- home
- Advanced Search
- Energy Research
- 7. Clean energy
- NL
- Middlesex University
- Energy Research
- 7. Clean energy
- NL
- Middlesex University
description Publicationkeyboard_double_arrow_right Article , Journal 2021 FinlandPublisher:MDPI AG Funded by:AKA | Signal-Transmissive-Walls..., AKA | Discovering safe cleaning..., EC | PEROXISCOPYAKA| Signal-Transmissive-Walls with Embedded Passive Antennas for Radio-Connected Low-Energy Urban Buildings (STARCLUB) / Consortium: STARCLUB ,AKA| Discovering safe cleaning for school buildings to reduce harmful chemical, particle and microbial footprint (CleanSchool). ,EC| PEROXISCOPYXiaoshu Lü; Tao Lu; Tong Yang; Heidi Salonen; Zhenxue Dai; Peter Droege; Hongbing Chen;doi: 10.3390/en14175384
The built environment is the global sector with the greatest energy use and greenhouse gas emissions. As a result, building energy savings can make a major contribution to tackling the current energy and climate change crises. Fluid dynamics models have long supported the understanding and optimization of building energy systems and have been responsible for many important technological breakthroughs. As Covid-19 is continuing to spread around the world, fluid dynamics models are proving to be more essential than ever for exploring airborne transmission of the coronavirus indoors in order to develop energy-efficient and healthy ventilation actions against Covid-19 risks. The purpose of this paper is to review the most important and influential fluid dynamics models that have contributed to improving building energy efficiency. A detailed, yet understandable description of each model’s background, physical setup, and equations is provided. The main ingredients, theoretical interpretations, assumptions, application ranges, and robustness of the models are discussed. Models are reviewed with comprehensive, although not exhaustive, publications in the literature. The review concludes by outlining open questions and future perspectives of simulation models in building energy research.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2021License: CC BYFull-Text: https://dx.doi.org/10.3390/en14175384Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2021License: CC BYFull-Text: https://dx.doi.org/10.3390/en14175384Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 FinlandPublisher:MDPI AG Funded by:AKA | Signal-Transmissive-Walls..., AKA | Discovering safe cleaning..., EC | PEROXISCOPYAKA| Signal-Transmissive-Walls with Embedded Passive Antennas for Radio-Connected Low-Energy Urban Buildings (STARCLUB) / Consortium: STARCLUB ,AKA| Discovering safe cleaning for school buildings to reduce harmful chemical, particle and microbial footprint (CleanSchool). ,EC| PEROXISCOPYXiaoshu Lü; Tao Lu; Tong Yang; Heidi Salonen; Zhenxue Dai; Peter Droege; Hongbing Chen;doi: 10.3390/en14175384
The built environment is the global sector with the greatest energy use and greenhouse gas emissions. As a result, building energy savings can make a major contribution to tackling the current energy and climate change crises. Fluid dynamics models have long supported the understanding and optimization of building energy systems and have been responsible for many important technological breakthroughs. As Covid-19 is continuing to spread around the world, fluid dynamics models are proving to be more essential than ever for exploring airborne transmission of the coronavirus indoors in order to develop energy-efficient and healthy ventilation actions against Covid-19 risks. The purpose of this paper is to review the most important and influential fluid dynamics models that have contributed to improving building energy efficiency. A detailed, yet understandable description of each model’s background, physical setup, and equations is provided. The main ingredients, theoretical interpretations, assumptions, application ranges, and robustness of the models are discussed. Models are reviewed with comprehensive, although not exhaustive, publications in the literature. The review concludes by outlining open questions and future perspectives of simulation models in building energy research.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2021License: CC BYFull-Text: https://dx.doi.org/10.3390/en14175384Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2021License: CC BYFull-Text: https://dx.doi.org/10.3390/en14175384Data sources: Bielefeld Academic Search Engine (BASE)Aaltodoc Publication ArchiveArticle . 2021 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14175384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu