- home
- Advanced Search
- Energy Research
- Closed Access
- Restricted
- 12. Responsible consumption
- 8. Economic growth
- 1. No poverty
- CN
- NL
- BG
- Energy Research
- Closed Access
- Restricted
- 12. Responsible consumption
- 8. Economic growth
- 1. No poverty
- CN
- NL
- BG
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Xiaolong Xue; Luqi Wang; Zebin Zhao; Xiaoxia Wang;Abstract Transportation de-carbonization is a complex problem involving the economy, population, technology and environment. Implementing the pathway simulation based on systematic methods will help to optimize the transportation sustainability plan. This study’s key motivation is that earlier research ignored the relationship between driving factors and the transmission process. To quantitatively identify the path and process of emission reduction, a hybrid system dynamics STIRPAT-SD model is proposed to explore the transportation optimization’s de-carbonization ability. This study fully considers the composition of elements and subsystems based on the STIRPAT theoretical model and visually shows the system’s feedback relationship. Transportation structural and technical optimization scenarios are set to identify the threshold reduction paths. It is found these optimization strategies have significant de-carbonization effects. And transportation structure policy has the highest de-carbonization efficiency, the emission intensity decreased by 9.1% under the TSS2 scenario (Transportation structure scenario). This study proposes a novelty model combining dynamic simulating processes with a significantly theoretical model to improve simulation and factor composition accuracy. And the joint scenario setting identifies the most effective de-carbonization pathway and clarifies the threshold of all possible pathways. Research findings can effectively track, test, predict the achievement of policy goals, and provide policy optimization references for the sustainable development related to the transportation system in practice.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.125574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2020.125574&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Abstract The Chinese government has taken measures to realize energy-savings and emission reductions, such as promoting innovations, adjusting the industrial structure, balancing regional development, and reforming markets. The aim of this paper is to assess the effects of these measures on China's CO2 emissions by using a newly proposed decomposition approach, which identified eight new factors related to the above realistic measures, i.e., energy saving and production technologies, industrial energy and production efficiencies, regional energy and production efficiencies, and pure energy and production efficiencies. The main findings indicate benefits from considerable technological progress in energy-saving and production during 2000–2016 period, and two technological factors contributed the most to emissions abatement and cumulatively reduced 5372.43 Mt and 1291.72 Mt CO2 emissions. The efforts of industrial restructuring promoted energy and production efficiency improvement, which further facilitated emission reduction. In contrast, the pure energy and production efficiency changes cumulatively led to 1080.26 Mt and 1135.85 Mt CO2 emissions growth during the whole sample period, suggesting that severe resource misallocation problems may exist in both the energy market and output market. Additionally, the Chinese government failed to narrow the technology gap between developed regions and underdeveloped regions, further restricting emission reduction.
Technological Foreca... arrow_drop_down Technological Forecasting and Social ChangeArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2020.120507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Technological Foreca... arrow_drop_down Technological Forecasting and Social ChangeArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2020.120507&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Xianzhong He; Erming Cao; Qinming Tan;Peng Geng;
+3 AuthorsPeng Geng
Peng Geng in OpenAIREXianzhong He; Erming Cao; Qinming Tan;Peng Geng;
Peng Geng
Peng Geng in OpenAIREKai Jiang;
Chunhui Zhang; Lijiang Wei;Kai Jiang
Kai Jiang in OpenAIREpmid: 27544351
In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO2 emission decreases. Meanwhile, the ratio of NO2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2016.08.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 30 May 2018Publisher:DANS Data Station Social Sciences and Humanities Authors: Das, J.W.M.;The experimental study is conducted to investigate the public opinion on how immigration leads to overpopulation and in turn might damage the sustainable development and environmental protection.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-xdu-8j3m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17026/dans-xdu-8j3m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Habib Ullah;Qumber Abbas;
Ayesha Imtiyaz Cheema;Qumber Abbas
Qumber Abbas in OpenAIREBalal Yousaf;
+6 AuthorsBalal Yousaf
Balal Yousaf in OpenAIREHabib Ullah;Qumber Abbas;
Ayesha Imtiyaz Cheema;Qumber Abbas
Qumber Abbas in OpenAIREBalal Yousaf;
Balal Yousaf; Balal Yousaf;Balal Yousaf
Balal Yousaf in OpenAIREMuhammad Ubaid Ali;
Muhammad Ubaid Ali
Muhammad Ubaid Ali in OpenAIREYuan Liu;
Guijian Liu; Guijian Liu;Yuan Liu
Yuan Liu in OpenAIREpmid: 33370680
Bioenergy is considered a sustainable substitute to fossil-fuel resources and the development of a prudent combination of renewable and innovative conversion technologies are essential for the valorization and effective conversion of biowaste to value-added commodities. Here, a negative pressure-induced carbonization process was proposed for the valorization of lignin-enriched biowaste precursor to bio-oil and environmental materials (biochar) at various temperatures. The high heating values (HHV) of the as-prepared biochars from the lignin enriched precursor under negative pressure (low-medium vacuum) were within 25.9-31.5 MJ/kg, which matched satisfactorily to the commercial charcoal. Whereas, the bio-oils produced from the lignin enriched precursor under vacuum conditions was a blend of complex aromatic and straight-chain hydro-carbons, including aldehyde, ketone, phenol, and furans, exhibiting ability as potential heating-oil with HHV within 21.2-28.2 MJ/kg. Moreover, the biochars produced under vacuum environments at higher temperature showed greater stability (22.5-35.9%) than those produced under N2 atmosphere.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2020.124541&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Zhefei Pan;
Zhefei Pan
Zhefei Pan in OpenAIRELiang An;
Liang An
Liang An in OpenAIREXiangyu Su;
Bin Huang; +1 AuthorsXiangyu Su
Xiangyu Su in OpenAIREZhefei Pan;
Zhefei Pan
Zhefei Pan in OpenAIRELiang An;
Liang An
Liang An in OpenAIREXiangyu Su;
Bin Huang; Bin Huang;Xiangyu Su
Xiangyu Su in OpenAIREAbstract With the ever-growing need for lithium-ion batteries, particularly from the electric transportation industry, a large amount of lithium-ion batteries is bound to retire in the near future, thereby leading to serious disposal problems and detrimental impacts on environment and energy conservation. Currently, commercial lithium-ion batteries are composed of transition metal oxides or phosphates, aluminum, copper, graphite, organic electrolytes with harmful lithium salts, polymer separators, and plastic or metallic cases. The lack of proper disposal of spent lithium-ion batteries probably results in grave consequences, such as environmental pollution and waste of resources. Thus, recycling of spent lithium-ion batteries starts to receive attentions in recent years. However, owing to the pursuit of lithium-ion batteries with higher energy density, higher safety and more affordable price, the materials used in lithium-ion batteries are of a wide diversity and ever-evolving, consequently bringing difficulties to the recycling of spent lithium-ion batteries. To address this issue, both technological innovations and the participation of governments are required. This article provides a review of recent advances in recycling technologies of spent lithium-ion batteries, including the development of recycling processes, the products obtained from recycling, and the effects of recycling on environmental burdens. In addition, the remaining challenges and future perspectives are also highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 675 citations 675 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2018.07.116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Abstract Domestic wind turbine manufacturing sector in China has experienced development stages starting from scratch to mass production. During the 11th FYP period (2006–2010), the main goal of wind power policy in China is to promote the commercialization of wind power by large-scale deployment of wind farms. This goal has been realized to a great extent and now the cost of wind power generation is nearly comparable to coal-fired power generation in China. The industry policy, which devotes to mass production of domestic wind turbines, is also largely successful. The purpose of the paper is to provide an overview on wind turbine manufacturing sector in China. The policy evolution in different stages, achievements and challenges pertinent to the sector are addressed in the paper. Key findings are that the misleading industry policy, which provides strong incentive to blind entrance and “competition for scale and price” and restrains innovation as well, is the key obstacle for the sustainable development of the sector. Deficient technology standard and qualification system and the misplaced franchise bidding system also indulge vicious competition and oversupply. Creating a level playground for all turbine supplies, providing strong incentive to innovative manufacturers, establishing thorough and practicable standard and qualification system, and fine-tuning the directive of the franchise bidding system towards technology and service are the primary policy implications proposed by our study.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2015.07.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Authors: Edmund Ntom Udemba;Firat Emir;
Nazakat-Ullah Khan; Sadam Hussain;Firat Emir
Firat Emir in OpenAIREpmid: 35380330
We researched China's climate and sustainable development goal with relevant and susceptible instruments capable of inducing and mitigating carbon emissions. Amidst the contributor to the global carbon emissions, China is caught in between mitigating its carbon emission and aiming towards placing its national contribution of emissions to the acceptable levels of 1.5 °C and below 2 °C. Following the intricacies surrounding China's sustainable development as it contains its economic and environmental performance, we adopt China's data of 1980 and 2018 with different scientific approaches (nonlinear autoregressive distributed lag (NARDL), dynamic ordinary least square test, and bootstrap Granger causality) with different instruments (such as economic growth, financial development, renewable energy, and innovation policies) to research China's sustainable development. For clear exposition and insight into our findings with policies attached, we draw a conclusion from the outcomes of the mentioned approaches. From NARDL and dynamic ordinary least squares (DOLS), we find that economic growth through economic activities is statistically significant in determining the trend (increase) of carbon emissions in China in both periods (short run and long run). However, other selected instruments (financial, renewable, and innovation policies) tend towards controlling and moderating the carbon emissions in China. Thus, China has good prospects to mitigate its carbon emissions if considered tailoring its policies towards favorable instruments. From bootstrap Granger causality, we find similar inferential results that support previous findings thereby confirming the positive implication of the selected instruments to China's sustainable development. Hence, the nexus that is established among the selected instruments clearly show the importance of technological innovation and renewable energy in mitigating carbon emissions.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19730-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-022-19730-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Carol Dahl; Carol Dahl; Yang Bai;Abstract Numerous countries have set up strategic petroleum reserves (SPRs) in response to oil disruptions since 1970. While numerous studies model such programs, we found few that evaluate SPRs' historical performance. Thus, we evaluate the U.S. SPR's performance by comparing actual real costs with estimated real benefits. From 1976 to 2014, the real U.S. SPR cost was about $219 billion real (2014$) dollars, whereas the real benefit was only $122 billion. Sensitivity testing suggests such negative net benefits are qualitatively robust. However, if world oil demand is extremely inelastic to oil price or GDP is elastic enough to oil price shocks, the estimated U.S. SPR net benefit is positive. Sensitivity testing around total real costs and benefits range from $380 billion to $80 billion. Limited testing of IEA coordinated drawdowns suggests that total U.S. benefits jump from $122 billion to more than $400 billion putting the SPR strongly in the black. Limited testing of private sector inventory changes was more disappointing and tentatively suggests private activities may at times have offset some of the government drawdowns. With 20-20 hindsight, initial experimentation found that better management could have significantly enhanced the value of the U.S. SPR, especially for the 1990-91 disruption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.02.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Emerald Authors: Jussi Heinimö; Mirja Mikkilä; Virgilio Panapanaan;Lassi Linnanen;
+1 AuthorsLassi Linnanen
Lassi Linnanen in OpenAIREJussi Heinimö; Mirja Mikkilä; Virgilio Panapanaan;Lassi Linnanen;
André Faaij;Lassi Linnanen
Lassi Linnanen in OpenAIREPurposeThe purpose of this paper is to outline a comprehensive picture of the coverage of various certification schemes and sustainability principles relating to the entire value‐added chain of biomass and bioenergy and comparing them accordingly.Design/methodology/approachA tri‐dimensional approach (sustainability issues; technical biomass conversion routes; physical trade flows) was developed for testing the coverage of various sustainability dimensions in different phases of the value‐added chain with the chosen certification schemes and sustainability principles.FindingsUsing the tri‐dimensional approach, a comparison of the chosen schemes and principles demonstrated that the application of existing schemes and the development of new ones have placed a major emphasis on the primary production of biomass. Economic and social dimensions related to biofuels and bioenergy processing and trade were either emphasised less or they were covered inadequately. In view of this, the schemes sometimes seem to ignore that the utilisation of renewable energy as such guarantee no positive or neutral climate impact and may not be economically sustainable, especially when bioenergy can often be more expensive than energy generated from fossil energy sources.Originality/valueThe analysis showed that the tri‐dimensional model is an applicable framework that could facilitate policy makers to formulate policies that comprehensively take into consideration the various sustainability dimensions throughout the entire value‐added chain, now and in the future. It can be applied to the future outlining and completion of certification schemes and sustainability principles for biomass and bioenergy, as well as in the testing of their applicability in the implementation.
International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/17506220911005740&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Energy Sector ManagementArticle . 2009 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/17506220911005740&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu