- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- GB
- NL
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- GB
- NL
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Jo Williams;Abstract The housing growth programme could offer an opportunity for accelerating the deployment of decentralised renewable energy systems (DRES) in the UK. The Government hopes to leverage private sector investment into DRES as part of new housing projects. The aim of this paper is to assess whether current regulatory and funding frameworks are sufficient to achieve this. The question is explored by drawing on the experience of developers, local authorities, energy utilities and service companies operating in the largest housing growth region in the UK–Thames Gateway. Their experience suggests that the current low intervention approach will be insufficient to generate the shift required in both industries. In order to be more successful economic and regulatory instruments should focus on producers (house-builders and energy providers) rather than consumers (households). Tighter regulation is needed to ensure that producers have a responsibility to install DRES as part of new developments, to enable connection to the grid, to ensure a sustained financial return from investment and revenue is spent on the expansion of new renewable energy infrastructure. This regulatory framework must be under-pinned by substantial funds focused on producers. Greater intervention is needed if DRES is to be included in new housing development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.08.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.08.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Elsevier BV Babarit, Aurélien; Singh, Jitendra; Mélis, Cécile; Wattez, Ambroise; Jean, Philippe;In this paper, a linear mathematical and numerical model for analysing the dynamic response of a flexible electroactive wave energy converter is described. The Wave Energy Converter (WEC) is a floating elastic tube filled with slightly pressurised sea water. It is made of Electroactive Polymers (EAPs).Under simplifying assumptions, a set of governing equations is formulated for the flow inside the tube, the flow outside the tube and the behaviour of the tube wall. By combining them, the evolution of the flow velocity in the tube can be written as a wave equation. The corresponding eigenmodes of vibration are calculated. Then, using spectral decomposition, the equation of motion for the response of the tube in waves is derived. Experiments were carried out on a scale model of the wave energy converter in the wave tank of Ecole Centrale de Nantes in 2011. Numerical results are compared with experimental results in regular waves, showing rather good agreement, which validates the model and the initial modelling assumptions. Finally, estimates are made for the energy performance of a possible prototype.
Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2017Full-Text: https://hal.science/hal-01563309Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverJournal of Fluids and StructuresArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2017.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2017Full-Text: https://hal.science/hal-01563309Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverJournal of Fluids and StructuresArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2017.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Publisher:Wiley Funded by:UKRI | Beyond biorecovery: envir...UKRI| Beyond biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials (B3)Jacob B. Omajai; I.P. Mikheenko; Joseph Wood; Alan J. Stephen; Lynne E. Macaskie;SummaryMicrobially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low‐grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio‐catalytic upgrading of oils and manufacturing ‘drop‐in fuel’ precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Walter de Gruyter GmbH Authors: Kofi Anaman; Nigel Horan; Zuhaib Siddiqui;Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.
International Journa... arrow_drop_down International Journal of Chemical Reactor EngineeringArticle . 2011 . Peer-reviewedData sources: CrossrefInternational Journal of Chemical Reactor EngineeringArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2202/1542-6580.2327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Chemical Reactor EngineeringArticle . 2011 . Peer-reviewedData sources: CrossrefInternational Journal of Chemical Reactor EngineeringArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2202/1542-6580.2327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Sánchez Diéguez Manuel; Taminau Floris; West Kira; Sijm Jos; Faaij André;Owing to the complexity of the sector, industrial activities are often represented with limited technological resolution in integrated energy system models. In this study, we enriched the technological description of industrial activities in the integrated energy system analysis optimisation (IESA-Opt) model, a peer-reviewed energy system optimisation model that can simultaneously provide optimal capacity planning for the hourly operation of all integrated sectors. We used this enriched model to analyse the industrial decarbonisation of the Netherlands for four key activities: high-value chemicals, hydrocarbons, ammonia, and steel production. The analyses performed comprised 1) exploring optimality in a reference scenario; 2) exploring the feasibility and implications of four extreme industrial cases with different technological archetypes, namely a bio-based industry, a hydrogen-based industry, a fully electrified industry, and retrofitting of current assets into carbon capture utilisation and storage; and 3) performing sensitivity analyses on key topics such as imported biomass, hydrogen, and natural gas prices, carbon storage potentials, technological learning, and the demand for olefins. The results of this study show that it is feasible for the energy system to have a fully bio-based, hydrogen-based, fully electrified, and retrofitted industry to achieve full decarbonisation while allowing for an optimal technological mix to yield at least a 10% cheaper transition. We also show that owing to the high predominance of the fuel component in the levelled cost of industrial products, substantial reductions in overnight investment costs of green technologies have a limited effect on their adoption. Finally, we reveal that based on the current (2022) energy prices, the energy transition is cost-effective, and fossil fuels can be fully displaced from industry and the national mix by 2050.
Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2022License: CC BYData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2022.100105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2022License: CC BYData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2022.100105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, SpainPublisher:Elsevier BV Funded by:UKRI | Transforming Utilities' C...UKRI| Transforming Utilities' Conversion PointsAuthors: Gonzalez de Durana, Jose Maria; Barambones, Oscar; Kremers, Enrique; Varga, Liz;Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed. The financial support from EPSRC for Liz Varga on project entitled "Transforming Utilities’ Conversion Points" (no. EP/J005649/1) is gratefully acknowledged.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2001 NetherlandsPublisher:Elsevier BV Authors: de Groot, C.P.G.M.; West, C.E.; van Staveren, W.A.;pmid: 11311593
In old age, the complex relation of food consumption with energy and nutrient requirements finds expression in both single and multiple nutritional problems. Addressing conditions affecting intake -- either from foods or from supplements -- endogenous production, bioefficacy and/or requirements can benefit nutritional health in old age through balancing requirements and supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Susann Stritzke; Carlos Sakyi-Nyarko; Iwona Bisaga; Malcolm Bricknell; Jon Leary; Edward Brown;doi: 10.3390/en14154559
Results-based financing (RBF) programmes in the clean cooking sector have gained increasing donor interest over the last decade. Although the risks and advantages of RBF have been discussed quite extensively for other sectors, especially health services, there is limited research-documented experience of its application to clean cooking. Due to the sheer scale of the important transition from ‘dirty’ to clean cooking for the 4 billion people who lack access, especially in the Global South, efficient and performance-proven solutions are urgently required. This paper, undertaken as part of the work of the UKAid-funded Modern Energy Cooking Services (MECS) programme, aims to close an important research gap by reviewing evidence-based support mechanisms and documenting essential experiences from previous and ongoing RBF programmes in the clean cooking and other sectors. On this basis, the paper derives key strategic implications and learning lessons for the global scaling of RBF programmes and finds that qualitative key performance indicators such as consumer acceptance as well as longer-term monitoring are critical long-term success factors for RBF to ensure the continued uptake and use of clean cooking solutions (CCS), however securing the inclusion of these indicators within programmes remains challenging. Finally, by discussing the opportunities for the evolution of RBF into broader impact funding programmes and the integration of energy access and clean cooking strategies through multi-sector approaches, the paper illustrates potential steps to enhance the impact of RBF in this sector in the future.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:UKRI | Numerical Investigation o...UKRI| Numerical Investigation of Aero-elasticity in Modern Low-Pressure TurbinesAuthors: Shine Win Naung; Mahdi Erfanian Nakhchi; Mohammad Rahmati;The aerodynamic characteristics of advanced low-pressure turbines (LPTs) could be affected by the interaction between the transitional and turbulent flow and the dynamic behaviour of the blades. Consequently, analysing the details of the interactions between the transient flow, blade vibrations and the flutter occurrence over the blades of LPTs are essential in order to enhance the aerodynamic efficiency of the modern LPTs. The distinctive feature of the present analysis is performing high-fidelity simulations based on a DNS approach employing a 3D blade model to investigate the flutter instabilities in a T106A turbine at various inter blade phase angles (IBPAs) at different Reynolds numbers. The impacts of the flutter on the transient flow structure are examined by using a direct numerical simulation method. The results show that at IBPA=0∘, persistent patterns of vortex generation are detected with fluid flow mixing in the downward areas. For IBPA=180∘, however, the recirculation generated by the upper blades proceeds toward the lower ones and interferes with the shedding from the trailing edge which impact the wake structure in the downstream regions significantly. A three-dimensional frequency domain model based on the harmonic balance method is also proposed in this study to investigate the capabilities and limitations of frequency domain methods in predicting aeroelasticity and details of flow structures in LPTs.
CORE arrow_drop_down Aerospace Science and TechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ast.2021.107151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Aerospace Science and TechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ast.2021.107151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Jo Williams;Abstract The housing growth programme could offer an opportunity for accelerating the deployment of decentralised renewable energy systems (DRES) in the UK. The Government hopes to leverage private sector investment into DRES as part of new housing projects. The aim of this paper is to assess whether current regulatory and funding frameworks are sufficient to achieve this. The question is explored by drawing on the experience of developers, local authorities, energy utilities and service companies operating in the largest housing growth region in the UK–Thames Gateway. Their experience suggests that the current low intervention approach will be insufficient to generate the shift required in both industries. In order to be more successful economic and regulatory instruments should focus on producers (house-builders and energy providers) rather than consumers (households). Tighter regulation is needed to ensure that producers have a responsibility to install DRES as part of new developments, to enable connection to the grid, to ensure a sustained financial return from investment and revenue is spent on the expansion of new renewable energy infrastructure. This regulatory framework must be under-pinned by substantial funds focused on producers. Greater intervention is needed if DRES is to be included in new housing development.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.08.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.08.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 FrancePublisher:Elsevier BV Babarit, Aurélien; Singh, Jitendra; Mélis, Cécile; Wattez, Ambroise; Jean, Philippe;In this paper, a linear mathematical and numerical model for analysing the dynamic response of a flexible electroactive wave energy converter is described. The Wave Energy Converter (WEC) is a floating elastic tube filled with slightly pressurised sea water. It is made of Electroactive Polymers (EAPs).Under simplifying assumptions, a set of governing equations is formulated for the flow inside the tube, the flow outside the tube and the behaviour of the tube wall. By combining them, the evolution of the flow velocity in the tube can be written as a wave equation. The corresponding eigenmodes of vibration are calculated. Then, using spectral decomposition, the equation of motion for the response of the tube in waves is derived. Experiments were carried out on a scale model of the wave energy converter in the wave tank of Ecole Centrale de Nantes in 2011. Numerical results are compared with experimental results in regular waves, showing rather good agreement, which validates the model and the initial modelling assumptions. Finally, estimates are made for the energy performance of a possible prototype.
Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2017Full-Text: https://hal.science/hal-01563309Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverJournal of Fluids and StructuresArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2017.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Nantes: HAL-UNIV-NANTESArticle . 2017Full-Text: https://hal.science/hal-01563309Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverJournal of Fluids and StructuresArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2017.06.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017Publisher:Wiley Funded by:UKRI | Beyond biorecovery: envir...UKRI| Beyond biorecovery: environmental win-win by biorefining of metallic wastes into new functional materials (B3)Jacob B. Omajai; I.P. Mikheenko; Joseph Wood; Alan J. Stephen; Lynne E. Macaskie;SummaryMicrobially generated or supported nanocatalysts have potential applications in green chemistry and environmental application. However, precious (and base) metals biorefined from wastes may be useful for making cheap, low‐grade catalysts for clean energy production. The concept of bionanomaterials for energy applications is reviewed with respect to potential fuel cell applications, bio‐catalytic upgrading of oils and manufacturing ‘drop‐in fuel’ precursors. Cheap, effective biomaterials would facilitate progress towards dual development goals of sustainable consumption and production patterns and help to ensure access to affordable, reliable, sustainable and modern energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/1751-7915.12801&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Walter de Gruyter GmbH Authors: Kofi Anaman; Nigel Horan; Zuhaib Siddiqui;Biomethane production from processed industrial food waste (IFW) in admixture with sewage sludge (primary and waste activated sludge: PS and WAS) was evaluated at a range of C:N ratios using a standard biochemical methane potential (BMP) test. IFW alone had a C:N of 30 whereas for WAS it was 5.4 and thus the C:N ratio of the blends fell in that range. Increasing the IFW content in mix improves the methane potential by increasing both the cumulative biogas production and the rate of methane production. Optimum methane yield 239 mL/g VSremoved occurred at a C:N ratio of 15 which was achieved with a blend containing 11 percent (w/w) IFW. As the fraction of IFW in the blend increased, volatile solids (VS) destruction was increased and this led to a reduction in methane yield and amount of production. The highest destruction of volatile solids of 93 percent was achieved at C:N of 20 followed by C:N 30 and 15. A shortened BMP test is adequate for evaluating optimum admixtures.
International Journa... arrow_drop_down International Journal of Chemical Reactor EngineeringArticle . 2011 . Peer-reviewedData sources: CrossrefInternational Journal of Chemical Reactor EngineeringArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2202/1542-6580.2327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Chemical Reactor EngineeringArticle . 2011 . Peer-reviewedData sources: CrossrefInternational Journal of Chemical Reactor EngineeringArticle . 2011 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2202/1542-6580.2327&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Sánchez Diéguez Manuel; Taminau Floris; West Kira; Sijm Jos; Faaij André;Owing to the complexity of the sector, industrial activities are often represented with limited technological resolution in integrated energy system models. In this study, we enriched the technological description of industrial activities in the integrated energy system analysis optimisation (IESA-Opt) model, a peer-reviewed energy system optimisation model that can simultaneously provide optimal capacity planning for the hourly operation of all integrated sectors. We used this enriched model to analyse the industrial decarbonisation of the Netherlands for four key activities: high-value chemicals, hydrocarbons, ammonia, and steel production. The analyses performed comprised 1) exploring optimality in a reference scenario; 2) exploring the feasibility and implications of four extreme industrial cases with different technological archetypes, namely a bio-based industry, a hydrogen-based industry, a fully electrified industry, and retrofitting of current assets into carbon capture utilisation and storage; and 3) performing sensitivity analyses on key topics such as imported biomass, hydrogen, and natural gas prices, carbon storage potentials, technological learning, and the demand for olefins. The results of this study show that it is feasible for the energy system to have a fully bio-based, hydrogen-based, fully electrified, and retrofitted industry to achieve full decarbonisation while allowing for an optimal technological mix to yield at least a 10% cheaper transition. We also show that owing to the high predominance of the fuel component in the levelled cost of industrial products, substantial reductions in overnight investment costs of green technologies have a limited effect on their adoption. Finally, we reveal that based on the current (2022) energy prices, the energy transition is cost-effective, and fossil fuels can be fully displaced from industry and the national mix by 2050.
Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2022License: CC BYData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2022.100105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2022License: CC BYData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2022.100105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, SpainPublisher:Elsevier BV Funded by:UKRI | Transforming Utilities' C...UKRI| Transforming Utilities' Conversion PointsAuthors: Gonzalez de Durana, Jose Maria; Barambones, Oscar; Kremers, Enrique; Varga, Liz;Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed. The financial support from EPSRC for Liz Varga on project entitled "Transforming Utilities’ Conversion Points" (no. EP/J005649/1) is gratefully acknowledged.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2014License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2014Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONEnergy Conversion and ManagementArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2014.03.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2001 NetherlandsPublisher:Elsevier BV Authors: de Groot, C.P.G.M.; West, C.E.; van Staveren, W.A.;pmid: 11311593
In old age, the complex relation of food consumption with energy and nutrient requirements finds expression in both single and multiple nutritional problems. Addressing conditions affecting intake -- either from foods or from supplements -- endogenous production, bioefficacy and/or requirements can benefit nutritional health in old age through balancing requirements and supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Susann Stritzke; Carlos Sakyi-Nyarko; Iwona Bisaga; Malcolm Bricknell; Jon Leary; Edward Brown;doi: 10.3390/en14154559
Results-based financing (RBF) programmes in the clean cooking sector have gained increasing donor interest over the last decade. Although the risks and advantages of RBF have been discussed quite extensively for other sectors, especially health services, there is limited research-documented experience of its application to clean cooking. Due to the sheer scale of the important transition from ‘dirty’ to clean cooking for the 4 billion people who lack access, especially in the Global South, efficient and performance-proven solutions are urgently required. This paper, undertaken as part of the work of the UKAid-funded Modern Energy Cooking Services (MECS) programme, aims to close an important research gap by reviewing evidence-based support mechanisms and documenting essential experiences from previous and ongoing RBF programmes in the clean cooking and other sectors. On this basis, the paper derives key strategic implications and learning lessons for the global scaling of RBF programmes and finds that qualitative key performance indicators such as consumer acceptance as well as longer-term monitoring are critical long-term success factors for RBF to ensure the continued uptake and use of clean cooking solutions (CCS), however securing the inclusion of these indicators within programmes remains challenging. Finally, by discussing the opportunities for the evolution of RBF into broader impact funding programmes and the integration of energy access and clean cooking strategies through multi-sector approaches, the paper illustrates potential steps to enhance the impact of RBF in this sector in the future.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:UKRI | Numerical Investigation o...UKRI| Numerical Investigation of Aero-elasticity in Modern Low-Pressure TurbinesAuthors: Shine Win Naung; Mahdi Erfanian Nakhchi; Mohammad Rahmati;The aerodynamic characteristics of advanced low-pressure turbines (LPTs) could be affected by the interaction between the transitional and turbulent flow and the dynamic behaviour of the blades. Consequently, analysing the details of the interactions between the transient flow, blade vibrations and the flutter occurrence over the blades of LPTs are essential in order to enhance the aerodynamic efficiency of the modern LPTs. The distinctive feature of the present analysis is performing high-fidelity simulations based on a DNS approach employing a 3D blade model to investigate the flutter instabilities in a T106A turbine at various inter blade phase angles (IBPAs) at different Reynolds numbers. The impacts of the flutter on the transient flow structure are examined by using a direct numerical simulation method. The results show that at IBPA=0∘, persistent patterns of vortex generation are detected with fluid flow mixing in the downward areas. For IBPA=180∘, however, the recirculation generated by the upper blades proceeds toward the lower ones and interferes with the shedding from the trailing edge which impact the wake structure in the downstream regions significantly. A three-dimensional frequency domain model based on the harmonic balance method is also proposed in this study to investigate the capabilities and limitations of frequency domain methods in predicting aeroelasticity and details of flow structures in LPTs.
CORE arrow_drop_down Aerospace Science and TechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ast.2021.107151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Aerospace Science and TechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ast.2021.107151&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu