- home
- Advanced Search
- Energy Research
- 6. Clean water
- IT
- NL
- English
- Energy Research
- 6. Clean water
- IT
- NL
- English
Research data keyboard_double_arrow_right Dataset 2017Publisher:NERC Environmental Information Data Centre Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; Estiarte, M.; Guidolotti, G.; Kovács-Láng, E.; Kröel-Dula, G; Lellei-Kovács, E.; Larsen, K.S.; Liberati, D.; Ogaya, R; Peñuelas, J.; Ransijn, J.; Robinson, D.A.; Schmidt, I.K.; Smith, A.R.; Tietema, A.; Dukes, J.S.; Beier, C.; Emmett, B.A.;The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 29 Sep 2015 NetherlandsPublisher:Dryad Holmgren, M.; Lin, C.Y.; Murillo, J.E.; Nieuwenhuis, A.; Penninkhof, J.M.; Sanders, N.; van Bart, T.; van Veen, H.; Vasander, H.; Vollebregt, M.E.; Limpens, J.;doi: 10.5061/dryad.jf2n3
Figure 1data_Exp 2Figure 1 data: Condition of experimental seedlings in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS) during the warmest growing season (2011) and at the end of the experiment (2013). Seedling condition was defined as: healthy (< 50% of the needles turned yellow or brown) or unhealthy (> 50% of the needles turned yellow or brown). Seedlings were 1 month old at plantation time in the July 2010.Table 1_environmental conditions_Exp 1Table 1 data: Environmental conditions and vegetation characteristics in hummocks (circular and bands) and lawns for Experiment 1. Water table depth below surface is an average for the four growing seasons (2010-2013)Table 2_ photosynthesis data_Exp 1Table 2 photosynthesis data: Photosynthesis rates for experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns for Experiment 1.Table 2_seedling responses_Exp 1Table 2 data: Responses of experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns for Experiment 1 after 4 growing seasons. ST: Seeds inserted on top of moss; SB: Seeds inserted below moss; Small seedling (1 month old at plantation time); Large seedling (2 months old at plantation time). Emergence = % of planted seeds emerged after 1 year. Condition = % healthy seedlings. Stem growth corresponds to vertical stem growth for germinating (ST and SB) seedlings and new stem growth for older (small and large) seedlings.Table 3_regression seedling-environment_Exp 1Table 3 data for generalized linear models assessing the responses of experimental pine seedlings in hummocks (circular and bands) and adjacent lawns for Experiment 1 during the whole experimental period (2010-2013). ST: Seedlings from seeds inserted on top of moss; SB: Seedlings from seeds inserted below moss; Small seedling (1 month old at plantation time); Large seedling (2 months old at plantation time). Condition = % healthy seedlings. Growth = stem growth.Table 4_Environmental data_Exp 2Table 4: Environmental conditions in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS).Table 4 and Table S5a_seedling performance_Exp 2Table 4: Seedling performance in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS). Seedling emergence, condition and survival from seeds inserted below the moss (SB), and from small planted seedlings.Table S3_cox regression (survival analysis)_Exp 1Table S3: Data for Cox survival analysis for experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns during 2010-2013. ST: Seedlings from seeds inserted on top of moss; SB: Seedlings from seeds inserted below moss; Small seedling (1 month old, 10 cm tall at plantation time); Large seedling (2 months old, 30 cm tall at plantation time).Table S4_ regression seedling-environment 2011_Exp 1Table S4: Data for generalized linear models assessing the responses of experimental pine seedlings in hummocks (circular and bands) and adjacent lawns for Experiment 1 in 2011. Small seedling (1 month old, 10 cm tall at plantation time); Large seedling (2 months old, 30 cm tall at plantation time). Condition = % healthy seedlings. Growth = stem growth. Boreal ecosystems are warming roughly twice as fast as the global average, resulting in woody expansion that could further speed up the climate warming. Boreal peatbogs are waterlogged systems that store more than 30% of the global soil carbon. Facilitative effects of shrubs and trees on the establishment of new individuals could increase tree cover with profound consequences for the structure and functioning of boreal peatbogs, carbon sequestration and climate. We conducted two field experiments in boreal peatbogs to assess the mechanisms that explain tree seedling recruitment and to estimate the strength of positive feedbacks between shrubs and trees. We planted seeds and seedlings of Pinus sylvestris in microsites with contrasting water-tables and woody cover and manipulated both shrub canopy and root competition. We monitored seedling emergence, growth and survival for up to four growing seasons and assessed how seedling responses related to abiotic and biotic conditions. We found that tree recruitment is more successful in drier topographical microsites with deeper water-tables. On these hummocks, shrubs have both positive and negative effects on tree seedling establishment. Shrub cover improved tree seedling condition, growth and survival during the warmest growing season. In turn, higher tree basal area correlates positively with soil nutrient availability, shrub biomass and abundance of tree juveniles. Synthesis. Our results suggest that shrubs facilitate tree colonization of peatbogs which further increases shrub growth. These facilitative effects seem to be stronger under warmer conditions suggesting that a higher frequency of warmer and dry summers may lead to stronger positive interactions between shrubs and trees that could eventually facilitate a shift from moss to tree-dominated systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jf2n3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jf2n3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2011Publisher:Unknown Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; Roggero, PierPaolo; Giraldo, Luca; Severini, Simone; Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; Roggero, PierPaolo; Giraldo, Luca; Severini, Simone;In the agricultural sector, climate change (CC) affects multiple weather variables at different stages of crop cycles. CC may influence the mean level or affect the distribution of events (e.g., rainfall, temperature). This work evaluates the economic impact of CC-related changes in multiple climatic components, and the resulting uncertainty. For this purpose, a three-stage discrete stochastic programming model is used to represents farm sector of an irrigated area of Italy and to examine the influence of CC on rainfall and on maximum temperature. These variables affect the availability of water for agriculture and the water requirements of irrigated crops. The states of nature, and their change, are defined more broadly than in previous analyses; this allows examining the changes of more climatic variables and crops cultivation. The effect of CC is obtained by comparing the results of scenarios that represent the climatic conditions in the current situation and in the future. The results show that the agricultural sector would seek to lower costs by modifying patterns of land use, farming practices and increasing the use groundwater. The overall economic impact of these changes is small and due primarily to the reduced availability of water in the future. The temperature increase is, in fact, largely offset by the effects of the increase in CO2 levels, which boosts the yield of main crops of the irrigated zone. Therefore, availability and water management becomes a crucial factor to offset the increase of evapotranspiration and of water stress resulting from the increase of temperature. However, the costs of CC are very high for some types of farming, which suffer a large reduction in income.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.114436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.114436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Laurens P. Stoop;Energy Climate dataset consistent with ENTSO-E Pan-European Climatic Database (PECD 2021.3) in CSV and netCDF format TL;DR: this is a nationally aggregated hourly dataset for the capacity factors per unit installed capacity for storage hydropower plants and run-of-river hydropower plants in the European region. All the data is provided for 30 climatic years (1981-2010). Method Description The hydro inflow data is based on historical river runoff reanalysis data simulated by the E-HYPE model. E-HYPE is a pan-European model developed by The Swedish Meteorological and Hydrological Institute (SMHI), which describes hydrological processes including flow paths at the subbasin level. E-hype only provides the time series of daily river runoff entering the inlet of each European subbasin over 1981-2010. To match the operational resolution of the dispatch model, we linearly downscale these time series to hourly. By summing up runoff associated with the inlet subbasins of each country, we also obtain the country-level river runoff. The hydro inflow time series per country is defined as the normalized energy inflows (per unit installed capacity of hydropower) embodied in the country-level river runoff. A dispatch model can be used to decides whether the energy inflows are actually used for electricity generation, stored, or spilled (in case the storage reservoir is already full). Data coverage This dataset considers two types of hydropower plants, namely storage hydropower plant (STO) and run-of-river hydropower plant (ROR). Not all countries have both types of hydropower plants installed (see table). The countries and their acronyms for both technologies included in this dataset are: Country Run-of-River Storage Austria AT_ROR AT_STO Belgium BE_ROR BE_STO Bulgaria BG_ROR BG_STO Switzerland CH_ROR CH_STO Cyprus CZ_ROR CZ_STO Germany DE_ROR DE_STO Denmark DK_ROR Estonia EE_ROR Greece EL_ROR EL_STO Spain ES_ROR ES_STO Finland FI_ROR FI_STO France FR_ROR FR_STO Great Britain GB_ROR GB_STO Croatia HR_ROR HR_STO Hungary HU_ROR HU_STO Ireland IE_ROR IE_STO Italy IT_ROR IT_STO Luxembourg LU_ROR Latvia LV_ROR the Netherlands NL_ROR Norway NO_ROR NO_STO Poland PL_ROR PL_STO Portugal PT_ROR PT_STO Romania RO_ROR RO_STO Sweden SE_ROR SE_STO Slovenia SI_ROR SI_STO Slovakia SK_ROR SK_STO Data structure description The files is provided in CSV (.csv) format with a comma (,) as separator and double-quote mark (") as text indicator. The first row stores the column labels. The columns contain the following: first column (or A) contains the row number Label: unlabeled Contents: interger range [1,262968] second column (or B) contains the valid-time Label: T1h Contents represent time with text as [DD/MM/YYYY HH:MM]) column 3-52 (or C-AY) each contain the capacity factor for each valid combination of a country and hydropower plant type Label: XX_YYY the two letter country code (XX) and the hydropower plant type (YYY) acronym for storage hydropower plant (STO) and run-of-river hydropower plant (ROR) Contents represent the capacity factor as a floating value in the range [0,1], the decimal separator is a point (.). DISCLAIMER: the content of this dataset has been created with the greatest possible care. However, we invite to use the original data for critical applications and studies. The raw hydro data was generated as part of 'Evaluating sediment Delivery Impacts on Reservoirs in changing climaTe and society across scales and sectors (DIRT-X)', this project and therefor, Jing hu, received funding from the European Research Area Network (ERA-NET) under grant number 438.19.902. Laurens P. Stoop received funding from the Netherlands Organization for Scientific Research (NWO) under Grant No. 647.003.005.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7766456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 41 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7766456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Sepehr Eslami; Jannis M. Hoch; Edwin H. Sutanudjaja; Hal E. Voepel;Projections of Sea Level Rise (SLR) under RCP 4.5 and RCP 8.5 (AR5) along the Mekong Coast, Published1 by the Ministry of Natural Resources and Environment (MONRE), Hanoi, Vietnam. Projections of Mekong River discharge during the dry season under RCP 4.5 and RCP 8.5 at Kratie, Cambodia. The data contains the cumulative, minimum and maximum dry season (January-1st to April-30th) discharge from 5 different climate models. PCR-GLOBWB2 was run at 5 arc-min spatial resolution and forced with the data based on output from five ISIMIP CMIP5 global climate models (HadGEM2-ES, GFDL-ESM2, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M). 1. Ministry of Natural Resources and Environment (MONRE), V. Climate change and sea level rise scenarios for Vietnam, Ministry of Natural Resources and Environment. (2016). 2. Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018). {"references": ["Sutanudjaja et al. (2018)", "Ministry of Natural Resources and Environment (2016)"]}
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4771239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 162visibility views 162 download downloads 75 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4771239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2004 ItalyAuthors: Algieri A.; Cinnirella S.; Trombino G.; Pirrone N.;A catchment and its relative coastal zone are both influenced by climate change, particularly by specific factors as precipitation, temperature and wind. In the Mediterranean predicted changes are expected to be superimposed over long-term alterations caused by both natural and anthropogenic pressures (IPCC, 2001). Therefore, climate modification will have an impact on the Po catchment and the Northern Adriatic Coastal system, affecting water resources, ecosystems, agriculture and food security, human settlements, financial services and human health. Climate pressure has the potential to exacerbate already existing problems (i.e. eutrophication, heavy metal pollution, subsidence). The connections between Integrated Coastal Zone Management (ICZM) and Integrated River Basin Management (IRBM), already studied and analysed in the EUROCAT project, have been re-analysed and the tools (models) used for the Po catchment study have been modified in relation to the climate change. In particular, this research activity aims to estimate the nutrient flux changes (using the MONERIS model) in the Po basin under possible climate change impacts. These preliminary studies have been done in order to understand and quantify direct and indirect relationships between climate change and estimated nutrient fluxes taking into consideration the specific pathways of the MONERIS model
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d497fbd784e139e44ff76edff1f85b3b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d497fbd784e139e44ff76edff1f85b3b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Tema. Journal of Land Use, Mobility and Environment Authors: Laura Grassini; Dino Borri;In this paper we argue for the need to apply a cognitive approach to understand deep dynamics and determinants of technological evolutions. After examining main contributions from innovation studies to the conceptualization of innovation and change in complex socio-technical environments, we highlight the contribution coming from the application of the cognitive approach to evolutionary studies on technologies and we introduce the concept of technological memory as an interpretative tool to understand those changes. We discuss our hypothesis with reference to several observations carried out in different local contexts – Mexico, India and Italy – in relation to technological change in the water sector. In those cases deliberate attempts to substitute traditional technologies with modern ones led to interesting trajectories of change ranging from the collapse of old technologies to the development of multifaceted hybridization patterns. Tema. Journal of Land Use, Mobility and Environment, 2014: INPUT 2014 - Smart City: planning for energy, transportation and sustainability of the urban system
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/1970-9870/2561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/1970-9870/2561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book 2019 ItalyPublisher:Elsevier, Amsterdam, NLD Authors: A. Basile; A. Cassano. A. Figoli;This book provides an outlook on recent investigated combinations of membrane operations and renewable energy sources (solar, wind, geothermal, etc.) in the field of water desalination (seawater and brackish water), wastewater treatment and hydrogen production. The combination of a renewable energy facility with a membrane process not only solves the sanitation problem of isolated regions, but also enables a more cleaner wastewater treatment system in view of carbon emission and resource recovery. Regarding biomass, the integration of membrane reactors in the production processes of green fuels in the logic of the process intensification strategy is also considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::748814b1eb58def82877853d7c1ec785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::748814b1eb58def82877853d7c1ec785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2020 ItalyAuthors: Striano V.; Di Grazia S.; Ugolini F.;Historically, water resources have allowed the development of urban settlements and water forms and availability - such as surface water or underground water (springs, rivers and streams, aquifers, lakes), have influenced the urban environment either in connection to danger and risk connected to the proximity of the water body, either for the functional and aesthetic value. The educational project Daylighting Rivers -co-funded by the European Union in 2017 (Project number 2017-1-IT02- KA201-036968), takes its cue from such theme to develop a teaching methodology that aims to facilitate STEM learning and at the same time to raise teachers' and students' awareness on the importance and vulnerability of water bodies, especially in a urban context. The project was implemented in Italy, Spain and Greece, countries with similar environmental characteristics and urban sprawl processes that have been emphasizing water issues especially in time of climate change. Over the first two years, the project involved three pilot secondary schools that tested an innovative, multidisciplinary and participatory teaching methodology, based on a model of Inquiry Based Learning. From the pedagogical point of view, the methodology fosters the students' centrality and curiosity for investigating the local river in own town or province. Twenty learning units were developed on specific topics connected to macro-themes that can be implemented in different school disciplines. The promotion of innovative digital tools such as Location Based Games have also allowed students to approach and work with georeferenced information, but also combine technical-scientific aspects and language to historical-humanistic-artistic aspects and storytelling. Students could also reflect on a variety of aspects related to rivers in town such as social, ecological, cultural and economic well-being aspects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d183f4230b31e392fb966888f16cfc83&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d183f4230b31e392fb966888f16cfc83&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2003 ItalyPublisher:American Meteorological Society, Boston, USA Snyder R. L.; Spano D.; Baldocchi D.; Duce P.; Xu L.; Paw U K. T.;Plant water status is a major factor influencing burning potential of vegetation and a low-cost method to assess the water status can provide an index for fire potential. It can also reduce costs associated with travel to remote locations and can improve fire forecast models. Under severe water stress, plant stomata close and reduce the actual evapotranspiration rate (ETa) relative to the potential evapotranspiration rate (ETp). A fire potential index (I=1 - ETa/ETp) is a measure of vegetation burning potential. When there is no ET reducing water stress, I=0 and it increases as the ETa rate decreases relative to ETp. The difficulty in the application of a fire index is the cost and complexity to measure or estimate ETa and ETp. From solar radiation (Rs) measurements and site specific calibration, it is possible to estimate net radiation (Rn) and soil heat flux density (G). If a good estimate of sensible heat flux density is available, then latent heat flux density (LE) can be calculated as the residual of the energy balance equation (LE=Rn - G - H). The surface renewal (SR) method for estimating sensible heat flux from canopies provides a simple, portable, robust, and low-cost method to measure sensible heat flux density (H). High frequency temperature data are collected with fine-wire thermocouples. The data are analyzed with a structure function to identify average ramp characteristics (i.e., amplitude and duration) of the temperature traces during a sampling period. Then the amplitude and duration are used in a conservation of energy equation to estimate H. This method has been used over a wide variety of crops and natural vegetation with good results. Recently, the method was tested over grass in a wildfire-prone mixed oak-grassland region of the Sierra Nevada Mountain foothills in California. In this paper, the methodology to measure H with the SR method and the results of the fire index calculations will be reported.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::fc2e447a55d4763eaf8d481ddc5fbb38&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::fc2e447a55d4763eaf8d481ddc5fbb38&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2017Publisher:NERC Environmental Information Data Centre Reinsch, S.; Koller, E.; Sowerby, A.; De Dato, G.; Estiarte, M.; Guidolotti, G.; Kovács-Láng, E.; Kröel-Dula, G; Lellei-Kovács, E.; Larsen, K.S.; Liberati, D.; Ogaya, R; Peñuelas, J.; Ransijn, J.; Robinson, D.A.; Schmidt, I.K.; Smith, A.R.; Tietema, A.; Dukes, J.S.; Beier, C.; Emmett, B.A.;The data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2015Embargo end date: 29 Sep 2015 NetherlandsPublisher:Dryad Holmgren, M.; Lin, C.Y.; Murillo, J.E.; Nieuwenhuis, A.; Penninkhof, J.M.; Sanders, N.; van Bart, T.; van Veen, H.; Vasander, H.; Vollebregt, M.E.; Limpens, J.;doi: 10.5061/dryad.jf2n3
Figure 1data_Exp 2Figure 1 data: Condition of experimental seedlings in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS) during the warmest growing season (2011) and at the end of the experiment (2013). Seedling condition was defined as: healthy (< 50% of the needles turned yellow or brown) or unhealthy (> 50% of the needles turned yellow or brown). Seedlings were 1 month old at plantation time in the July 2010.Table 1_environmental conditions_Exp 1Table 1 data: Environmental conditions and vegetation characteristics in hummocks (circular and bands) and lawns for Experiment 1. Water table depth below surface is an average for the four growing seasons (2010-2013)Table 2_ photosynthesis data_Exp 1Table 2 photosynthesis data: Photosynthesis rates for experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns for Experiment 1.Table 2_seedling responses_Exp 1Table 2 data: Responses of experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns for Experiment 1 after 4 growing seasons. ST: Seeds inserted on top of moss; SB: Seeds inserted below moss; Small seedling (1 month old at plantation time); Large seedling (2 months old at plantation time). Emergence = % of planted seeds emerged after 1 year. Condition = % healthy seedlings. Stem growth corresponds to vertical stem growth for germinating (ST and SB) seedlings and new stem growth for older (small and large) seedlings.Table 3_regression seedling-environment_Exp 1Table 3 data for generalized linear models assessing the responses of experimental pine seedlings in hummocks (circular and bands) and adjacent lawns for Experiment 1 during the whole experimental period (2010-2013). ST: Seedlings from seeds inserted on top of moss; SB: Seedlings from seeds inserted below moss; Small seedling (1 month old at plantation time); Large seedling (2 months old at plantation time). Condition = % healthy seedlings. Growth = stem growth.Table 4_Environmental data_Exp 2Table 4: Environmental conditions in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS).Table 4 and Table S5a_seedling performance_Exp 2Table 4: Seedling performance in hummocks with contrasting shrub density and tree canopy in Experiment 2: No Trees - Low Shrub biomass (NTLS), No Trees - High Shrub biomass (NTHS), Present Trees - Low Shrub biomass (PTLS) and Present Trees - High shrub biomass (PTHS). Seedling emergence, condition and survival from seeds inserted below the moss (SB), and from small planted seedlings.Table S3_cox regression (survival analysis)_Exp 1Table S3: Data for Cox survival analysis for experimental pine seedlings in hummocks (circular and bands) versus adjacent lawns during 2010-2013. ST: Seedlings from seeds inserted on top of moss; SB: Seedlings from seeds inserted below moss; Small seedling (1 month old, 10 cm tall at plantation time); Large seedling (2 months old, 30 cm tall at plantation time).Table S4_ regression seedling-environment 2011_Exp 1Table S4: Data for generalized linear models assessing the responses of experimental pine seedlings in hummocks (circular and bands) and adjacent lawns for Experiment 1 in 2011. Small seedling (1 month old, 10 cm tall at plantation time); Large seedling (2 months old, 30 cm tall at plantation time). Condition = % healthy seedlings. Growth = stem growth. Boreal ecosystems are warming roughly twice as fast as the global average, resulting in woody expansion that could further speed up the climate warming. Boreal peatbogs are waterlogged systems that store more than 30% of the global soil carbon. Facilitative effects of shrubs and trees on the establishment of new individuals could increase tree cover with profound consequences for the structure and functioning of boreal peatbogs, carbon sequestration and climate. We conducted two field experiments in boreal peatbogs to assess the mechanisms that explain tree seedling recruitment and to estimate the strength of positive feedbacks between shrubs and trees. We planted seeds and seedlings of Pinus sylvestris in microsites with contrasting water-tables and woody cover and manipulated both shrub canopy and root competition. We monitored seedling emergence, growth and survival for up to four growing seasons and assessed how seedling responses related to abiotic and biotic conditions. We found that tree recruitment is more successful in drier topographical microsites with deeper water-tables. On these hummocks, shrubs have both positive and negative effects on tree seedling establishment. Shrub cover improved tree seedling condition, growth and survival during the warmest growing season. In turn, higher tree basal area correlates positively with soil nutrient availability, shrub biomass and abundance of tree juveniles. Synthesis. Our results suggest that shrubs facilitate tree colonization of peatbogs which further increases shrub growth. These facilitative effects seem to be stronger under warmer conditions suggesting that a higher frequency of warmer and dry summers may lead to stronger positive interactions between shrubs and trees that could eventually facilitate a shift from moss to tree-dominated systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jf2n3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 11 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jf2n3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type , Preprint 2011Publisher:Unknown Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; Roggero, PierPaolo; Giraldo, Luca; Severini, Simone; Dono, Gabriele; Cortignani, Raffaele; Doro, Luca; Ledda, Luigi; Roggero, PierPaolo; Giraldo, Luca; Severini, Simone;In the agricultural sector, climate change (CC) affects multiple weather variables at different stages of crop cycles. CC may influence the mean level or affect the distribution of events (e.g., rainfall, temperature). This work evaluates the economic impact of CC-related changes in multiple climatic components, and the resulting uncertainty. For this purpose, a three-stage discrete stochastic programming model is used to represents farm sector of an irrigated area of Italy and to examine the influence of CC on rainfall and on maximum temperature. These variables affect the availability of water for agriculture and the water requirements of irrigated crops. The states of nature, and their change, are defined more broadly than in previous analyses; this allows examining the changes of more climatic variables and crops cultivation. The effect of CC is obtained by comparing the results of scenarios that represent the climatic conditions in the current situation and in the future. The results show that the agricultural sector would seek to lower costs by modifying patterns of land use, farming practices and increasing the use groundwater. The overall economic impact of these changes is small and due primarily to the reduced availability of water in the future. The temperature increase is, in fact, largely offset by the effects of the increase in CO2 levels, which boosts the yield of main crops of the irrigated zone. Therefore, availability and water management becomes a crucial factor to offset the increase of evapotranspiration and of water stress resulting from the increase of temperature. However, the costs of CC are very high for some types of farming, which suffer a large reduction in income.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.114436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.22004/ag.econ.114436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Laurens P. Stoop;Energy Climate dataset consistent with ENTSO-E Pan-European Climatic Database (PECD 2021.3) in CSV and netCDF format TL;DR: this is a nationally aggregated hourly dataset for the capacity factors per unit installed capacity for storage hydropower plants and run-of-river hydropower plants in the European region. All the data is provided for 30 climatic years (1981-2010). Method Description The hydro inflow data is based on historical river runoff reanalysis data simulated by the E-HYPE model. E-HYPE is a pan-European model developed by The Swedish Meteorological and Hydrological Institute (SMHI), which describes hydrological processes including flow paths at the subbasin level. E-hype only provides the time series of daily river runoff entering the inlet of each European subbasin over 1981-2010. To match the operational resolution of the dispatch model, we linearly downscale these time series to hourly. By summing up runoff associated with the inlet subbasins of each country, we also obtain the country-level river runoff. The hydro inflow time series per country is defined as the normalized energy inflows (per unit installed capacity of hydropower) embodied in the country-level river runoff. A dispatch model can be used to decides whether the energy inflows are actually used for electricity generation, stored, or spilled (in case the storage reservoir is already full). Data coverage This dataset considers two types of hydropower plants, namely storage hydropower plant (STO) and run-of-river hydropower plant (ROR). Not all countries have both types of hydropower plants installed (see table). The countries and their acronyms for both technologies included in this dataset are: Country Run-of-River Storage Austria AT_ROR AT_STO Belgium BE_ROR BE_STO Bulgaria BG_ROR BG_STO Switzerland CH_ROR CH_STO Cyprus CZ_ROR CZ_STO Germany DE_ROR DE_STO Denmark DK_ROR Estonia EE_ROR Greece EL_ROR EL_STO Spain ES_ROR ES_STO Finland FI_ROR FI_STO France FR_ROR FR_STO Great Britain GB_ROR GB_STO Croatia HR_ROR HR_STO Hungary HU_ROR HU_STO Ireland IE_ROR IE_STO Italy IT_ROR IT_STO Luxembourg LU_ROR Latvia LV_ROR the Netherlands NL_ROR Norway NO_ROR NO_STO Poland PL_ROR PL_STO Portugal PT_ROR PT_STO Romania RO_ROR RO_STO Sweden SE_ROR SE_STO Slovenia SI_ROR SI_STO Slovakia SK_ROR SK_STO Data structure description The files is provided in CSV (.csv) format with a comma (,) as separator and double-quote mark (") as text indicator. The first row stores the column labels. The columns contain the following: first column (or A) contains the row number Label: unlabeled Contents: interger range [1,262968] second column (or B) contains the valid-time Label: T1h Contents represent time with text as [DD/MM/YYYY HH:MM]) column 3-52 (or C-AY) each contain the capacity factor for each valid combination of a country and hydropower plant type Label: XX_YYY the two letter country code (XX) and the hydropower plant type (YYY) acronym for storage hydropower plant (STO) and run-of-river hydropower plant (ROR) Contents represent the capacity factor as a floating value in the range [0,1], the decimal separator is a point (.). DISCLAIMER: the content of this dataset has been created with the greatest possible care. However, we invite to use the original data for critical applications and studies. The raw hydro data was generated as part of 'Evaluating sediment Delivery Impacts on Reservoirs in changing climaTe and society across scales and sectors (DIRT-X)', this project and therefor, Jing hu, received funding from the European Research Area Network (ERA-NET) under grant number 438.19.902. Laurens P. Stoop received funding from the Netherlands Organization for Scientific Research (NWO) under Grant No. 647.003.005.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7766456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 41 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7766456&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Sepehr Eslami; Jannis M. Hoch; Edwin H. Sutanudjaja; Hal E. Voepel;Projections of Sea Level Rise (SLR) under RCP 4.5 and RCP 8.5 (AR5) along the Mekong Coast, Published1 by the Ministry of Natural Resources and Environment (MONRE), Hanoi, Vietnam. Projections of Mekong River discharge during the dry season under RCP 4.5 and RCP 8.5 at Kratie, Cambodia. The data contains the cumulative, minimum and maximum dry season (January-1st to April-30th) discharge from 5 different climate models. PCR-GLOBWB2 was run at 5 arc-min spatial resolution and forced with the data based on output from five ISIMIP CMIP5 global climate models (HadGEM2-ES, GFDL-ESM2, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M). 1. Ministry of Natural Resources and Environment (MONRE), V. Climate change and sea level rise scenarios for Vietnam, Ministry of Natural Resources and Environment. (2016). 2. Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018). {"references": ["Sutanudjaja et al. (2018)", "Ministry of Natural Resources and Environment (2016)"]}
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4771239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 162visibility views 162 download downloads 75 Powered bymore_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4771239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2004 ItalyAuthors: Algieri A.; Cinnirella S.; Trombino G.; Pirrone N.;A catchment and its relative coastal zone are both influenced by climate change, particularly by specific factors as precipitation, temperature and wind. In the Mediterranean predicted changes are expected to be superimposed over long-term alterations caused by both natural and anthropogenic pressures (IPCC, 2001). Therefore, climate modification will have an impact on the Po catchment and the Northern Adriatic Coastal system, affecting water resources, ecosystems, agriculture and food security, human settlements, financial services and human health. Climate pressure has the potential to exacerbate already existing problems (i.e. eutrophication, heavy metal pollution, subsidence). The connections between Integrated Coastal Zone Management (ICZM) and Integrated River Basin Management (IRBM), already studied and analysed in the EUROCAT project, have been re-analysed and the tools (models) used for the Po catchment study have been modified in relation to the climate change. In particular, this research activity aims to estimate the nutrient flux changes (using the MONERIS model) in the Po basin under possible climate change impacts. These preliminary studies have been done in order to understand and quantify direct and indirect relationships between climate change and estimated nutrient fluxes taking into consideration the specific pathways of the MONERIS model
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d497fbd784e139e44ff76edff1f85b3b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d497fbd784e139e44ff76edff1f85b3b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Tema. Journal of Land Use, Mobility and Environment Authors: Laura Grassini; Dino Borri;In this paper we argue for the need to apply a cognitive approach to understand deep dynamics and determinants of technological evolutions. After examining main contributions from innovation studies to the conceptualization of innovation and change in complex socio-technical environments, we highlight the contribution coming from the application of the cognitive approach to evolutionary studies on technologies and we introduce the concept of technological memory as an interpretative tool to understand those changes. We discuss our hypothesis with reference to several observations carried out in different local contexts – Mexico, India and Italy – in relation to technological change in the water sector. In those cases deliberate attempts to substitute traditional technologies with modern ones led to interesting trajectories of change ranging from the collapse of old technologies to the development of multifaceted hybridization patterns. Tema. Journal of Land Use, Mobility and Environment, 2014: INPUT 2014 - Smart City: planning for energy, transportation and sustainability of the urban system
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/1970-9870/2561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6092/1970-9870/2561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book 2019 ItalyPublisher:Elsevier, Amsterdam, NLD Authors: A. Basile; A. Cassano. A. Figoli;This book provides an outlook on recent investigated combinations of membrane operations and renewable energy sources (solar, wind, geothermal, etc.) in the field of water desalination (seawater and brackish water), wastewater treatment and hydrogen production. The combination of a renewable energy facility with a membrane process not only solves the sanitation problem of isolated regions, but also enables a more cleaner wastewater treatment system in view of carbon emission and resource recovery. Regarding biomass, the integration of membrane reactors in the production processes of green fuels in the logic of the process intensification strategy is also considered.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::748814b1eb58def82877853d7c1ec785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::748814b1eb58def82877853d7c1ec785&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2020 ItalyAuthors: Striano V.; Di Grazia S.; Ugolini F.;Historically, water resources have allowed the development of urban settlements and water forms and availability - such as surface water or underground water (springs, rivers and streams, aquifers, lakes), have influenced the urban environment either in connection to danger and risk connected to the proximity of the water body, either for the functional and aesthetic value. The educational project Daylighting Rivers -co-funded by the European Union in 2017 (Project number 2017-1-IT02- KA201-036968), takes its cue from such theme to develop a teaching methodology that aims to facilitate STEM learning and at the same time to raise teachers' and students' awareness on the importance and vulnerability of water bodies, especially in a urban context. The project was implemented in Italy, Spain and Greece, countries with similar environmental characteristics and urban sprawl processes that have been emphasizing water issues especially in time of climate change. Over the first two years, the project involved three pilot secondary schools that tested an innovative, multidisciplinary and participatory teaching methodology, based on a model of Inquiry Based Learning. From the pedagogical point of view, the methodology fosters the students' centrality and curiosity for investigating the local river in own town or province. Twenty learning units were developed on specific topics connected to macro-themes that can be implemented in different school disciplines. The promotion of innovative digital tools such as Location Based Games have also allowed students to approach and work with georeferenced information, but also combine technical-scientific aspects and language to historical-humanistic-artistic aspects and storytelling. Students could also reflect on a variety of aspects related to rivers in town such as social, ecological, cultural and economic well-being aspects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d183f4230b31e392fb966888f16cfc83&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::d183f4230b31e392fb966888f16cfc83&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2003 ItalyPublisher:American Meteorological Society, Boston, USA Snyder R. L.; Spano D.; Baldocchi D.; Duce P.; Xu L.; Paw U K. T.;Plant water status is a major factor influencing burning potential of vegetation and a low-cost method to assess the water status can provide an index for fire potential. It can also reduce costs associated with travel to remote locations and can improve fire forecast models. Under severe water stress, plant stomata close and reduce the actual evapotranspiration rate (ETa) relative to the potential evapotranspiration rate (ETp). A fire potential index (I=1 - ETa/ETp) is a measure of vegetation burning potential. When there is no ET reducing water stress, I=0 and it increases as the ETa rate decreases relative to ETp. The difficulty in the application of a fire index is the cost and complexity to measure or estimate ETa and ETp. From solar radiation (Rs) measurements and site specific calibration, it is possible to estimate net radiation (Rn) and soil heat flux density (G). If a good estimate of sensible heat flux density is available, then latent heat flux density (LE) can be calculated as the residual of the energy balance equation (LE=Rn - G - H). The surface renewal (SR) method for estimating sensible heat flux from canopies provides a simple, portable, robust, and low-cost method to measure sensible heat flux density (H). High frequency temperature data are collected with fine-wire thermocouples. The data are analyzed with a structure function to identify average ramp characteristics (i.e., amplitude and duration) of the temperature traces during a sampling period. Then the amplitude and duration are used in a conservation of energy equation to estimate H. This method has been used over a wide variety of crops and natural vegetation with good results. Recently, the method was tested over grass in a wildfire-prone mixed oak-grassland region of the Sierra Nevada Mountain foothills in California. In this paper, the methodology to measure H with the SR method and the results of the fire index calculations will be reported.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::fc2e447a55d4763eaf8d481ddc5fbb38&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=cnr_________::fc2e447a55d4763eaf8d481ddc5fbb38&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu