Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
956 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Open Source
  • 12. Responsible consumption
  • 6. Clean water
  • 15. Life on land
  • NL

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Paul Peeters;
    Paul Peeters
    ORCID
    Harvested from ORCID Public Data File

    Paul Peeters in OpenAIRE

    Space travel, often used by the authors as an equivalent to ‘space tourism’, and outer-space migration should become part of the sustainability discourse – that is the most tempting argument of the...

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tourism Recreation R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Tourism Recreation Research
    Article . 2018 . Peer-reviewed
    Data sources: Crossref
    addClaim
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Tourism Recreation R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Tourism Recreation Research
      Article . 2018 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Salih Rebac; Gatze Lettinga; Grietje Zeeman;

    Psychrophilic anaerobic treatment is an attractive option for wastewaters that are discharged at moderate to low temperature. The expanded granular sludge bed (EGSB) reactor has been shown to be a feasible system for anaerobic treatment of mainly soluble and pre-acidified wastewater at temperatures of 5--10 degrees C. An organic loading rate (OLR) of 10--12 kg chemical oxygen demand (COD) per cubic meter reactor per day can be achieved at 10--12 degrees C with a removal efficiency of 90%. Further improvement might be obtained by a two-module system in series. Stabile methanogenesis was observed at temperatures as low as 4--5 degrees C. The specific activity of the mesophilic granular sludge was improved under psychrophilic conditions, which indicates that there was growth and enrichment of methanogens and acetogens in the anaerobic system. Anaerobic sewage treatment is a real challenge in moderate climates because sewage belongs to the 'complex' wastewater category and contains a high fraction of particulate COD. A two-step system consisting of either an anaerobic up-flow sludge bed (UASB) reactor combined with an EGSB reactor or an anaerobic filter (AF) combined with an anaerobic hybrid reactor (AH) is successful for anaerobic treatment of sewage at 13 degrees C with a total COD removal efficiency of 50% and 70%, respectively.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Biotechnol...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Trends in Biotechnology
    Article . 2001 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    395
    citations395
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Biotechnol...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Trends in Biotechnology
      Article . 2001 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: K.W. Van der Hoek; J.J.M. Berdowski; J. G. J. Olivier; orcid Alexander F. Bouwman;
    Alexander F. Bouwman
    ORCID
    Harvested from ORCID Public Data File

    Alexander F. Bouwman in OpenAIRE

    Global emission inventories with 1°x 1°resolution were compiled for nitrogen oxides (NO + NO2, together denoted as NO(x)), ammonia (NH3) and nitrous oxide (N2O) emissions. For NO(x) the estimated global anthropogenic emission for 1990 is about 31 million ton N year-1. The major anthropogenic sources identified include fossil fuel combustion (70%, of which the major sources are road transport and power plants) and biomass burning (20%). Natural sources contribute about 19 million ton N year-1, mainly lightning and soil processes. For NH3the estimated global emission for 1990 is about 54 million ton N year-1. The major sources identified include excreta from domestic animals and wild animals, use of synthetic N fertilisers, oceans and biomass burning. About half of the global emission comes from Asia, and about 70% is related to food production. For N2O the major sources considered include fertilised arable land, animal excreta, soils under natural vegetation, oceans, and biomass burning. The global source of N2O is about 15 million ton N2O-N year-1of which about 30% is related to food production. All three inventories are available on a sectoral basis on a 1°x 1°grid for input to global atmospheric models and on a regional/country basis for policy analysis.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental Pollution
    Article . 1998 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.1016/b978-0...
    Part of book or chapter of book . 1998 . Peer-reviewed
    Data sources: Crossref
    addClaim
    325
    citations325
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Pollut...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental Pollution
      Article . 1998 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.1016/b978-0...
      Part of book or chapter of book . 1998 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Eulogio Castro;
    Eulogio Castro
    ORCID
    Harvested from ORCID Public Data File

    Eulogio Castro in OpenAIRE
    orcid Erenio González;
    Erenio González
    ORCID
    Harvested from ORCID Public Data File

    Erenio González in OpenAIRE
    orcid Leyanis Mesa;
    Leyanis Mesa
    ORCID
    Harvested from ORCID Public Data File

    Leyanis Mesa in OpenAIRE
    Nancy López; +2 Authors

    Abstract Several strategies based on a two steps organosolv pretreatment followed by enzymatic hydrolysis of sugarcane bagasse (SCB) were evaluated with the objective of selecting operational conditions suitable to promote an efficient and low cost production of ethanol. Initially, the influence of six variables used for the organosolv pretreatment was studied. The variables included the time of the first organosolv pretreatment step, the use of 45% ethanol as pulping solution, solid-to-liquid ratio of the ethanol solution used during the first pretreatment step, time of second organosolv pretreatment, concentration of ethanol and concentration of NaOH solution used in the second pretreatment step. Further assays of enzymatic hydrolysis were carried out to promote additional reduction in the costs of the process and improve the results of cellulose conversion to glucose. Eliminating the milling step of the pretreated SCB, using a commercial tensoactive (composed of esters and several surfactants), and recycling 50% of the slurry obtained during the second step of organosolv pretreatment as reaction medium proved to be feasible for use during the enzymatic hydrolysis. Fermentation of the glucose medium produced under the selected pretreatment conditions to ethanol by Saccharomyces cerevisiae occurred with 81% efficiency and a cost of 102.88 $/hL of ethanol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    53
    citations53
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Zhou, Yuekuan (author); orcid Liu, Zhengxuan (author);
    Liu, Zhengxuan (author)
    ORCID
    Harvested from ORCID Public Data File

    Liu, Zhengxuan (author) in OpenAIRE
    Xing, Chaojie (author);

    The large thermal potentials with geothermal gradient of abandoned wells provide the possibility and opportunity for carbon-neutrality transition of district heating systems, whereas energy harvesting from abandoned geothermal wells is full of challenges, due to the considerable initial investment in economic cost, system performance degradation, and so on. In this chapter, a systematic and comprehensive review on the application techniques of abandoned wells is presented, in terms of advanced thermal/power conversions, renewable integrations for district heating, and strategies for performance enhancement. Discussions on real applications have been conducted and future prospects presented, from perspectives of lifetime system performance, techno-economic feasibility analysis, and potential assessment of abandoned wells for carbon-neutrality transition. The results of this chapter can provide preliminary knowledge and cutting-edge technologies on renewable integrations with abandoned wells, so as to demonstrate techno-economic-environmental potentials of abandoned wells and contributions toward carbon-neutrality transition. Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. Design & Construction Management

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1016/b978-0...
    Part of book or chapter of book . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    TU Delft Repository
    Part of book or chapter of book . 2022
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility12
    visibilityviews12
    downloaddownloads7
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1016/b978-0...
      Part of book or chapter of book . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      TU Delft Repository
      Part of book or chapter of book . 2022
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rowland, D.; Boxall, J.A.; orcid Hughes, T.J.;
    Hughes, T.J.
    ORCID
    Harvested from ORCID Public Data File

    Hughes, T.J. in OpenAIRE
    orcid Al Ghafri, S.Z.S.;
    Al Ghafri, S.Z.S.
    ORCID
    Harvested from ORCID Public Data File

    Al Ghafri, S.Z.S. in OpenAIRE
    +4 Authors

    Abstract Accurate predictions and precise control of the allowable water content in CO2-rich fluids are required in large-scale pipeline operations. Especially during transient shut-in and re-start operations, the pressure decrease associated with cooling may cause the CO2-rich mixture to pass through its dew point, producing an aqueous liquid phase. The pH of this liquid aqueous phase will rapidly decrease as carbonic acid is formed, greatly accelerating the corrosion rate of the carbon steel pipeline. The phase behaviour of CO2-rich fluid mixtures is qualitatively different to that of hydrocarbons, and standard oil and gas property packages in process simulation software may be inadequate for predicting dew points and other key properties. An extensive literature survey reveals 34 data sets where water contents of CO2-rich fluids have been measured near conditions relevant to CO2 pipelines. Following consistency tests, 23 data sets were found to be of good quality and 11 data sets were found to be of poor quality. The good-quality data were compared with predictions from 6 equations of state. Overall, Multiflash’s RKS (Advanced) model was found to provide the best agreement with the aqueous dew point data of CO2-rich fluid phases. A case study is presented wherein it is demonstrated that the formation of a corrosive aqueous phase can be avoided during shut-in via introduction of a relatively small volume of ethanol.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Greenhouse Gas Control
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Greenhouse Gas Control
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Emmanouela Korkakaki; Michel Mulders; orcid bw Adrie Veeken;
    Adrie Veeken
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Adrie Veeken in OpenAIRE
    Rene Rozendal; +2 Authors

    Leachate from the source separated organic fraction of municipal solid waste (OFMSW) was evaluated as a substrate for polyhydroxyalkanoates (PHA) production. Initially, the enrichment step was conducted directly on leachate in a feast-famine regime. Maximization of the cellular PHA content of the enriched biomass yielded to low PHA content (29 wt%), suggesting that the selection for PHA-producers was unsuccessful. When the substrate for the enrichment was switched to a synthetic volatile fatty acid (VFA) mixture -resembling the VFA carbon composition of the leachate-the PHA-producers gained the competitive advantage and dominated. Subsequent accumulation with leachate in nutrient excess conditions resulted in a maximum PHA content of 78 wt%. Based on the experimental results, enriching a PHA-producing community in a "clean" VFA stream, and then accumulating PHA from a stream that does not allow for enrichment but does enable a high cellular PHA content, such as OFMSW leachate, makes the overall process much more economically attractive. The estimated overall process yield can be increased four-fold, in comparison to direct use of the complex matrix for both enrichment and accumulation.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Water Research
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    80
    citations80
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Water Research
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Ghimire A.;
    Ghimire A.
    ORCID
    Harvested from ORCID Public Data File

    Ghimire A. in OpenAIRE
    orcid bw FRUNZO, LUIGI;
    FRUNZO, LUIGI
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    FRUNZO, LUIGI in OpenAIRE
    orcid Pontoni L.;
    Pontoni L.
    ORCID
    Harvested from ORCID Public Data File

    Pontoni L. in OpenAIRE
    D'ANTONIO, GIUSEPPE; +3 Authors

    The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Environme...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Environmental Management
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    130
    citations130
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hannah Giauque; orcid Christine V. Hawkes;
    Christine V. Hawkes
    ORCID
    Harvested from ORCID Public Data File

    Christine V. Hawkes in OpenAIRE

    • Premise of the study: Fungal endophytes are symbionts that inhabit aboveground tissues of most terrestrial plants and can affect plant physiology and growth under stressed conditions. In a future faced with substantial climate change, endophytes have the potential to play an important role in plant stress resistance. Understanding both the distributions of endophytes and their functioning in symbiosis with plants are key aspects of predicting their role in an altered climate.• Methods: Here we characterized endophytes in grasses across a steep precipitation gradient to examine the relative importance of environmental and spatial factors in structuring endophyte communities. We also tested how 20 endophytes isolated from drier and wetter regions performed in symbiosis with grass seedlings under high and low soil moisture in the greenhouse.• Key results: Environmental factors related to historical and current precipitation were the most important predictors of endophyte communities in the field. On average, endophytic fungi from western sites also reduced plant water loss in the greenhouse compared to fungi from eastern sites. However, there was substantial variability in how individual endophytic taxa affected plant traits under high and low water availability, with up to two orders of magnitude difference in the plasticity of plant traits conferred by the different fungal taxa.• Conclusions: While species sorting appears to largely explain local endophyte community composition, their function in symbiosis is not predictable from local environmental conditions. The development of a predictive framework for endophyte function will require further study of individual fungal taxa and genotypes across environmental gradients.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao American Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    American Journal of Botany
    Article . 2013 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    113
    citations113
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao American Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      American Journal of Botany
      Article . 2013 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Berna Hascakir; Raphael Coelho; Ian Phillip Benson; orcid Cesar Ovalles;
    Cesar Ovalles
    ORCID
    Harvested from ORCID Public Data File

    Cesar Ovalles in OpenAIRE

    Abstract The goal of solvent-steam-flooding is enhancing bitumen displacement by the simultaneous development of solvent miscibility and reduction of oil viscosity. Though this strategy reduces greenhouse gas emissions, solvents are generally expensive. Additionally, bitumen recovery performance is affected by oil/solvent/clay/asphaltene interactions on the pore-scale level. Therefore, solvent dosage and type must be optimized to maximize recovery, while minimizing environmental impacts and operational costs. To investigate the performance of solvent-steam processes, six-core flooding experiments were conducted on a Canadian bitumen sample with 8.8°API and 54,000 cP at room temperature. Propane-steam flooding was tested and compared to steam-flooding. The effect of reservoir clays is studied by carrying out experiments in the presence and absent of clays. Three propane flow rates were tested to examine the impact of solvent dosages. After the experiments, asphaltene, clay, viscosity, and water contents in produced oil were measured. The results indicated that propane-steam flooding increased recovery factors, accelerated production, and had higher quality oil than steam-flooding. The lowest propane flow rate (1:9 v/v) improved oil recovery by 23%, indicating that higher solvent concentration may not be needed. This work reveals that bitumen microscopic displacement efficiency is enhanced by the addition of solvent to steam flooding. It is proposed that pore-scale interactions, solvent flow rate, and clays also highly influence produced oil quality and oil recovery rates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Petroleum...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Petroleum Science and Engineering
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    27
    citations27
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Petroleum...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Petroleum Science and Engineering
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph