yi; Lin, Yao Yu; Li, Hsin Tien; Ni, Chung Sheng; Liu, Chao I.; Guan, Chung Yu; Chang, Chao Chin; Yu, Chang Ping; Chen, Wei Shan; Liu, Tzu Yin; Chen, Han Yi;The plant microbial fuel cell (PMFC) is a novel technology that can be used to convert solar energy into electrical energy using microbes in the rhizosphere of plants. However, low power density is one of the major obstacles to the development of PMFCs. In this study, we show that the Trapa natans husk-derived carbon (TNH-GBG) is a potential sustainable electrode material for the Canna indica-based PMFCs. The results of the polarization curve measurements showed that the maximum power density of the PMFC utilizing the TNH-GBG-coated graphite felt as the electrodes could reach 55 mW m−2. This was considerably higher than that of the PMFC with pure graphite felt electrodes (22 mW m−2). The enhanced power density of the TNH-GBG was attributed to its high surface area and high content of oxygen-containing groups on the surface of carbon, which enhanced the hydrophilicity and possibly enhanced the microbial attachment, thereby reducing the activation polarization. Furthermore, when the PMFC (with TNH-GBG-coated graphite felt electrodes) was connected to an external load (1000 Ω), a power density of 20 mW m−2 was maintained for over 10 days, which is also higher than that of the PMFC with the graphite felt electrodes. The PMFC with the TNH-GBG-coated graphite felt electrodes shows a similar performance with the one with commercial activated carbon-coated graphite felt electrodes. However, the price of the TNH-GBG is only one-fifth of the commercially activated carbon. Furthermore, the TNH-based PMFC-supercapacitor system was assembled, and it demonstrated that TNH is a potential low-cost electrode material for sustainable power generation-energy storage applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: Artur Krzysztof Pozarlik; Gerrit Brem; J.E.P. Gudde; J.L.H.P. Sallevelt;The relation between spray quality and combustion performance in a micro gas turbine has been studied by burning a viscous biofuel at different fuel injection conditions. Emissions from the combustion of a viscous mixture of straight vegetable oils have been compared to reference measurements with diesel No. 2. The effect of fuel viscosity on pollutant emissions is determined by adjusting the injection temperature. The measurements confirm that a reduction in fuel viscosity improves the spray quality, resulting in faster droplet evaporation and more complete combustion. CO emission levels were observed to decrease linearly with viscosity in the tested range. For the pressure-swirl nozzle used in the tests, the upper viscosity limit is found to be 9 cP. Above this value, droplet evaporation seems to be incomplete as the exhaust gas contains a considerable amount of unburned fuel. Additionally, the influence of increased injection pressure and combustor temperature is evaluated by varying the load. Adding more load resulted in improved combustion when burning diesel. In case of vegetable oil, however, this trend is less consistent as the decrease in CO emissions is not observed over the full load range. The outcome of this study gives directions for the application of pyrolysis oil in gas turbines, a more advanced biofuel with high viscosity
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: Artur Krzysztof Pozarlik; Gerrit Brem; J.E.P. Gudde; J.L.H.P. Sallevelt;The relation between spray quality and combustion performance in a micro gas turbine has been studied by burning a viscous biofuel at different fuel injection conditions. Emissions from the combustion of a viscous mixture of straight vegetable oils have been compared to reference measurements with diesel No. 2. The effect of fuel viscosity on pollutant emissions is determined by adjusting the injection temperature. The measurements confirm that a reduction in fuel viscosity improves the spray quality, resulting in faster droplet evaporation and more complete combustion. CO emission levels were observed to decrease linearly with viscosity in the tested range. For the pressure-swirl nozzle used in the tests, the upper viscosity limit is found to be 9 cP. Above this value, droplet evaporation seems to be incomplete as the exhaust gas contains a considerable amount of unburned fuel. Additionally, the influence of increased injection pressure and combustor temperature is evaluated by varying the load. Adding more load resulted in improved combustion when burning diesel. In case of vegetable oil, however, this trend is less consistent as the decrease in CO emissions is not observed over the full load range. The outcome of this study gives directions for the application of pyrolysis oil in gas turbines, a more advanced biofuel with high viscosity
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Netherlands, GermanyPublisher:Elsevier BV Markus Rosenfelder; Moritz Wussow; Gunther Gust; Roger Cremades; Dirk Neumann;Abstract Reducing the electricity consumption of buildings is an important lever in the global effort to reduce greenhouse gas emissions. However, for privacy and other reasons, there is a lack of data on building electricity consumption. As a consequence, data-driven tools that support decision-makers in this area are scarce. To address this problem, we present an innovative approach to modeling building electricity consumption that relies exclusively on publicly available aerial and street view images. We evaluate our approach in a case study based on real world data from Gainesville, Florida. The results show that our model can predict electricity consumption about as well as conventional models, which are trained on commonly used features that are typically not publicly available at a large scale. Furthermore, our model achieves 68% of the potential accuracy improvements of a model that relies on an extensive set of fine-grained tabular features. Spatially aggregating the predictions from the level of buildings to areas of up to 1km 2 further improves the results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Netherlands, GermanyPublisher:Elsevier BV Markus Rosenfelder; Moritz Wussow; Gunther Gust; Roger Cremades; Dirk Neumann;Abstract Reducing the electricity consumption of buildings is an important lever in the global effort to reduce greenhouse gas emissions. However, for privacy and other reasons, there is a lack of data on building electricity consumption. As a consequence, data-driven tools that support decision-makers in this area are scarce. To address this problem, we present an innovative approach to modeling building electricity consumption that relies exclusively on publicly available aerial and street view images. We evaluate our approach in a case study based on real world data from Gainesville, Florida. The results show that our model can predict electricity consumption about as well as conventional models, which are trained on commonly used features that are typically not publicly available at a large scale. Furthermore, our model achieves 68% of the potential accuracy improvements of a model that relies on an extensive set of fine-grained tabular features. Spatially aggregating the predictions from the level of buildings to areas of up to 1km 2 further improves the results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Camila Barreneche; Camila Barreneche; Antoni Gil; Pere Moreno; A. Inés Fernández; Cristian Solé; Luisa F. Cabeza;handle: 10459.1/47865
Abstract The use of thermal energy storage (TES) systems for solar heating and cooling applications has received considerable attention in recent decades because it has a high potential in energy savings. Phase change materials (PCMs) can store large amount of energy per mass unit compared with other TES materials. Nevertheless, the selection of the suitable PCM for each application is a key issue in any TES system design. The most important properties to take into account to select a PCM are the melting and solidification temperature, the phase change enthalpy and the stability after several thermal cycles. In this paper, d -mannitol was a candidate material to be tested as PCM in a solar cooling application due to its melting point (167 °C) and a relatively high enthalpy (316.0 kJ/kg). The experiments performed by DSC have shown that the d -mannitol presents polymorphic structural changes and, therefore, its thermal properties are not always the same. Depending on the polymorphic phase obtained, d -mannitol has different melting temperature. This behaviour was corroborated in a storage tank, where it may be seen that the cooling rate of the d -mannitol is a key parameter in the formation of the different polymorphic phases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Camila Barreneche; Camila Barreneche; Antoni Gil; Pere Moreno; A. Inés Fernández; Cristian Solé; Luisa F. Cabeza;handle: 10459.1/47865
Abstract The use of thermal energy storage (TES) systems for solar heating and cooling applications has received considerable attention in recent decades because it has a high potential in energy savings. Phase change materials (PCMs) can store large amount of energy per mass unit compared with other TES materials. Nevertheless, the selection of the suitable PCM for each application is a key issue in any TES system design. The most important properties to take into account to select a PCM are the melting and solidification temperature, the phase change enthalpy and the stability after several thermal cycles. In this paper, d -mannitol was a candidate material to be tested as PCM in a solar cooling application due to its melting point (167 °C) and a relatively high enthalpy (316.0 kJ/kg). The experiments performed by DSC have shown that the d -mannitol presents polymorphic structural changes and, therefore, its thermal properties are not always the same. Depending on the polymorphic phase obtained, d -mannitol has different melting temperature. This behaviour was corroborated in a storage tank, where it may be seen that the cooling rate of the d -mannitol is a key parameter in the formation of the different polymorphic phases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 Netherlands, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Authors: Jincan Chen; Guoxing Lin; Guoxing Lin; Ekkes Brück;handle: 11245/1.229216
A new cyclic model of a class of chemical engines is set up, in which not only finite-rate mass transfer and mass leakage but also the internal irreversibility resulting from friction, eddy currents and other irreversible effects inside the cyclic working fluid are taken into account. The influences of these irreversibilities on the performance of the cycle are revealed. The optimal relation between the power output and the efficiency of the cycle is derived. On the basis of the optimal relation, some optimal performances and important performance bounds of the cycle are determined and evaluated. For example, the maximum power-output and the corresponding efficiency, the maximum efficiency and the corresponding power output, the optimal mass-transfer time, the minimum rate of energy loss and so on are calculated and analyzed. The results obtained here cannot only enrich the application of thermodynamic theory but also provide some theoretical guidance for the effective application of energy resources and for the optimal design and development of a class of chemical engines. Moreover, some important conclusions relative to the isothermal endoreversible chemical engines, which have been investigated previously, can be directly deduced from the results in this paper.
Applied Energy arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)Xiamen University Institutional RepositoryArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2003.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Energy arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)Xiamen University Institutional RepositoryArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2003.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 Netherlands, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Authors: Jincan Chen; Guoxing Lin; Guoxing Lin; Ekkes Brück;handle: 11245/1.229216
A new cyclic model of a class of chemical engines is set up, in which not only finite-rate mass transfer and mass leakage but also the internal irreversibility resulting from friction, eddy currents and other irreversible effects inside the cyclic working fluid are taken into account. The influences of these irreversibilities on the performance of the cycle are revealed. The optimal relation between the power output and the efficiency of the cycle is derived. On the basis of the optimal relation, some optimal performances and important performance bounds of the cycle are determined and evaluated. For example, the maximum power-output and the corresponding efficiency, the maximum efficiency and the corresponding power output, the optimal mass-transfer time, the minimum rate of energy loss and so on are calculated and analyzed. The results obtained here cannot only enrich the application of thermodynamic theory but also provide some theoretical guidance for the effective application of energy resources and for the optimal design and development of a class of chemical engines. Moreover, some important conclusions relative to the isothermal endoreversible chemical engines, which have been investigated previously, can be directly deduced from the results in this paper.
Applied Energy arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)Xiamen University Institutional RepositoryArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2003.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Energy arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)Xiamen University Institutional RepositoryArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2003.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 NetherlandsPublisher:Elsevier BV Authors: van Beveren, P.J.M.; Bontsema, J.; van Straten, G.; van Henten, E.J.;Saving energy in greenhouses is an important issue for growers. Here, we present a method to minimize the total energy that is required to heat and cool a greenhouse. Using this method, the grower can define bounds for temperature, humidity, CO2 concentration, and the maximum amount of CO2 available. Given these settings, optimal control techniques can be used to minimize energy input. To do this, an existing greenhouse climate model for temperature and humidity was expanded to include a CO2 balance. Heating, cooling, the amount of natural ventilation, and the injection of industrial CO2 were used as control variables.Standard optimization settings were defined in order to compare the grower's strategy with the optimal solution. This optimization resulted in a theoretical 47% reduction in heating, 15% reduction in cooling, and 10% reduction in CO2 injection for the year 2012. The optimal control does not need to maintain a minimum pipe temperature, in contrast to current practice. When the minimum pipe temperature strategy of the grower was implemented, heating and CO2 were reduced by 28% and 10% respectively.We also analyzed the effect of different bounds on optimal energy input. We found that as more freedom is given to the climate variables, the higher the potential energy savings. However, in practice the grower is in charge of defining the bounds. Thus, the potential energy savings critically depend on the choice of these bounds. This effect was analyzed by varying the bounds. However, because the effect can be demonstrated to the grower, the outcome has value to the grower with respect to decision making, an option that is not currently available in practice today.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu117 citations 117 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 NetherlandsPublisher:Elsevier BV Authors: van Beveren, P.J.M.; Bontsema, J.; van Straten, G.; van Henten, E.J.;Saving energy in greenhouses is an important issue for growers. Here, we present a method to minimize the total energy that is required to heat and cool a greenhouse. Using this method, the grower can define bounds for temperature, humidity, CO2 concentration, and the maximum amount of CO2 available. Given these settings, optimal control techniques can be used to minimize energy input. To do this, an existing greenhouse climate model for temperature and humidity was expanded to include a CO2 balance. Heating, cooling, the amount of natural ventilation, and the injection of industrial CO2 were used as control variables.Standard optimization settings were defined in order to compare the grower's strategy with the optimal solution. This optimization resulted in a theoretical 47% reduction in heating, 15% reduction in cooling, and 10% reduction in CO2 injection for the year 2012. The optimal control does not need to maintain a minimum pipe temperature, in contrast to current practice. When the minimum pipe temperature strategy of the grower was implemented, heating and CO2 were reduced by 28% and 10% respectively.We also analyzed the effect of different bounds on optimal energy input. We found that as more freedom is given to the climate variables, the higher the potential energy savings. However, in practice the grower is in charge of defining the bounds. Thus, the potential energy savings critically depend on the choice of these bounds. This effect was analyzed by varying the bounds. However, because the effect can be demonstrated to the grower, the outcome has value to the grower with respect to decision making, an option that is not currently available in practice today.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu117 citations 117 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2015.09.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Elsevier BV Hao Wang; Junguo Liu; Ganquan Mao; Jinyue Yan; Jinyue Yan; Chunmiao Zheng; Arjen Ysbert Hoekstra; Michelle T. H. van Vliet; Benjamin L. Ruddell; Jianhua Wang; May Wu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:Elsevier BV Hao Wang; Junguo Liu; Ganquan Mao; Jinyue Yan; Jinyue Yan; Chunmiao Zheng; Arjen Ysbert Hoekstra; Michelle T. H. van Vliet; Benjamin L. Ruddell; Jianhua Wang; May Wu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.10.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: René Kemp; Hongguang Nie; Hongguang Nie;Residential energy consumption in China increased dramatically over the period of 2002-2010. In this paper, we undertake a decomposition analysis of changes in energy use by Chinese households for five energy-using activities: space heating/cooling, cooking, lighting and electric appliances. We investigate to what extent changes in energy use are due to changes from appliances and to change in floor space, population and energy mix. Our decomposition analysis is based on the logarithmic mean Divisia index technique using data from the China statistical yearbook and China energy statistical yearbook in the period of 2002-2010. According to our results, the increase in energy-using appliances is the biggest contributor to the increase of residential energy consumption during 2002-2010 but the effect declines over time, due to energy efficiency improvements in those appliances. The second most important contributor is floor space per capita, which increased with 28%. Of the four factors, population is the most stable factor and energy mix is the least important factor. We predicted electricity use, with the help of regression-based predictions for ownership of appliances and the energy efficiency of appliances. We found that electricity use will continue to rise despite a gradual saturation of demand
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: René Kemp; Hongguang Nie; Hongguang Nie;Residential energy consumption in China increased dramatically over the period of 2002-2010. In this paper, we undertake a decomposition analysis of changes in energy use by Chinese households for five energy-using activities: space heating/cooling, cooking, lighting and electric appliances. We investigate to what extent changes in energy use are due to changes from appliances and to change in floor space, population and energy mix. Our decomposition analysis is based on the logarithmic mean Divisia index technique using data from the China statistical yearbook and China energy statistical yearbook in the period of 2002-2010. According to our results, the increase in energy-using appliances is the biggest contributor to the increase of residential energy consumption during 2002-2010 but the effect declines over time, due to energy efficiency improvements in those appliances. The second most important contributor is floor space per capita, which increased with 28%. Of the four factors, population is the most stable factor and energy mix is the least important factor. We predicted electricity use, with the help of regression-based predictions for ownership of appliances and the energy efficiency of appliances. We found that electricity use will continue to rise despite a gradual saturation of demand
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu130 citations 130 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.01.070&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Italy, NetherlandsPublisher:Elsevier BV Authors: Stefano Amaducci; Xinyou Yin; Michele Colauzzi;handle: 10807/118957
A system combining soil grown crops with photovoltaic panels (PV) installed several meters above the ground is referred to as agrivoltaic systems. In this work a patented agrivoltaic solar tracking system named Agrovoltaico® was examined in combination with a maize crop in a simulation study. To this purpose a software platform was developed coupling a radiation and shading model to the generic crop growth simulator GECROS. The simulation was conducted using a 40-year climate dataset from a location in North Italy, rainfed maize and different Agrovoltaico configurations (that differ according to panel density and sun-tracking set up). Control simulations for an irrigated maize crop under full light were added to results. Reduction of global radiation under the Agrovoltaico system was more affected by panel density (29.5% and 13.4% respectively for double density and single density), than by panel management (23.2% and 20.0% for sun-track and static panels, respectively). Radiation reduction, under Agrovoltaico, affected mean soil temperature, evapotranspiration and soil water balance, on average providing more favorable conditions for plant growth than in full light. As a consequence, in rainfed conditions, average grain yield was higher and more stable under agrivoltaic than under full light. The advantage of growing maize in the shade of Agrovoltaico increased proportionally to drought stress, which indicates that agrivoltaic systems could increase crop resilience to climate change. The benefit of producing renewable energy with Agrovoltaico was assessed using the Land Equivalent Ratio, comparing the electric energy produced by Agrovoltaico cultivated with biogas maize to that produced by a combination of conventional ground mounted PV systems and biogas maize in monoculture. Land Equivalent Ratio was always above 1, it increased with panel density and it was higher with sun tracking than with static panels. The best Agrivoltaico scenario produced twice as much energy, per unit area, as the combination of ground mounted PV systems and biogas maize in monoculture. For this Agrivoltaico can be considered a valuable system to produce renewable energy on farm without negatively affecting land productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu364 citations 364 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 Italy, NetherlandsPublisher:Elsevier BV Authors: Stefano Amaducci; Xinyou Yin; Michele Colauzzi;handle: 10807/118957
A system combining soil grown crops with photovoltaic panels (PV) installed several meters above the ground is referred to as agrivoltaic systems. In this work a patented agrivoltaic solar tracking system named Agrovoltaico® was examined in combination with a maize crop in a simulation study. To this purpose a software platform was developed coupling a radiation and shading model to the generic crop growth simulator GECROS. The simulation was conducted using a 40-year climate dataset from a location in North Italy, rainfed maize and different Agrovoltaico configurations (that differ according to panel density and sun-tracking set up). Control simulations for an irrigated maize crop under full light were added to results. Reduction of global radiation under the Agrovoltaico system was more affected by panel density (29.5% and 13.4% respectively for double density and single density), than by panel management (23.2% and 20.0% for sun-track and static panels, respectively). Radiation reduction, under Agrovoltaico, affected mean soil temperature, evapotranspiration and soil water balance, on average providing more favorable conditions for plant growth than in full light. As a consequence, in rainfed conditions, average grain yield was higher and more stable under agrivoltaic than under full light. The advantage of growing maize in the shade of Agrovoltaico increased proportionally to drought stress, which indicates that agrivoltaic systems could increase crop resilience to climate change. The benefit of producing renewable energy with Agrovoltaico was assessed using the Land Equivalent Ratio, comparing the electric energy produced by Agrovoltaico cultivated with biogas maize to that produced by a combination of conventional ground mounted PV systems and biogas maize in monoculture. Land Equivalent Ratio was always above 1, it increased with panel density and it was higher with sun tracking than with static panels. The best Agrivoltaico scenario produced twice as much energy, per unit area, as the combination of ground mounted PV systems and biogas maize in monoculture. For this Agrivoltaico can be considered a valuable system to produce renewable energy on farm without negatively affecting land productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu364 citations 364 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.03.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Frauke Urban; René M.J. Benders; Henri Moll;About 72 million households in rural India do not have access to electricity and rely primarily on traditional biofuels. This research investigates how rural electrification could be achieved in India using different energy sources and what the effects for climate change mitigation could be We use the. Regional Energy Model (REM) to develop scenarios for rural electrification for the period 2005-2030 and to assess the effects on greenhouse gas emissions, primary energy use and costs. We compare the business-as-usual scenario (BAU) with different electrification scenarios based on electricity from renewable energy, diesel and the grid. Our results indicate that diesel systems tend to have the highest CO2 emissions, followed by grid systems. Rural electrification with primarily renewable energy-based end-uses could save up to 99% of total CO2 emissions and 35% of primary energy use in 2030 compared to BAU. Our research indicates that electrification with decentralised diesel systems is likely to be the most expensive option. Rural electrification with renewable energy tends to be the most cost-effective option when end-uses are predominantly based on renewable energy, but turns out to be more costly than grid extensions when electric end-use devices are predominantly used. This research therefore elaborates whether renewable energy is a viable option for rural electrification and climate change mitigation in rural India and gives policy recommendations. (C) 2009 Elsevier Ltd. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Frauke Urban; René M.J. Benders; Henri Moll;About 72 million households in rural India do not have access to electricity and rely primarily on traditional biofuels. This research investigates how rural electrification could be achieved in India using different energy sources and what the effects for climate change mitigation could be We use the. Regional Energy Model (REM) to develop scenarios for rural electrification for the period 2005-2030 and to assess the effects on greenhouse gas emissions, primary energy use and costs. We compare the business-as-usual scenario (BAU) with different electrification scenarios based on electricity from renewable energy, diesel and the grid. Our results indicate that diesel systems tend to have the highest CO2 emissions, followed by grid systems. Rural electrification with primarily renewable energy-based end-uses could save up to 99% of total CO2 emissions and 35% of primary energy use in 2030 compared to BAU. Our research indicates that electrification with decentralised diesel systems is likely to be the most expensive option. Rural electrification with renewable energy tends to be the most cost-effective option when end-uses are predominantly based on renewable energy, but turns out to be more costly than grid extensions when electric end-use devices are predominantly used. This research therefore elaborates whether renewable energy is a viable option for rural electrification and climate change mitigation in rural India and gives policy recommendations. (C) 2009 Elsevier Ltd. All rights reserved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Lin, Fang Yi; Lin, Yao Yu; Li, Hsin Tien; Ni, Chung Sheng; Liu, Chao I.; Guan, Chung Yu; Chang, Chao Chin; Yu, Chang Ping; Chen, Wei Shan; Liu, Tzu Yin; Chen, Han Yi;The plant microbial fuel cell (PMFC) is a novel technology that can be used to convert solar energy into electrical energy using microbes in the rhizosphere of plants. However, low power density is one of the major obstacles to the development of PMFCs. In this study, we show that the Trapa natans husk-derived carbon (TNH-GBG) is a potential sustainable electrode material for the Canna indica-based PMFCs. The results of the polarization curve measurements showed that the maximum power density of the PMFC utilizing the TNH-GBG-coated graphite felt as the electrodes could reach 55 mW m−2. This was considerably higher than that of the PMFC with pure graphite felt electrodes (22 mW m−2). The enhanced power density of the TNH-GBG was attributed to its high surface area and high content of oxygen-containing groups on the surface of carbon, which enhanced the hydrophilicity and possibly enhanced the microbial attachment, thereby reducing the activation polarization. Furthermore, when the PMFC (with TNH-GBG-coated graphite felt electrodes) was connected to an external load (1000 Ω), a power density of 20 mW m−2 was maintained for over 10 days, which is also higher than that of the PMFC with the graphite felt electrodes. The PMFC with the TNH-GBG-coated graphite felt electrodes shows a similar performance with the one with commercial activated carbon-coated graphite felt electrodes. However, the price of the TNH-GBG is only one-fifth of the commercially activated carbon. Furthermore, the TNH-based PMFC-supercapacitor system was assembled, and it demonstrated that TNH is a potential low-cost electrode material for sustainable power generation-energy storage applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 NetherlandsPublisher:Elsevier BV Lin, Fang Yi; Lin, Yao Yu; Li, Hsin Tien; Ni, Chung Sheng; Liu, Chao I.; Guan, Chung Yu; Chang, Chao Chin; Yu, Chang Ping; Chen, Wei Shan; Liu, Tzu Yin; Chen, Han Yi;The plant microbial fuel cell (PMFC) is a novel technology that can be used to convert solar energy into electrical energy using microbes in the rhizosphere of plants. However, low power density is one of the major obstacles to the development of PMFCs. In this study, we show that the Trapa natans husk-derived carbon (TNH-GBG) is a potential sustainable electrode material for the Canna indica-based PMFCs. The results of the polarization curve measurements showed that the maximum power density of the PMFC utilizing the TNH-GBG-coated graphite felt as the electrodes could reach 55 mW m−2. This was considerably higher than that of the PMFC with pure graphite felt electrodes (22 mW m−2). The enhanced power density of the TNH-GBG was attributed to its high surface area and high content of oxygen-containing groups on the surface of carbon, which enhanced the hydrophilicity and possibly enhanced the microbial attachment, thereby reducing the activation polarization. Furthermore, when the PMFC (with TNH-GBG-coated graphite felt electrodes) was connected to an external load (1000 Ω), a power density of 20 mW m−2 was maintained for over 10 days, which is also higher than that of the PMFC with the graphite felt electrodes. The PMFC with the TNH-GBG-coated graphite felt electrodes shows a similar performance with the one with commercial activated carbon-coated graphite felt electrodes. However, the price of the TNH-GBG is only one-fifth of the commercially activated carbon. Furthermore, the TNH-based PMFC-supercapacitor system was assembled, and it demonstrated that TNH is a potential low-cost electrode material for sustainable power generation-energy storage applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119807&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: Artur Krzysztof Pozarlik; Gerrit Brem; J.E.P. Gudde; J.L.H.P. Sallevelt;The relation between spray quality and combustion performance in a micro gas turbine has been studied by burning a viscous biofuel at different fuel injection conditions. Emissions from the combustion of a viscous mixture of straight vegetable oils have been compared to reference measurements with diesel No. 2. The effect of fuel viscosity on pollutant emissions is determined by adjusting the injection temperature. The measurements confirm that a reduction in fuel viscosity improves the spray quality, resulting in faster droplet evaporation and more complete combustion. CO emission levels were observed to decrease linearly with viscosity in the tested range. For the pressure-swirl nozzle used in the tests, the upper viscosity limit is found to be 9 cP. Above this value, droplet evaporation seems to be incomplete as the exhaust gas contains a considerable amount of unburned fuel. Additionally, the influence of increased injection pressure and combustor temperature is evaluated by varying the load. Adding more load resulted in improved combustion when burning diesel. In case of vegetable oil, however, this trend is less consistent as the decrease in CO emissions is not observed over the full load range. The outcome of this study gives directions for the application of pyrolysis oil in gas turbines, a more advanced biofuel with high viscosity
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: Artur Krzysztof Pozarlik; Gerrit Brem; J.E.P. Gudde; J.L.H.P. Sallevelt;The relation between spray quality and combustion performance in a micro gas turbine has been studied by burning a viscous biofuel at different fuel injection conditions. Emissions from the combustion of a viscous mixture of straight vegetable oils have been compared to reference measurements with diesel No. 2. The effect of fuel viscosity on pollutant emissions is determined by adjusting the injection temperature. The measurements confirm that a reduction in fuel viscosity improves the spray quality, resulting in faster droplet evaporation and more complete combustion. CO emission levels were observed to decrease linearly with viscosity in the tested range. For the pressure-swirl nozzle used in the tests, the upper viscosity limit is found to be 9 cP. Above this value, droplet evaporation seems to be incomplete as the exhaust gas contains a considerable amount of unburned fuel. Additionally, the influence of increased injection pressure and combustor temperature is evaluated by varying the load. Adding more load resulted in improved combustion when burning diesel. In case of vegetable oil, however, this trend is less consistent as the decrease in CO emissions is not observed over the full load range. The outcome of this study gives directions for the application of pyrolysis oil in gas turbines, a more advanced biofuel with high viscosity
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Netherlands, GermanyPublisher:Elsevier BV Markus Rosenfelder; Moritz Wussow; Gunther Gust; Roger Cremades; Dirk Neumann;Abstract Reducing the electricity consumption of buildings is an important lever in the global effort to reduce greenhouse gas emissions. However, for privacy and other reasons, there is a lack of data on building electricity consumption. As a consequence, data-driven tools that support decision-makers in this area are scarce. To address this problem, we present an innovative approach to modeling building electricity consumption that relies exclusively on publicly available aerial and street view images. We evaluate our approach in a case study based on real world data from Gainesville, Florida. The results show that our model can predict electricity consumption about as well as conventional models, which are trained on commonly used features that are typically not publicly available at a large scale. Furthermore, our model achieves 68% of the potential accuracy improvements of a model that relies on an extensive set of fine-grained tabular features. Spatially aggregating the predictions from the level of buildings to areas of up to 1km 2 further improves the results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Netherlands, GermanyPublisher:Elsevier BV Markus Rosenfelder; Moritz Wussow; Gunther Gust; Roger Cremades; Dirk Neumann;Abstract Reducing the electricity consumption of buildings is an important lever in the global effort to reduce greenhouse gas emissions. However, for privacy and other reasons, there is a lack of data on building electricity consumption. As a consequence, data-driven tools that support decision-makers in this area are scarce. To address this problem, we present an innovative approach to modeling building electricity consumption that relies exclusively on publicly available aerial and street view images. We evaluate our approach in a case study based on real world data from Gainesville, Florida. The results show that our model can predict electricity consumption about as well as conventional models, which are trained on commonly used features that are typically not publicly available at a large scale. Furthermore, our model achieves 68% of the potential accuracy improvements of a model that relies on an extensive set of fine-grained tabular features. Spatially aggregating the predictions from the level of buildings to areas of up to 1km 2 further improves the results.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117407&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Camila Barreneche; Camila Barreneche; Antoni Gil; Pere Moreno; A. Inés Fernández; Cristian Solé; Luisa F. Cabeza;handle: 10459.1/47865
Abstract The use of thermal energy storage (TES) systems for solar heating and cooling applications has received considerable attention in recent decades because it has a high potential in energy savings. Phase change materials (PCMs) can store large amount of energy per mass unit compared with other TES materials. Nevertheless, the selection of the suitable PCM for each application is a key issue in any TES system design. The most important properties to take into account to select a PCM are the melting and solidification temperature, the phase change enthalpy and the stability after several thermal cycles. In this paper, d -mannitol was a candidate material to be tested as PCM in a solar cooling application due to its melting point (167 °C) and a relatively high enthalpy (316.0 kJ/kg). The experiments performed by DSC have shown that the d -mannitol presents polymorphic structural changes and, therefore, its thermal properties are not always the same. Depending on the polymorphic phase obtained, d -mannitol has different melting temperature. This behaviour was corroborated in a storage tank, where it may be seen that the cooling rate of the d -mannitol is a key parameter in the formation of the different polymorphic phases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Camila Barreneche; Camila Barreneche; Antoni Gil; Pere Moreno; A. Inés Fernández; Cristian Solé; Luisa F. Cabeza;handle: 10459.1/47865
Abstract The use of thermal energy storage (TES) systems for solar heating and cooling applications has received considerable attention in recent decades because it has a high potential in energy savings. Phase change materials (PCMs) can store large amount of energy per mass unit compared with other TES materials. Nevertheless, the selection of the suitable PCM for each application is a key issue in any TES system design. The most important properties to take into account to select a PCM are the melting and solidification temperature, the phase change enthalpy and the stability after several thermal cycles. In this paper, d -mannitol was a candidate material to be tested as PCM in a solar cooling application due to its melting point (167 °C) and a relatively high enthalpy (316.0 kJ/kg). The experiments performed by DSC have shown that the d -mannitol presents polymorphic structural changes and, therefore, its thermal properties are not always the same. Depending on the polymorphic phase obtained, d -mannitol has different melting temperature. This behaviour was corroborated in a storage tank, where it may be seen that the cooling rate of the d -mannitol is a key parameter in the formation of the different polymorphic phases.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.04.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 Netherlands, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Authors: Jincan Chen; Guoxing Lin; Guoxing Lin; Ekkes Brück;handle: 11245/1.229216
A new cyclic model of a class of chemical engines is set up, in which not only finite-rate mass transfer and mass leakage but also the internal irreversibility resulting from friction, eddy currents and other irreversible effects inside the cyclic working fluid are taken into account. The influences of these irreversibilities on the performance of the cycle are revealed. The optimal relation between the power output and the efficiency of the cycle is derived. On the basis of the optimal relation, some optimal performances and important performance bounds of the cycle are determined and evaluated. For example, the maximum power-output and the corresponding efficiency, the maximum efficiency and the corresponding power output, the optimal mass-transfer time, the minimum rate of energy loss and so on are calculated and analyzed. The results obtained here cannot only enrich the application of thermodynamic theory but also provide some theoretical guidance for the effective application of energy resources and for the optimal design and development of a class of chemical engines. Moreover, some important conclusions relative to the isothermal endoreversible chemical engines, which have been investigated previously, can be directly deduced from the results in this paper.
Applied Energy arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)Xiamen University Institutional RepositoryArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2003.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Energy arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)Xiamen University Institutional RepositoryArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2003.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 Netherlands, China (People's Republic of), China (People's Republic of)Publisher:Elsevier BV Authors: Jincan Chen; Guoxing Lin; Guoxing Lin; Ekkes Brück;handle: 11245/1.229216
A new cyclic model of a class of chemical engines is set up, in which not only finite-rate mass transfer and mass leakage but also the internal irreversibility resulting from friction, eddy currents and other irreversible effects inside the cyclic working fluid are taken into account. The influences of these irreversibilities on the performance of the cycle are revealed. The optimal relation between the power output and the efficiency of the cycle is derived. On the basis of the optimal relation, some optimal performances and important performance bounds of the cycle are determined and evaluated. For example, the maximum power-output and the corresponding efficiency, the maximum efficiency and the corresponding power output, the optimal mass-transfer time, the minimum rate of energy loss and so on are calculated and analyzed. The results obtained here cannot only enrich the application of thermodynamic theory but also provide some theoretical guidance for the effective application of energy resources and for the optimal design and development of a class of chemical engines. Moreover, some important conclusions relative to the isothermal endoreversible chemical engines, which have been investigated previously, can be directly deduced from the results in this paper.
Applied Energy arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)Xiamen University Institutional RepositoryArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2003.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Applied Energy arrow_drop_down Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2004Data sources: Bielefeld Academic Search Engine (BASE)Xiamen University Institutional RepositoryArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2003.07.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu