- home
- Advanced Search
- Energy Research
- AR
- PK
- Energy Research
- AR
- PK
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ArgentinaPublisher:MDPI AG Authors: Maria E. Sosa; Claudio J. Zega;doi: 10.3390/su15097666
handle: 11336/220273
Using fine recycled concrete aggregates (FRCA) in concrete manufacturing points towards achieving sustainability in recycled aggregate valorisation. The higher absorption and amount of hardened cement paste of FRCA may impair concrete performance. One of the most influenced properties is drying shrinkage; this is because of the extra cement paste content and higher porosity and deformability of FRCA when compared to natural sand. Thus, the influence of FRCA on shrinkage appears to depend on the quality of FRCA and how its absorption is considered during mix design. In this study, the influence of FRCA mineralogy and quality on drying shrinkage is evaluated, also considering the compensation of FRCA absorption rates. In addition, the feasibility of different models to predict the ultimate shrinkage is also analysed. The quality of FRCA and the compensation of water absorption cause different effects on concrete according to the property evaluated. The storage of water inside the FRCA particles causes no influence (or even a beneficial influence) on the shrinkage of concretes. Models used to estimate the drying shrinkage show they are still reliable with the use of FRCA.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7666/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7666/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 Argentina, Argentina, BelgiumPublisher:Elsevier BV Funded by:UKRI | Multi-scale engineering o...UKRI| Multi-scale engineering of alkali-activated concretes for sustainable infrastructureNele De Belie; Claudio Javier Zega; María Eva Sosa; Susan A. Bernal; Yury A. Villagrán-Zaccardi; Yury A. Villagrán-Zaccardi; Alastair Marsh;handle: 11336/149160 , 1854/LU-8737045
Global demand for buildings and infrastructure is extremely high as provision of shelter, sanitation and healthcare are paramount to safeguard the world's growing population. Concrete is a preferred construction material to meet this demand, but its production is leading to overexploitation of natural gravel and sand, causing an environmental crisis in regions where these materials are extracted unsustainably. Waste concrete is available globally, particularly in regions with fast growth of the built environment, and those struck by coordinated attacks, earthquakes or severe weather events. Waste concrete has mainly been used for producing recycled aggregates; however, its full recycling is still not practiced. Alternative uses include applications as fine recycled aggregates, supplementary cementitious materials, filler, and feedstocks for clinker production. These technologies still face challenges concerning their adoption and eco-efficiency. Restricted knowledge and operational barriers have also prevented implementation of beneficiation technologies for complete re-recycling of waste concretes, particularly the fine fractions produced during crushing. Despite these issues, it is recognised that the complete utilization of waste concrete offers unique opportunities for supply chain security, reducing natural resources consumption and enabling to move towards a Circular Economy. Harmonizing current practices for the treatment of waste concrete and the by-products generated during their processing, is a first step toward policy and standards development to enable their widespread use. This critical discussion addresses challenges and opportunities, as well as facilitation strategies needed to progress the complete re-utilization of waste concrete as a valuable resource for creating sustainable future infrastructure.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2021.105955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2021.105955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ArgentinaPublisher:MDPI AG Authors: Lautaro R. Santillán; Claudio J. Zega; Edgardo F. Irassar;doi: 10.3390/su16031310
handle: 11336/231776
The building sector’s sustainability requires construction and demolition waste (CDW) to contribute to the circular economy. Among the CDW, recycled concrete aggregates (RA) have been mainly studied to replace natural aggregates. Still, the approval of their use in regulations and standards is slower. Some barriers to the adoption of RA are related to the durability of recycled aggregate concrete (RAC). However, their physical and mechanical properties have been extensively studied. The durability risks associated with sulfate attacks have been solved for conventional concrete. However, sulfate attack on recycled concrete still raises numerous unsolved questions. In this literature review, the experience of sulfate attack on RAC is compiled and analyzed using a compressive framework highlighting the most relevant aspects of the new matrix in RAC and the old matrix of RA to support its relevance to the damaging sulfate process. Suggestions for further research are presented to understand the full extent of this issue and contribute to incorporating and extending recycled aggregates into existing regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023 ArgentinaPublisher:MDPI AG Authors: Maria E. Sosa; Claudio J. Zega;doi: 10.3390/su15097666
handle: 11336/220273
Using fine recycled concrete aggregates (FRCA) in concrete manufacturing points towards achieving sustainability in recycled aggregate valorisation. The higher absorption and amount of hardened cement paste of FRCA may impair concrete performance. One of the most influenced properties is drying shrinkage; this is because of the extra cement paste content and higher porosity and deformability of FRCA when compared to natural sand. Thus, the influence of FRCA on shrinkage appears to depend on the quality of FRCA and how its absorption is considered during mix design. In this study, the influence of FRCA mineralogy and quality on drying shrinkage is evaluated, also considering the compensation of FRCA absorption rates. In addition, the feasibility of different models to predict the ultimate shrinkage is also analysed. The quality of FRCA and the compensation of water absorption cause different effects on concrete according to the property evaluated. The storage of water inside the FRCA particles causes no influence (or even a beneficial influence) on the shrinkage of concretes. Models used to estimate the drying shrinkage show they are still reliable with the use of FRCA.
Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7666/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2071-1050/15/9/7666/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15097666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 Argentina, Argentina, BelgiumPublisher:Elsevier BV Funded by:UKRI | Multi-scale engineering o...UKRI| Multi-scale engineering of alkali-activated concretes for sustainable infrastructureNele De Belie; Claudio Javier Zega; María Eva Sosa; Susan A. Bernal; Yury A. Villagrán-Zaccardi; Yury A. Villagrán-Zaccardi; Alastair Marsh;handle: 11336/149160 , 1854/LU-8737045
Global demand for buildings and infrastructure is extremely high as provision of shelter, sanitation and healthcare are paramount to safeguard the world's growing population. Concrete is a preferred construction material to meet this demand, but its production is leading to overexploitation of natural gravel and sand, causing an environmental crisis in regions where these materials are extracted unsustainably. Waste concrete is available globally, particularly in regions with fast growth of the built environment, and those struck by coordinated attacks, earthquakes or severe weather events. Waste concrete has mainly been used for producing recycled aggregates; however, its full recycling is still not practiced. Alternative uses include applications as fine recycled aggregates, supplementary cementitious materials, filler, and feedstocks for clinker production. These technologies still face challenges concerning their adoption and eco-efficiency. Restricted knowledge and operational barriers have also prevented implementation of beneficiation technologies for complete re-recycling of waste concretes, particularly the fine fractions produced during crushing. Despite these issues, it is recognised that the complete utilization of waste concrete offers unique opportunities for supply chain security, reducing natural resources consumption and enabling to move towards a Circular Economy. Harmonizing current practices for the treatment of waste concrete and the by-products generated during their processing, is a first step toward policy and standards development to enable their widespread use. This critical discussion addresses challenges and opportunities, as well as facilitation strategies needed to progress the complete re-utilization of waste concrete as a valuable resource for creating sustainable future infrastructure.
Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2021.105955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 78 citations 78 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Resources Conservati... arrow_drop_down Resources Conservation and RecyclingArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefGhent University Academic BibliographyArticle . 2022Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.resconrec.2021.105955&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ArgentinaPublisher:MDPI AG Authors: Lautaro R. Santillán; Claudio J. Zega; Edgardo F. Irassar;doi: 10.3390/su16031310
handle: 11336/231776
The building sector’s sustainability requires construction and demolition waste (CDW) to contribute to the circular economy. Among the CDW, recycled concrete aggregates (RA) have been mainly studied to replace natural aggregates. Still, the approval of their use in regulations and standards is slower. Some barriers to the adoption of RA are related to the durability of recycled aggregate concrete (RAC). However, their physical and mechanical properties have been extensively studied. The durability risks associated with sulfate attacks have been solved for conventional concrete. However, sulfate attack on recycled concrete still raises numerous unsolved questions. In this literature review, the experience of sulfate attack on RAC is compiled and analyzed using a compressive framework highlighting the most relevant aspects of the new matrix in RAC and the old matrix of RA to support its relevance to the damaging sulfate process. Suggestions for further research are presented to understand the full extent of this issue and contribute to incorporating and extending recycled aggregates into existing regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16031310&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu