- home
- Advanced Search
- Energy Research
- GB
- IT
- NO
- Energy Research
- GB
- IT
- NO
Research data keyboard_double_arrow_right Dataset 2024Embargo end date: 06 Sep 2024Publisher:Dryad Felton, Annika; Wam, Hilde; Borowski, Zbigniew; Granhus, Aksel; Juvany, Laura; Matala, Juho; Melin, Markus; Wallgren, Märtha; Mårell, Anders;Literature search and screening We searched for relevant literature with publication month and years Jan 2000- Nov 2022 in two databases: Web of Science (https://www.webofscience.com/; The Core Collection) and Scopus (https://www.scopus.com). We used the same nested Boolean (i.e., AND between different groups of search terms, OR within groups of similar search terms and NOT for excluding search terms) search string in the title, abstract and keywords fields for both Web of Science (TS) and Scopus (TITLE-ABS-KEY) (complete search strings in the supplementary material, Appendix S1). We targeted the relevant deer species for the boreal and temperate forests (i.e., Alces alces, Capreolus capreolus, Cervus spp., Dama dama, Odocoileus spp., Rangifer tarandus; for distribution maps, see Fig. S2), by using a combination of Latin and common names that we combined with geographical constraints based on names of biogeographical regions, countries, and states. We combined this search string with climate related variables (temperature, precipitation etc., Appendix S2). From here on, we refer to Cervus elaphus as red deer, and C. canadensis as wapiti. We refer to R. tarandus living in Europe and Asia as reindeer but as caribou when living in North America. We restrained the search by language (English) and document type (peer-reviewed papers). Our aim was to be as least exclusive as possible, but this led to some unexpected irrelevant documents. We therefore added exclusion terms to filter out non-targeted biogeographical regions and scientific fields. We did not exclude any topical part of our search because it would be impossible to make a coherent pre-emptive list of terms to exclude. The search hits from Web of Science and Scopus were merged and cleaned of duplicates, resulting in 8154 unique papers. Screening of papers was conducted using Rayyan (Ouzzani et al. 2016), a free web application for reviewing articles. Decisions on exclusion or inclusion were first made by reading the title and abstract of each article and determining their conformity to the criteria targeted by the search terms: right topic (i.e., in context of climate change), species (Cervidae excluding semi-domestic reindeer), geography (boreal and temperate zones), language (English) and type of study (new, or new synthesis of, empirical temporal data on deer response to climate). We included papers of migratory caribou residing in forest for larger parts of the year. Note that papers did not have to specify a climate change context to be included. It was sufficient that it contained temporal data on deer and weather variations. Given the controversies surrounding definitions of climate change, rather few papers proclaim having documented climate change and a stricter criterion would have excluded almost all papers. The robustness of the exclusion criteria and the individual screener divergence of the first screening were tested before the actual screening was done. Fifty randomly drawn papers were reviewed by all authors individually without conferring. The papers were randomly distributed among authors. The discrepancies were rather few (13 out of 49 papers (27%) had at least 1 person with a different opinion than the others). After discussing each of these cases in detail, the basis for coherent decision making was improved. To verify the improvement, another control procedure was applied for the remaining screening: 289 papers were each read by two to four authors. The result of this control screening showed 18 (6%) conflicting decisions. Screening of the remaining 7815 papers was done by the authors one by one and assigned equally among readers according to alphabetic order by the first author of the papers. The first screening finally generated 556 papers possibly relevant for the review. All papers with conflicting decisions in the test and control screenings were included among the 556. The possibly relevant papers were then equally divided between the authors. These papers were read completely and again scrutinized for conformation to criteria, resulting in a final list of 218 papers relevant for review. Data from these papers were then tabulated and systemized per demographics (species, location, season, etc.), deer responses and climate factor. Further details on this data collection are specified in Appendix S3. The table here in Dryad includes the detailed tabulations used to produce Table 1, Figure 1, Figure in the main article, and Table S3 in the Appendix. Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short-term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. We systematically reviewed literature (published 2000-2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation) and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use and population dynamics. We targeted deer species which inhabit relevant biomes in North America, Europe and Asia: moose, roe deer, elk, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou and reindeer. Our review (218 papers) shows that many deer populations will likely benefit in-part from warmer winters, but hotter and drier summers may exceed their physiological tolerances. We found support for deer expressing both morphological, physiological, and behavioral plasticity in response to climate variability. For example, some deer species can limit the effects of harsh weather conditions by modifying habitat use and daily activity patterns, while the physiological responses of female deer can lead to long-lasting effects on population dynamics. We identified 20 patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the influence of local variables (eg. population density and predation) for how deer will respond to climatic conditions. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type and wetter autumns. The patterns we have identified in this literature review should help managers understand how populations of deer may be affected by regionally projected futures regarding temperature, rainfall and snow. # Literature review protocol: Climate change and deer in boreal and temperate regions [https://doi.org/10.5061/dryad.jh9w0vtmd](https://doi.org/10.5061/dryad.jh9w0vtmd) ## Description of the data and file structure We systematically reviewed literature (published 2000-2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation) and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use and population dynamics. We targeted deer species which inhabit relevant biomes in North America, Europe and Asia: moose, roe deer, elk, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou and reindeer. After screening, 218 articles remained. The data made available here pertains to these articles. ### Files and variables #### File: Felton\_et\_al\_2024\_GCB\_Protocol\_literature\_review\_Dryad 30 aug no hidden columns.xlsx **Description:** protocol for tabulating relevant information from published literature. ##### Variables * Column B-G: Climatic variables that the studies assessed (temperature, rainfall, snow, combined measures, extreme climatic events) * Column H: animal species * Column I: extreme events * Column K-AF: registration whether information is presented that relate to the three larger topics of the review (Physiology, Spatial use, Population dynamics) and to any of the 20 Patterns Found, which are summarised in Table 2 in the main article. Abbreviations refer to details of such patterns, which are explained in the heading of Table 2 in the main article. * Blank cells = no relevant information exist. Data was derived from the following sources: * We searched for relevant literature with publication month and years Jan 2000- Nov 2022 in two databases: Web of Science ([https://www.webofscience.com/](https://www.webofscience.com/); The Core Collection) and Scopus ([https://www.scopus.com](https://www.scopus.com/)).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jh9w0vtmd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jh9w0vtmd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Matteo, Nigro; Michele, Barsanti; Roberto, Giannecchini;The version 1.0 contains the supporting data for the work (still under submission) "Last century changes in annual precipitation in a Mediterranean area and their spatial variability. Insights from northern Tuscany (Italy)". The following files are here available (all file are georeferenced in EPSG: 3003): - AVG_Rainfall_1990-2019.tif -> Raster map of the mean annual precipitation for the northern Tuscany, Italy. It encompasses the portion of the Tuscany region northern of the cities of Livorno - Florence. The interpolation was validated via a leave one out cross-validation procedure. - D3-1_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1921 to 1950 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - D3-2_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1951 to 1980 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - DeltaSHP_Points_AVG_Annual_Rainfall.zip -> Shape file of the raingauges locations with the mean annual precipitation values of the period 1990 to 2019. - RaingaugesSHP_Points_AVG_Annual_Rainfall_1990-2019.zip -> Shape file of the raingauges locations with the following information: differences in the mean annual precipitation values between the two 3-decades periods 1951 to 1980 and 1990 to 2019 (named D3-2); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1951 to 1980 and 1990 to 2019; difference in the mean annual precipitation values between the two 3-decades periods 1921 to 1950 and 1990 to 2019 (named D3-1); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1921 to 1950 and 1990 to 2019.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:NERC EDS Environmental Information Data Centre O’Gorman, E.J.; Warner, E.; Marteinsdóttir, B.; Helmutsdóttir, V.F.; Ehrlén, J.; Robinson, S.I.;Herbivory assessments were made at the plant community and species levels. We focused on three plant species with a widespread occurrence across the temperature gradient: cuckooflower (Cardamine pratensis, Linnaeus), common mouse-ear (Cerastium fontanum, Baumgerten), and marsh violet (Viola palustris, Linnaeus). For assessments of invertebrate herbivory at the species level, thirty individuals per species of C. pratensis, C. fontanum, and V. palustris were marked in each of ten plots, using a stratified random sampling method where individuals were randomly selected, but the full range of within-plot soil temperatures was represented. For assessments of invertebrate herbivory at the community level, five 50 × 50 cm quadrats were marked at random points in eight of the plots that best captured the full temperature gradient. The community-level herbivory assessment was conducted on 19th June. The number of damaged plants was recorded out of 100 random individuals, selected using a 10 × 10 grid within each 50 × 50 cm quadrat. For the species-level herbivory assessment, individual marked plants were surveyed for signs of invertebrate herbivory every two weeks from 30th May to 2nd July, generating three time-points per species. At each survey, all marked individuals for each species were assessed within a 48-hour period. Plants were recorded as damaged or not damaged by invertebrate herbivores at each time-point. Further details of how phenological stage of development, vegetation community composition, soil temperature, moisture, pH, nitrate, ammonium, and phosphate were recorded are provided in the supporting documentation. This is a dataset of environmental data, vegetation cover, and community- and species-level invertebrate herbivory, sampled at 14 experimental soil plots in the Hengill geothermal valley, Iceland, from May to July 2017. The plots span a temperature gradient of 5-35 °C on average over the sampling period, yet they occur within 1 km of each other and have similar soil moisture, pH, nitrate, ammonium, and phosphate.
https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/da5d7028-2aec-4da2-96ff-f347a0dfa77e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/da5d7028-2aec-4da2-96ff-f347a0dfa77e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 11 Oct 2023Publisher:Dryad Ding, Fangyu; Ge, Honghan; Ma, Tian; Wang, Qian; Hao, Mengmeng; Li, Hao; Zhang, Xiao-Ai; Maude, Richard James; Wang, Liping; Jiang, Dong; Fang, Li-Qun; Liu, Wei;# Data on: Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China [https://doi.org/10.5061/dryad.vdncjsz1z](https://doi.org/10.5061/dryad.vdncjsz1z) This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. ## Description of the data and file structure The predicted annual incidence of national SFTS cases with or without human population reduction under four RCPs under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The value represents the annual incidence, and the unit is 105/year. The Dataset-1 file includes the predicted annual incidence of national SFTS cases with a fixed future human population under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The Dataset-2 file includes the predicted annual incidence of national SFTS cases in the 2030s, 2050s, and 2080s with human population reduction (SSP2) under four RCPs. ## Sharing/Access information Data was derived from the following sources: * https://doi.org/10.1111/gcb.16969 This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. The SFTS incidence in three time periods (2030-2039, 2050-2059, 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. The projected spatiotemporal dynamics of SFTS will be heterogeneous across provinces. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas. See the Materials and methods section in the original paper. The code used in the statistical analyses are present in the paper and/or the Supplementary Materials.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 11 Oct 2021Publisher:Dryad Authors: Lempidakis, Emmanouil; Ross, Andrew; Börger, Luca; Shepard, Emily;Variable list for files: SW wind - Section table on Skomer (Standardised).csv / NW wind - Section table on Skomer (Standardised).csv / SE wind - Section table on Skomer (Standardised).csv /NE wind - Section table on Skomer (Standardised).csv and SW wind - Sections on Skokholm (Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanUMedian; MeanUIQR, MeanUSkewness, MeanUCV: Median, interquartile range,skewness and coefficient of variation of mean wind speed per section HorizontalMedian;HorizontalIQR,HorizontalSkewness,HorizontalCV: Median, interquartile range,skewness and coefficient of variation of horizontal wind speed per section PMedian;PIQR,PSkewness,PCV: Median, interquartile range,skewness and coefficient of variation of preessure per section TKEMedian;TKEIQR,TKESkewness,TKECV: Median, interquartile range,skewness and coefficient of variation of turbulent kinetic energy per section TIMedian;TIIQR,TISkewness,TICV: Median, interquartile range,skewness and coefficient of variation of turbulence intensity per section U_2Median;lU_2IQR;U_2Skewness;U_2CV: Median, interquartile range,skewness and coefficient of variation of vertical wind speed per section EpsilonMedian;EpsilonIQR,EpsilonSkewness,EpsilonCV: Median, interquartile range,skewness and coefficient of variation of turbulent dissipation rate per section NutMedian;NutIQR,NutSkewness,NutCV: Median, interquartile range,skewness and coefficient of variation of kinematic viscosity per section GustsMedian;GustsIQR,GustsSkewness,GustsCV: Median, interquartile range,skewness and coefficient of variation of instataneous gusts per section MeanSectorSlope: Mean slope per section ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: Section table on Skomer - with Mean cliff orientation and Slope (NOT-Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section ApsectClass: Factor indicating whether the mean cliff orientation is lee- or windward to the SW wind ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: SW wind - Sections on Skokholm to predict colonies using cliff orientation and slope model from Skomer (NON - Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section Wind is fundamentally related to shelter and flight performance: two factors that are critical for birds at their nest sites. Despite this, airflows have never been fully integrated into models of breeding habitat selection, even for well-studied seabirds. Here we use computational fluid dynamics to provide the first assessment of whether flow characteristics (including wind speed and turbulence) predict the distribution of seabird colonies, taking common guillemots (Uria aalge) breeding on Skomer island as our study system. This demonstrates that occupancy is driven by the need to shelter from both wind and rain/ wave action, rather than airflow characteristics alone. Models of airflows and cliff orientation both performed well in predicting high quality habitat in our study site, identifying 80% of colonies and 93% of avoided sites, as well as 73% of the largest colonies on a neighbouring island. This suggests generality in the mechanisms driving breeding distributions, and provides an approach for identifying habitat for seabird reintroductions considering current and projected wind speeds and directions. Methods detailed in manuscript: https://doi.org/10.1111/ecog.05733.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 2 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Jackson, Laura;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MOHC.HadGEM3-GC31-MM.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The HadGEM3-GC3.1-N216ORCA025 climate model, released in 2016, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmohgms126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmohgms126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Guo, Chuncheng; Bentsen, Mats; Bethke, Ingo; Ilicak, Mehmet; Tjiputra, Jerry; Toniazzo, Thomas; Schwinger, Jörg; Otterå, Odd Helge;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.PMIP.NCC.NorESM1-F' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The NorESM1-F (a fast version of NorESM that is designed for paleo and multi-ensemble simulations) climate model, released in 2018, includes the following components: atmos: CAM4 (2 degree resolution; 144 x 96; 32 levels; top level 3 mb), land: CLM4, landIce: CISM, ocean: MICOM (1 degree resolution; 360 x 384; 70 levels; top grid cell minimum 0-2.5 m [native model uses hybrid density and generic upper-layer coordinate interpolated to z-level for contributed data]), ocnBgchem: HAMOCC5.1, seaIce: CICE4. The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6pmnccnes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6pmnccnes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Bekkby, Trine; Torstensen, Ragnhild Ryther Grimm; Grünfeld, Lars Andreas Holm; Gundersen, Hege; +7 AuthorsBekkby, Trine; Torstensen, Ragnhild Ryther Grimm; Grünfeld, Lars Andreas Holm; Gundersen, Hege; Fredriksen, Stein; Christie, Hartvig; Walday, Mats; Andersen, Guri Sogn; Brkljacic, Marijana S; Neves, Luiza; Hancke, Kasper;This is the dataset used to analyse biomass of fauna collected in farmed and wild kelp at the West coast of Norway (Søre Sunnmøre) in April 2019. Coordinates are given in the fil.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7575120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 2 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7575120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:NERC EDS Environmental Information Data Centre Keane, J.B.; Toet, S.; Weslien, P.; Klemedtsson, L.; Stockdale, J.; Ineson, P.;Near continuous methane and CO2 fluxes measured along a transect on an ombrotrophic fen in Southern Sweden from August 2017-September 2019 using an automated greenhouse gas flux platform SkyLine2D. The impacts of drought (in 2018 the mire experienced drought conditions) and different vegetation types (sedge, heather, sphagnum or open water; 6 replicated for each) on the fluxes were determined. Fluxes were measured within collars of 20-cm diameter, 4-min at each collar. CH4 and CO2 fluxes were detected using a Licor infrared gas analyser (IRGA, LI-8100, Licor, NE, USA) to measure CO2 and a cavity ringdown laser (CRD, LGR U-GGA-91, Los Gatos Research, CA USA) to measure both CO2 and CH4. Fluxes of CO2 and CH4 were calculated using linear regression; a deadband of at least 20 seconds was allowed for the chamber headspace to mix and a window of 90 seconds was used for CO2 and 240 seconds used for CH4. Fluxes were adjusted for area, air temperature and gas volume. Further adjustment was made to the CO2 fluxes during daylight hours based upon the light response curve to account for attenuation of light by the chamber material, after. All data manipulation and analyses were carried out using SAS 9.4 (SAS Institute, CA 161 USA). GHG flux data (for both CO2 and CH4) were quality controlled in the first instance using the R2 statistic of the CO2 flux measurement, with values < 0.9 discarded. Measurements passing this threshold were then assessed using the output statistics from the regression calculation of CH4 fluxes, where regressions with a P value < 0.05 were accepted, while those that did not were treated as zero flux. Data outliers were defined as those ± 1.96 standard errors of the mean flux value for each collar and were excluded from the analyses. Data were further filtered to account for overestimation of fluxes during still atmospheric night-time conditions. Using the procedure fluxes where the mean CO2 concentration for the 20 second period before and after chamber closure dropped by more than 25 ppm where discounted. Net ecosystem exchange and methane fluxes were measured from a hemi-boreal ombrotrophic fen in Southern Sweden. An automated chamber system, SkyLine2D, was used to measure the fluxes near-continuously from August 2017 to September 2019. Four ecotypes were identified: sphagnum (Sphagnum spp), eriophorum, heather and water, to assess how these different ecotypes would respond to drought. The 2018 drought allowed comparison of fluxes between drought and non-drought years (May to September), and their recovery the following year.
https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/d7bfc4ed-8ead-4d06-8e45-b592c1f48f3f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/d7bfc4ed-8ead-4d06-8e45-b592c1f48f3f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Idiano D'Adamo; Gastaldi, Massimo; Ioppolo, Giuseppe; Morone, Piergiuseppe;The aggregation of data concerned 103 Italian cities and for each city 45 indicators were considered
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2024Embargo end date: 06 Sep 2024Publisher:Dryad Felton, Annika; Wam, Hilde; Borowski, Zbigniew; Granhus, Aksel; Juvany, Laura; Matala, Juho; Melin, Markus; Wallgren, Märtha; Mårell, Anders;Literature search and screening We searched for relevant literature with publication month and years Jan 2000- Nov 2022 in two databases: Web of Science (https://www.webofscience.com/; The Core Collection) and Scopus (https://www.scopus.com). We used the same nested Boolean (i.e., AND between different groups of search terms, OR within groups of similar search terms and NOT for excluding search terms) search string in the title, abstract and keywords fields for both Web of Science (TS) and Scopus (TITLE-ABS-KEY) (complete search strings in the supplementary material, Appendix S1). We targeted the relevant deer species for the boreal and temperate forests (i.e., Alces alces, Capreolus capreolus, Cervus spp., Dama dama, Odocoileus spp., Rangifer tarandus; for distribution maps, see Fig. S2), by using a combination of Latin and common names that we combined with geographical constraints based on names of biogeographical regions, countries, and states. We combined this search string with climate related variables (temperature, precipitation etc., Appendix S2). From here on, we refer to Cervus elaphus as red deer, and C. canadensis as wapiti. We refer to R. tarandus living in Europe and Asia as reindeer but as caribou when living in North America. We restrained the search by language (English) and document type (peer-reviewed papers). Our aim was to be as least exclusive as possible, but this led to some unexpected irrelevant documents. We therefore added exclusion terms to filter out non-targeted biogeographical regions and scientific fields. We did not exclude any topical part of our search because it would be impossible to make a coherent pre-emptive list of terms to exclude. The search hits from Web of Science and Scopus were merged and cleaned of duplicates, resulting in 8154 unique papers. Screening of papers was conducted using Rayyan (Ouzzani et al. 2016), a free web application for reviewing articles. Decisions on exclusion or inclusion were first made by reading the title and abstract of each article and determining their conformity to the criteria targeted by the search terms: right topic (i.e., in context of climate change), species (Cervidae excluding semi-domestic reindeer), geography (boreal and temperate zones), language (English) and type of study (new, or new synthesis of, empirical temporal data on deer response to climate). We included papers of migratory caribou residing in forest for larger parts of the year. Note that papers did not have to specify a climate change context to be included. It was sufficient that it contained temporal data on deer and weather variations. Given the controversies surrounding definitions of climate change, rather few papers proclaim having documented climate change and a stricter criterion would have excluded almost all papers. The robustness of the exclusion criteria and the individual screener divergence of the first screening were tested before the actual screening was done. Fifty randomly drawn papers were reviewed by all authors individually without conferring. The papers were randomly distributed among authors. The discrepancies were rather few (13 out of 49 papers (27%) had at least 1 person with a different opinion than the others). After discussing each of these cases in detail, the basis for coherent decision making was improved. To verify the improvement, another control procedure was applied for the remaining screening: 289 papers were each read by two to four authors. The result of this control screening showed 18 (6%) conflicting decisions. Screening of the remaining 7815 papers was done by the authors one by one and assigned equally among readers according to alphabetic order by the first author of the papers. The first screening finally generated 556 papers possibly relevant for the review. All papers with conflicting decisions in the test and control screenings were included among the 556. The possibly relevant papers were then equally divided between the authors. These papers were read completely and again scrutinized for conformation to criteria, resulting in a final list of 218 papers relevant for review. Data from these papers were then tabulated and systemized per demographics (species, location, season, etc.), deer responses and climate factor. Further details on this data collection are specified in Appendix S3. The table here in Dryad includes the detailed tabulations used to produce Table 1, Figure 1, Figure in the main article, and Table S3 in the Appendix. Climate change causes far-reaching disruption in nature, where tolerance thresholds already have been exceeded for some plants and animals. In the short-term, deer may respond to climate through individual physiological and behavioral responses. Over time, individual responses can aggregate to the population level and ultimately lead to evolutionary adaptations. We systematically reviewed literature (published 2000-2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation) and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use and population dynamics. We targeted deer species which inhabit relevant biomes in North America, Europe and Asia: moose, roe deer, elk, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou and reindeer. Our review (218 papers) shows that many deer populations will likely benefit in-part from warmer winters, but hotter and drier summers may exceed their physiological tolerances. We found support for deer expressing both morphological, physiological, and behavioral plasticity in response to climate variability. For example, some deer species can limit the effects of harsh weather conditions by modifying habitat use and daily activity patterns, while the physiological responses of female deer can lead to long-lasting effects on population dynamics. We identified 20 patterns, among which some illustrate antagonistic pathways, suggesting that detrimental effects will cancel out some of the benefits of climate change. Our findings highlight the influence of local variables (eg. population density and predation) for how deer will respond to climatic conditions. We identified several knowledge gaps, such as studies regarding the potential impact on these animals of extreme weather events, snow type and wetter autumns. The patterns we have identified in this literature review should help managers understand how populations of deer may be affected by regionally projected futures regarding temperature, rainfall and snow. # Literature review protocol: Climate change and deer in boreal and temperate regions [https://doi.org/10.5061/dryad.jh9w0vtmd](https://doi.org/10.5061/dryad.jh9w0vtmd) ## Description of the data and file structure We systematically reviewed literature (published 2000-2022) to summarize the effect of temperature, rainfall, snow, combined measures (e.g., the North Atlantic Oscillation) and extreme events, on deer species inhabiting boreal and temperate forests in terms of their physiology, spatial use and population dynamics. We targeted deer species which inhabit relevant biomes in North America, Europe and Asia: moose, roe deer, elk, red deer, sika deer, fallow deer, white-tailed deer, mule deer, caribou and reindeer. After screening, 218 articles remained. The data made available here pertains to these articles. ### Files and variables #### File: Felton\_et\_al\_2024\_GCB\_Protocol\_literature\_review\_Dryad 30 aug no hidden columns.xlsx **Description:** protocol for tabulating relevant information from published literature. ##### Variables * Column B-G: Climatic variables that the studies assessed (temperature, rainfall, snow, combined measures, extreme climatic events) * Column H: animal species * Column I: extreme events * Column K-AF: registration whether information is presented that relate to the three larger topics of the review (Physiology, Spatial use, Population dynamics) and to any of the 20 Patterns Found, which are summarised in Table 2 in the main article. Abbreviations refer to details of such patterns, which are explained in the heading of Table 2 in the main article. * Blank cells = no relevant information exist. Data was derived from the following sources: * We searched for relevant literature with publication month and years Jan 2000- Nov 2022 in two databases: Web of Science ([https://www.webofscience.com/](https://www.webofscience.com/); The Core Collection) and Scopus ([https://www.scopus.com](https://www.scopus.com/)).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jh9w0vtmd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.jh9w0vtmd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Matteo, Nigro; Michele, Barsanti; Roberto, Giannecchini;The version 1.0 contains the supporting data for the work (still under submission) "Last century changes in annual precipitation in a Mediterranean area and their spatial variability. Insights from northern Tuscany (Italy)". The following files are here available (all file are georeferenced in EPSG: 3003): - AVG_Rainfall_1990-2019.tif -> Raster map of the mean annual precipitation for the northern Tuscany, Italy. It encompasses the portion of the Tuscany region northern of the cities of Livorno - Florence. The interpolation was validated via a leave one out cross-validation procedure. - D3-1_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1921 to 1950 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - D3-2_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1951 to 1980 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - DeltaSHP_Points_AVG_Annual_Rainfall.zip -> Shape file of the raingauges locations with the mean annual precipitation values of the period 1990 to 2019. - RaingaugesSHP_Points_AVG_Annual_Rainfall_1990-2019.zip -> Shape file of the raingauges locations with the following information: differences in the mean annual precipitation values between the two 3-decades periods 1951 to 1980 and 1990 to 2019 (named D3-2); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1951 to 1980 and 1990 to 2019; difference in the mean annual precipitation values between the two 3-decades periods 1921 to 1950 and 1990 to 2019 (named D3-1); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1921 to 1950 and 1990 to 2019.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:NERC EDS Environmental Information Data Centre O’Gorman, E.J.; Warner, E.; Marteinsdóttir, B.; Helmutsdóttir, V.F.; Ehrlén, J.; Robinson, S.I.;Herbivory assessments were made at the plant community and species levels. We focused on three plant species with a widespread occurrence across the temperature gradient: cuckooflower (Cardamine pratensis, Linnaeus), common mouse-ear (Cerastium fontanum, Baumgerten), and marsh violet (Viola palustris, Linnaeus). For assessments of invertebrate herbivory at the species level, thirty individuals per species of C. pratensis, C. fontanum, and V. palustris were marked in each of ten plots, using a stratified random sampling method where individuals were randomly selected, but the full range of within-plot soil temperatures was represented. For assessments of invertebrate herbivory at the community level, five 50 × 50 cm quadrats were marked at random points in eight of the plots that best captured the full temperature gradient. The community-level herbivory assessment was conducted on 19th June. The number of damaged plants was recorded out of 100 random individuals, selected using a 10 × 10 grid within each 50 × 50 cm quadrat. For the species-level herbivory assessment, individual marked plants were surveyed for signs of invertebrate herbivory every two weeks from 30th May to 2nd July, generating three time-points per species. At each survey, all marked individuals for each species were assessed within a 48-hour period. Plants were recorded as damaged or not damaged by invertebrate herbivores at each time-point. Further details of how phenological stage of development, vegetation community composition, soil temperature, moisture, pH, nitrate, ammonium, and phosphate were recorded are provided in the supporting documentation. This is a dataset of environmental data, vegetation cover, and community- and species-level invertebrate herbivory, sampled at 14 experimental soil plots in the Hengill geothermal valley, Iceland, from May to July 2017. The plots span a temperature gradient of 5-35 °C on average over the sampling period, yet they occur within 1 km of each other and have similar soil moisture, pH, nitrate, ammonium, and phosphate.
https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/da5d7028-2aec-4da2-96ff-f347a0dfa77e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/da5d7028-2aec-4da2-96ff-f347a0dfa77e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 11 Oct 2023Publisher:Dryad Ding, Fangyu; Ge, Honghan; Ma, Tian; Wang, Qian; Hao, Mengmeng; Li, Hao; Zhang, Xiao-Ai; Maude, Richard James; Wang, Liping; Jiang, Dong; Fang, Li-Qun; Liu, Wei;# Data on: Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China [https://doi.org/10.5061/dryad.vdncjsz1z](https://doi.org/10.5061/dryad.vdncjsz1z) This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. ## Description of the data and file structure The predicted annual incidence of national SFTS cases with or without human population reduction under four RCPs under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The value represents the annual incidence, and the unit is 105/year. The Dataset-1 file includes the predicted annual incidence of national SFTS cases with a fixed future human population under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The Dataset-2 file includes the predicted annual incidence of national SFTS cases in the 2030s, 2050s, and 2080s with human population reduction (SSP2) under four RCPs. ## Sharing/Access information Data was derived from the following sources: * https://doi.org/10.1111/gcb.16969 This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. The SFTS incidence in three time periods (2030-2039, 2050-2059, 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. The projected spatiotemporal dynamics of SFTS will be heterogeneous across provinces. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas. See the Materials and methods section in the original paper. The code used in the statistical analyses are present in the paper and/or the Supplementary Materials.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Embargo end date: 11 Oct 2021Publisher:Dryad Authors: Lempidakis, Emmanouil; Ross, Andrew; Börger, Luca; Shepard, Emily;Variable list for files: SW wind - Section table on Skomer (Standardised).csv / NW wind - Section table on Skomer (Standardised).csv / SE wind - Section table on Skomer (Standardised).csv /NE wind - Section table on Skomer (Standardised).csv and SW wind - Sections on Skokholm (Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanUMedian; MeanUIQR, MeanUSkewness, MeanUCV: Median, interquartile range,skewness and coefficient of variation of mean wind speed per section HorizontalMedian;HorizontalIQR,HorizontalSkewness,HorizontalCV: Median, interquartile range,skewness and coefficient of variation of horizontal wind speed per section PMedian;PIQR,PSkewness,PCV: Median, interquartile range,skewness and coefficient of variation of preessure per section TKEMedian;TKEIQR,TKESkewness,TKECV: Median, interquartile range,skewness and coefficient of variation of turbulent kinetic energy per section TIMedian;TIIQR,TISkewness,TICV: Median, interquartile range,skewness and coefficient of variation of turbulence intensity per section U_2Median;lU_2IQR;U_2Skewness;U_2CV: Median, interquartile range,skewness and coefficient of variation of vertical wind speed per section EpsilonMedian;EpsilonIQR,EpsilonSkewness,EpsilonCV: Median, interquartile range,skewness and coefficient of variation of turbulent dissipation rate per section NutMedian;NutIQR,NutSkewness,NutCV: Median, interquartile range,skewness and coefficient of variation of kinematic viscosity per section GustsMedian;GustsIQR,GustsSkewness,GustsCV: Median, interquartile range,skewness and coefficient of variation of instataneous gusts per section MeanSectorSlope: Mean slope per section ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: Section table on Skomer - with Mean cliff orientation and Slope (NOT-Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) X_Centre: X coordinate of the central point of each section Y_Centre: Y coordinate of the central point of each section Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section ApsectClass: Factor indicating whether the mean cliff orientation is lee- or windward to the SW wind ColPresence: Binomial variable, indicating whether a section has birds or not. This variable varies with classification, based on either the count of birds or the density per section Variable list for file: SW wind - Sections on Skokholm to predict colonies using cliff orientation and slope model from Skomer (NON - Standardised).csv FID: Row ID (for use in ArcGIs) Count: Number of guillemots per section Area: Total area of each section () Density: Density of guillemots per section (number of birds/ Area) Sector: Section ID MeanSectorSlope: Mean slope per section MeanSectorAspectCircular: Mean cliff orientation per section Wind is fundamentally related to shelter and flight performance: two factors that are critical for birds at their nest sites. Despite this, airflows have never been fully integrated into models of breeding habitat selection, even for well-studied seabirds. Here we use computational fluid dynamics to provide the first assessment of whether flow characteristics (including wind speed and turbulence) predict the distribution of seabird colonies, taking common guillemots (Uria aalge) breeding on Skomer island as our study system. This demonstrates that occupancy is driven by the need to shelter from both wind and rain/ wave action, rather than airflow characteristics alone. Models of airflows and cliff orientation both performed well in predicting high quality habitat in our study site, identifying 80% of colonies and 93% of avoided sites, as well as 73% of the largest colonies on a neighbouring island. This suggests generality in the mechanisms driving breeding distributions, and provides an approach for identifying habitat for seabird reintroductions considering current and projected wind speeds and directions. Methods detailed in manuscript: https://doi.org/10.1111/ecog.05733.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 2 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h9w0vt4jk&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Jackson, Laura;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.MOHC.HadGEM3-GC31-MM.ssp126' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The HadGEM3-GC3.1-N216ORCA025 climate model, released in 2016, includes the following components: aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude). The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmohgms126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spmohgms126&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Guo, Chuncheng; Bentsen, Mats; Bethke, Ingo; Ilicak, Mehmet; Tjiputra, Jerry; Toniazzo, Thomas; Schwinger, Jörg; Otterå, Odd Helge;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.PMIP.NCC.NorESM1-F' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The NorESM1-F (a fast version of NorESM that is designed for paleo and multi-ensemble simulations) climate model, released in 2018, includes the following components: atmos: CAM4 (2 degree resolution; 144 x 96; 32 levels; top level 3 mb), land: CLM4, landIce: CISM, ocean: MICOM (1 degree resolution; 360 x 384; 70 levels; top grid cell minimum 0-2.5 m [native model uses hybrid density and generic upper-layer coordinate interpolated to z-level for contributed data]), ocnBgchem: HAMOCC5.1, seaIce: CICE4. The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6pmnccnes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6pmnccnes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Bekkby, Trine; Torstensen, Ragnhild Ryther Grimm; Grünfeld, Lars Andreas Holm; Gundersen, Hege; +7 AuthorsBekkby, Trine; Torstensen, Ragnhild Ryther Grimm; Grünfeld, Lars Andreas Holm; Gundersen, Hege; Fredriksen, Stein; Christie, Hartvig; Walday, Mats; Andersen, Guri Sogn; Brkljacic, Marijana S; Neves, Luiza; Hancke, Kasper;This is the dataset used to analyse biomass of fauna collected in farmed and wild kelp at the West coast of Norway (Søre Sunnmøre) in April 2019. Coordinates are given in the fil.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7575120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 2 Powered bymore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7575120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:NERC EDS Environmental Information Data Centre Keane, J.B.; Toet, S.; Weslien, P.; Klemedtsson, L.; Stockdale, J.; Ineson, P.;Near continuous methane and CO2 fluxes measured along a transect on an ombrotrophic fen in Southern Sweden from August 2017-September 2019 using an automated greenhouse gas flux platform SkyLine2D. The impacts of drought (in 2018 the mire experienced drought conditions) and different vegetation types (sedge, heather, sphagnum or open water; 6 replicated for each) on the fluxes were determined. Fluxes were measured within collars of 20-cm diameter, 4-min at each collar. CH4 and CO2 fluxes were detected using a Licor infrared gas analyser (IRGA, LI-8100, Licor, NE, USA) to measure CO2 and a cavity ringdown laser (CRD, LGR U-GGA-91, Los Gatos Research, CA USA) to measure both CO2 and CH4. Fluxes of CO2 and CH4 were calculated using linear regression; a deadband of at least 20 seconds was allowed for the chamber headspace to mix and a window of 90 seconds was used for CO2 and 240 seconds used for CH4. Fluxes were adjusted for area, air temperature and gas volume. Further adjustment was made to the CO2 fluxes during daylight hours based upon the light response curve to account for attenuation of light by the chamber material, after. All data manipulation and analyses were carried out using SAS 9.4 (SAS Institute, CA 161 USA). GHG flux data (for both CO2 and CH4) were quality controlled in the first instance using the R2 statistic of the CO2 flux measurement, with values < 0.9 discarded. Measurements passing this threshold were then assessed using the output statistics from the regression calculation of CH4 fluxes, where regressions with a P value < 0.05 were accepted, while those that did not were treated as zero flux. Data outliers were defined as those ± 1.96 standard errors of the mean flux value for each collar and were excluded from the analyses. Data were further filtered to account for overestimation of fluxes during still atmospheric night-time conditions. Using the procedure fluxes where the mean CO2 concentration for the 20 second period before and after chamber closure dropped by more than 25 ppm where discounted. Net ecosystem exchange and methane fluxes were measured from a hemi-boreal ombrotrophic fen in Southern Sweden. An automated chamber system, SkyLine2D, was used to measure the fluxes near-continuously from August 2017 to September 2019. Four ecotypes were identified: sphagnum (Sphagnum spp), eriophorum, heather and water, to assess how these different ecotypes would respond to drought. The 2018 drought allowed comparison of fluxes between drought and non-drought years (May to September), and their recovery the following year.
https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/d7bfc4ed-8ead-4d06-8e45-b592c1f48f3f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/d7bfc4ed-8ead-4d06-8e45-b592c1f48f3f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Idiano D'Adamo; Gastaldi, Massimo; Ioppolo, Giuseppe; Morone, Piergiuseppe;The aggregation of data concerned 103 Italian cities and for each city 45 indicators were considered
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu