- home
- Advanced Search
- Energy Research
- NL
- Energy Research
- NL
description Publicationkeyboard_double_arrow_right Article , Journal 2020 CroatiaPublisher:SDEWES Centre Matija Pavičević; Sylvain Quoilin; Andreas Zucker; Goran Krajačić; Tomislav Pukšec; Neven Duić;The ongoing climate change, together with the global increase in energy consumption and unpredictable fossil fuel prices have been the main drivers for the implementation of power exchange, market coupling, energy efficiency measures and larger use of renewable energy. All these targets bring up the need for the development of new modelling frameworks and governance systems that will be based on competitive, secure and sustainable national action plans. For this purpose, the Dispa-SET model has been applied to six countries in the Western Balkans region. In the first scenario, the model has been validated for the year 2010. The second scenario has been developed according to the targets from national energy strategies for the years 2020 and 2030, while the third scenario has been developed with the purpose of determining the maximum share of renewable energy sources in the regional power mix. Simulation results indicate that the integration of additional wind and solar capacities, compared to the short and long-term national strategies for the years 2020 and 2030, can be achieved without compromising the stability of the system.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020Full-Text: https://hrcak.srce.hr/file/329371Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d7.0273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020Full-Text: https://hrcak.srce.hr/file/329371Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d7.0273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Matteo De Felice; Matija Pavičević; Sylvain Quoilin; Sylvain Quoilin; Sebastian Busch; Ignacio Hidalgo Gonzalez;Abstract The operation and economic profitability of modern energy systems is constrained by the availability of renewable energy and water resources. Lower water availability due to climate change, higher demand and increased water consumption for non-energy and energy needs may cause problems in Africa. In most African power systems, hydropower is a dominant renewable energy resource, and interconnection capacities are usually limited or unreliable. This paper describes a new modelling framework for analysing the water-energy nexus in the African Power Pools. This framework includes soft linking between two models: the LISFLOOD model is used to generate hydrological inputs and the Dispa-SET model is used for mid-term hydrothermal coordination and optimal unit commitment and power dispatch over the whole African continent. The results show a good agreement between the model outputs and the historical values, despite data-related limitations. Furthermore, the simulations provide hourly time series of electricity generation at the plant level in a robust way. It appears that some African power pools heavily rely on the availability of freshwater resources, while others are less dependent. In the long term, the dependence of the power system on water resources is likely to increase to meet the increasing electricity demand in Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Matija Pavičević; Konstantinos Kavvadias; Juan-Pablo Jimenez-Navarro; Sylvain Quoilin; +1 AuthorsMatija Pavičević; Konstantinos Kavvadias; Juan-Pablo Jimenez-Navarro; Sylvain Quoilin; Faidra Filippidou;Abstract This work examines the role of centralised cogeneration plants as one of the potential pathways of a future decarbonised energy system. Even in this context, thermal power plants will still exist and the utilisation of their excess heat via district heating networks can assist the decarbonisation of the built environment. In particular, the potential of existing thermal power plants to operate as combined heat and power (CHP) plants is assessed and their impact on the power system quantified. To do so, the European heat demand for the built environment is described, focused on the heat demand supplied with fossil fuels, and the European power sector is discussed. Then, a power system model (Dispa-SET) is used to evaluate this coupling pathway in terms of operating costs, efficiencies and associated CO2 emissions. The analysis is developed for the current and future European power system. Results show that the conversion of thermal into CHP plants increases the efficiency and reduces both the operating costs and the environmental impact of the energy system. Not only that, it also offers alternative flexibility options when coupled with thermal storage. Still, large investments regarding the deployment of thermal networks are required to leverage the full CHP potential.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Authors: Andrea Mangipinto; Francesco Lombardi; Francesco Davide Sanvito; Matija Pavičević; +2 AuthorsAndrea Mangipinto; Francesco Lombardi; Francesco Davide Sanvito; Matija Pavičević; Sylvain Quoilin; Emanuela Colombo;The mass-scale integration of electric vehicles into the power system is a key pillar of the European energy transition agenda. Yet, the extent to which such integration would represent a burden for the power system of each member country is still an unanswered question. This is mainly due to a lack of accurate and context-specific representations of aggregate mobility and charging patterns for large electric vehicle fleets. Here, we develop and validate against empirical data an open-source model that simulates such patterns at high (1-min) temporal resolution, based on easy-to-gather, openly accessible data. We hence apply the model – which we name RAMP-mobility – to 28 European countries, showing for the first time the existence of marked differences in mobility and charging patterns across those, due to a combination of weather and socio-economic factors. We hence quantify the impact that fully-electric car fleets would have on the demand to be met by each country's power system: an uncontrolled deployment of electric vehicles would increase peak demand in the range 35–51%, whilst a plausible share of adoption of smart charging strategies could limit the increase to 30–41%. On the contrary, plausible technology (battery density) and infrastructure (charging power) developments would not provide substantial benefits. Efforts for electric vehicles integration should hence primarily focus on mechanisms to support smart vehicle-to-grid interaction. The approach is applicable generally beyond Europe and can provide policy makers with quantitatively reliable insights about electric vehicles impact on the power system. ; Energie and Industrie
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 31visibility views 31 download downloads 23 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Matija Pavičević; Konstantinos Kavvadias; Tomislav Pukšec; Sylvain Quoilin;Abstract Power system’s operational flexibility represents its ability to respond to predicted or unexpected changes in generation and demand. Traditional policy and planning models usually do not consider the technical operating constraints directly responsible for its operational flexibility. Nevertheless, this capability becomes increasingly important with the integration of significant shares of renewables. Incorporating flexibility can significantly change optimal generation strategies, lower the total system costs and improve policy impact estimates. The goal of this research is to prove that, for computational efficiency reasons, it is useful to cluster some of the original units into larger ones. This process reduces the number of continuous and binary variables and can, in certain conditions, be performed without significant loss of accuracy. To this purpose the Dispa-SET unit commitment and power dispatch model which focuses on balancing and flexibility problems in the European grids has been applied to the Western Balkans power system. Various clustering methods are implemented and tested on the same dataset and validated against the “No clustering” formulation. “Per unit” aggregates very small or very flexible units into larger ones with averaged characteristics, ”Per typical unit” considers one typical power plant per technology; and ”Per technology” additionally simplifies the mathematical formulation by completely neglecting units flexibility capabilities. The results have shown that the difference between disaggregated and clustered approaches remains acceptable and for certain accuracy metrics falls within a 2% margin. This is especially true in case of highly interconnected regional systems with relatively high shares of hydro energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Francesco Lombardi; Emanuela Colombo; Juan Pablo Jiménez Navarro; Matija Pavičević; +4 AuthorsFrancesco Lombardi; Emanuela Colombo; Juan Pablo Jiménez Navarro; Matija Pavičević; Andrea Mangipinto; Sylvain Quoilin; Konstantinos Kavvadias; Wouter Nijs;Abstract The relevance of sector coupling is increasing when shifting from the current highly centralised and mainly fossil fuel-based energy system to a more decentralized and renewable energy system. Cross-sectoral linkages are already recognized as a cost-effective decarbonisation strategy that provides significant flexibility to the system. Modelling such cross-sectoral interconnections is thus highly relevant. In this work, these interactions are considered in a long-term perspective by uni-directional soft-linking of two models: JRC-EU-TIMES, a long term planning multisectoral model, and Dispa-SET, a unit commitment and optimal dispatch model covering multiple energy sectors such as power, heating & cooling, transportation etc. The impact of sector coupling in future Europe-wide energy systems with high shares of renewables is evaluated through five scenarios. Results show that the contributions of individual sectors are quite diverse. The transport sector provides the highest flexibility potential in terms of power curtailment, load shedding, congestion in the interconnection lines and resulting greenhouse gas emissions reduction. Nevertheless, allowing combinations of multiple flexibility options such as hydro for the long-term, electric vehicles and flexible thermal units for the short-term provides the best solution in terms of system adequacy, greenhouse gas emissions and operational costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 CroatiaPublisher:SDEWES Centre Matija Pavičević; Sylvain Quoilin; Andreas Zucker; Goran Krajačić; Tomislav Pukšec; Neven Duić;The ongoing climate change, together with the global increase in energy consumption and unpredictable fossil fuel prices have been the main drivers for the implementation of power exchange, market coupling, energy efficiency measures and larger use of renewable energy. All these targets bring up the need for the development of new modelling frameworks and governance systems that will be based on competitive, secure and sustainable national action plans. For this purpose, the Dispa-SET model has been applied to six countries in the Western Balkans region. In the first scenario, the model has been validated for the year 2010. The second scenario has been developed according to the targets from national energy strategies for the years 2020 and 2030, while the third scenario has been developed with the purpose of determining the maximum share of renewable energy sources in the regional power mix. Simulation results indicate that the integration of additional wind and solar capacities, compared to the short and long-term national strategies for the years 2020 and 2030, can be achieved without compromising the stability of the system.
Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020Full-Text: https://hrcak.srce.hr/file/329371Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d7.0273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Sustainab... arrow_drop_down Journal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020Full-Text: https://hrcak.srce.hr/file/329371Data sources: HRČAK - Portal of scientific journals of CroatiaJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020 . Peer-reviewedData sources: CrossrefJournal of Sustainable Development of Energy, Water and Environment SystemsArticleLicense: CC BYData sources: UnpayWallJournal of Sustainable Development of Energy, Water and Environment SystemsArticle . 2020Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.13044/j.sdewes.d7.0273&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Matteo De Felice; Matija Pavičević; Sylvain Quoilin; Sylvain Quoilin; Sebastian Busch; Ignacio Hidalgo Gonzalez;Abstract The operation and economic profitability of modern energy systems is constrained by the availability of renewable energy and water resources. Lower water availability due to climate change, higher demand and increased water consumption for non-energy and energy needs may cause problems in Africa. In most African power systems, hydropower is a dominant renewable energy resource, and interconnection capacities are usually limited or unreliable. This paper describes a new modelling framework for analysing the water-energy nexus in the African Power Pools. This framework includes soft linking between two models: the LISFLOOD model is used to generate hydrological inputs and the Dispa-SET model is used for mid-term hydrothermal coordination and optimal unit commitment and power dispatch over the whole African continent. The results show a good agreement between the model outputs and the historical values, despite data-related limitations. Furthermore, the simulations provide hourly time series of electricity generation at the plant level in a robust way. It appears that some African power pools heavily rely on the availability of freshwater resources, while others are less dependent. In the long term, the dependence of the power system on water resources is likely to increase to meet the increasing electricity demand in Africa.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120623&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Matija Pavičević; Konstantinos Kavvadias; Juan-Pablo Jimenez-Navarro; Sylvain Quoilin; +1 AuthorsMatija Pavičević; Konstantinos Kavvadias; Juan-Pablo Jimenez-Navarro; Sylvain Quoilin; Faidra Filippidou;Abstract This work examines the role of centralised cogeneration plants as one of the potential pathways of a future decarbonised energy system. Even in this context, thermal power plants will still exist and the utilisation of their excess heat via district heating networks can assist the decarbonisation of the built environment. In particular, the potential of existing thermal power plants to operate as combined heat and power (CHP) plants is assessed and their impact on the power system quantified. To do so, the European heat demand for the built environment is described, focused on the heat demand supplied with fossil fuels, and the European power sector is discussed. Then, a power system model (Dispa-SET) is used to evaluate this coupling pathway in terms of operating costs, efficiencies and associated CO2 emissions. The analysis is developed for the current and future European power system. Results show that the conversion of thermal into CHP plants increases the efficiency and reduces both the operating costs and the environmental impact of the energy system. Not only that, it also offers alternative flexibility options when coupled with thermal storage. Still, large investments regarding the deployment of thermal networks are required to leverage the full CHP potential.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 81 citations 81 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115134&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Authors: Andrea Mangipinto; Francesco Lombardi; Francesco Davide Sanvito; Matija Pavičević; +2 AuthorsAndrea Mangipinto; Francesco Lombardi; Francesco Davide Sanvito; Matija Pavičević; Sylvain Quoilin; Emanuela Colombo;The mass-scale integration of electric vehicles into the power system is a key pillar of the European energy transition agenda. Yet, the extent to which such integration would represent a burden for the power system of each member country is still an unanswered question. This is mainly due to a lack of accurate and context-specific representations of aggregate mobility and charging patterns for large electric vehicle fleets. Here, we develop and validate against empirical data an open-source model that simulates such patterns at high (1-min) temporal resolution, based on easy-to-gather, openly accessible data. We hence apply the model – which we name RAMP-mobility – to 28 European countries, showing for the first time the existence of marked differences in mobility and charging patterns across those, due to a combination of weather and socio-economic factors. We hence quantify the impact that fully-electric car fleets would have on the demand to be met by each country's power system: an uncontrolled deployment of electric vehicles would increase peak demand in the range 35–51%, whilst a plausible share of adoption of smart charging strategies could limit the increase to 30–41%. On the contrary, plausible technology (battery density) and infrastructure (charging power) developments would not provide substantial benefits. Efforts for electric vehicles integration should hence primarily focus on mechanisms to support smart vehicle-to-grid interaction. The approach is applicable generally beyond Europe and can provide policy makers with quantitatively reliable insights about electric vehicles impact on the power system. ; Energie and Industrie
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 31visibility views 31 download downloads 23 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Matija Pavičević; Konstantinos Kavvadias; Tomislav Pukšec; Sylvain Quoilin;Abstract Power system’s operational flexibility represents its ability to respond to predicted or unexpected changes in generation and demand. Traditional policy and planning models usually do not consider the technical operating constraints directly responsible for its operational flexibility. Nevertheless, this capability becomes increasingly important with the integration of significant shares of renewables. Incorporating flexibility can significantly change optimal generation strategies, lower the total system costs and improve policy impact estimates. The goal of this research is to prove that, for computational efficiency reasons, it is useful to cluster some of the original units into larger ones. This process reduces the number of continuous and binary variables and can, in certain conditions, be performed without significant loss of accuracy. To this purpose the Dispa-SET unit commitment and power dispatch model which focuses on balancing and flexibility problems in the European grids has been applied to the Western Balkans power system. Various clustering methods are implemented and tested on the same dataset and validated against the “No clustering” formulation. “Per unit” aggregates very small or very flexible units into larger ones with averaged characteristics, ”Per typical unit” considers one typical power plant per technology; and ”Per technology” additionally simplifies the mathematical formulation by completely neglecting units flexibility capabilities. The results have shown that the difference between disaggregated and clustered approaches remains acceptable and for certain accuracy metrics falls within a 2% margin. This is especially true in case of highly interconnected regional systems with relatively high shares of hydro energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113425&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Francesco Lombardi; Emanuela Colombo; Juan Pablo Jiménez Navarro; Matija Pavičević; +4 AuthorsFrancesco Lombardi; Emanuela Colombo; Juan Pablo Jiménez Navarro; Matija Pavičević; Andrea Mangipinto; Sylvain Quoilin; Konstantinos Kavvadias; Wouter Nijs;Abstract The relevance of sector coupling is increasing when shifting from the current highly centralised and mainly fossil fuel-based energy system to a more decentralized and renewable energy system. Cross-sectoral linkages are already recognized as a cost-effective decarbonisation strategy that provides significant flexibility to the system. Modelling such cross-sectoral interconnections is thus highly relevant. In this work, these interactions are considered in a long-term perspective by uni-directional soft-linking of two models: JRC-EU-TIMES, a long term planning multisectoral model, and Dispa-SET, a unit commitment and optimal dispatch model covering multiple energy sectors such as power, heating & cooling, transportation etc. The impact of sector coupling in future Europe-wide energy systems with high shares of renewables is evaluated through five scenarios. Results show that the contributions of individual sectors are quite diverse. The transport sector provides the highest flexibility potential in terms of power curtailment, load shedding, congestion in the interconnection lines and resulting greenhouse gas emissions reduction. Nevertheless, allowing combinations of multiple flexibility options such as hydro for the long-term, electric vehicles and flexible thermal units for the short-term provides the best solution in terms of system adequacy, greenhouse gas emissions and operational costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115100&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu