- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- CN
- PK
- Renewable Energy
- Energy Research
- 12. Responsible consumption
- CN
- PK
- Renewable Energy
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Saydaliev, Hayot Berk; Lan, Jing; Anser, Muhammad Khalid; Ali, Sajid; Liu, Zhen;Renewable energy has become more popular since it is cost-effective and more efficient than conventional energy sources. Biomass-based renewable energy is primarily used in emerging economies to ensure environmental sustainability. This study examines the asymmetric correlation between biomass energy consumption and CO2 emissions in the top-10 biomass energy consumer countries (Brazil, Canada, Thailand, China, Italy, India, Germany, USA, UK, and Japan). A new approach "Quantile-onQuantile (QQ)" is employed by utilizing the data from 1991 to 2018. Biomass energy consumption, with the exception of Thailand, significantly mitigates CO2 emissions at various quantiles in selected countries. As a robustness check, we used the quantile regression test, whose findings are consistent with the outcomes from the quantile-on-quantile method. However, the degree of asymmetry in the biomass energy-CO2 nexus varies by country, necessitating extra attention and government vigilance when developing biomass energy and environmental policies.
Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Muhammad Farhan Bashir; Benjiang MA; Hafezali Iqbal Hussain; Muhammad Shahbaz; Kemal Koca; Irum Shahzadi;© 2021 Elsevier LtdDespite extensive research to address the impact of environmental reforms under the Paris Climate Agreement, current literature has failed to provide sufficient insights into Regional Comprehensive Economic Partnership (RCEP) countries. To this end, the current study attempts to address the impact of the economic complexity on environmental quality in the presence of renewable energy consumption, financial development, urbanization and energy innovation in RCEP countries from 1990 to 2019. Our empirical estimates confirm a significant association between environmental quality, economic complexity index, renewable energy consumption, financial development, urbanization and energy innovation in the short-run and long run. Based on extensive econometric analysis (CS-ARDL, AMG, PMG, FMOLS, and DOLS), we conclude that economic complexity, renewable energy, and energy innovation effectively mitigate environmental degradation. At the same time, financial development and urbanization have an adverse impact on the environment. These findings have extensive policy implications for policymakers and environmental stakeholders, who are aiming to achieve sustainable energy policy and economic growth to meet the environmental commitments under Paris Climate Agreement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.11.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.11.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Bingshuo Li; Rundong Li; Tianhua Yang; Xingping Kai; Liu Yixuan; Feng Bixuan; Shurong Wang;Abstract Hydrothermal liquefaction (HTL) of biomass into biocrude is attractive but the biocrude themselves are poor fuels, which need to be upgraded for further utilization. Compared with the traditional catalytic upgradation process, a non-catalytic method for biocrude upgrading in the aqueous waste (HTL-AW) derived from HTL of cornstalk was proposed. Optimal reaction conditions of upgradation process were obtained at 356 °C (temperature), 37 min (reaction time) and 19 mL/g (HTL-AW/biocrude) based on the response surface methodology. The biocrude was effectively upgraded in the HTL-AW and a high hydrogen to carbon effective (H/Ceff) ratio of 1.07 with a higher heating value of 36.94 MJ/kg was observed. The energy recovery of ∼80% from biocrude to upgraded biocrude was feasible. GC–MS analysis showed that the contents of phenols and ketones were decreased from 65.61% to 48.38% and 22.39%–16.78%, respectively, while the contents of nitrogen-containing compounds n-hexadecanoic acid were increased from 2.25% to 10.15% and 9.56%–22.23%, respectively. The high H/Ceff was attributed to the promoted deoxygenation by alkali and alkaline earth metals as well as H+ enriched in the HTL-AW. This study demonstrates the feasibility of improving the H/Ceff of biocrude in the HTL-AW under a relatively mild reaction condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Timothy Lee; John S. Corsi; Eric Detsi; Jintao Fu; Victoria M. Basile; Zeyu Wang; Zeyu Wang;Abstract The sale of value-added byproducts from hydrogen-generating reactions is a strategic approach to lower the costs of hydrogen fuel in order to realize a truly sustainable hydrogen economy. Metal hydrolysis is a chemical process that produces hydrogen together with a metal hydroxide species; however, this reaction is rarely observed without chemical additives or extreme reaction conditions. Previously, we demonstrated that hierarchical nanoporous aluminum can create hydrogen at standard conditions for temperature and pressure via hydrolysis without any additives. The advantage of this method is the co-production of pure aluminum hydroxide (Al(OH)3). Here we explore the transformation of this Al(OH)3 hydrolysis byproduct into valuable materials to elucidate strategies in reducing the overall cost of hydrogen generated. In particular, we demonstrate in this work that (i) the synthesis of hierarchical nanoporous aluminum is scalable to meet the needs of large-scale production for a hydrogen economy, and (ii) the Al(OH)3 hydrolysis byproduct can be transformed to create high surface-area “activated alumina” (Al2O3) as a commercially viable product.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.03.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.03.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammad Mohsin; Farhad Taghizadeh-Hesary; Nadeem Iqbal; Hayot Berk Saydaliev;This study aims to measure the relationship between technological progress, renewable energy, and green economic growth (GEG). This study uses a data envelopment analysis (DEA) estimation method to evaluate the association between government expenditure on research and development (R&D), renewable energy deployment, and GEG in the Economic Community of West African States (ECOWAS) between 1990 and 2018. The estimates revealed an inconsistent GEG indicator in the analysis, suggesting the lesser impact disposition of public policy. In addition, the energy efficiency ratio of ECOWAS subregion is under 0.50, implying energy poverty in the sub-region. Many people do not have sufficient energy to heat and cool their homes to enough temperature and meet their basic needs and energy security concerns. This research discovered that a percentage growth increase in renewable energy deployment results in a 3.2% increase in growth in sustainable performance. Alongside an essential effect of one percentage point growth in R&D expenditure boosts economic system sustainable performance to 4.4% combined with a supported effect of one percent. This research reveals that the ECOWAS government expenditure on human resources and R&D of sustainable energy resources would result in a low carbon growth via an advanced technological production process; nevertheless, the impacts are varied in the various countries in ECOWAS. (c) 2022 Elsevier Ltd. All rights reserved.
Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu192 citations 192 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Zheng Hongfei; Ge Xinshi;Abstract An active regenerative solar still with an area of 1.03 m 2 , enabling one to reuse the latent heat of condensation and sensible heat of brine, is constructed and tested indoors, using a solar simulator for irradiation. In this still, a considerable fraction of the latent and sensible heat is successfully recycled and utilized for preheating the feedstock and recycling air via a falling film evaporator–condenser. The forced thin layer evaporation and film condensation, which are the efficient enhanced processes for heat transfer, are applied in this unit. As a result, the performance ratio of the unit is about two to three times greater than that of a conventional basin-type solar still (single-effect).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(00)00208-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(00)00208-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Qian Fu; Qian Fu; Qiang Liao; Qiang Liao; Yongsheng Zhang; Yongsheng Zhang; Jun Li; Jun Li; Xun Zhu; Xun Zhu; Yu Shi; Yu Shi; Liang Zhang; Liang Zhang;Abstract A Cu/Ni composite electrode is proposed for increasing the anodic coulombic efficiency and electrode operation time in thermally regenerative ammonia batteries (TRABs) used for converting low-grade waste heat into electrical power. The performance of a TRAB employing a Cu/Ni composite electrode (TRAB-Cu/Ni) is comparably studied, and the effects of the electroplating conditions are investigated. In comparison to the TRAB-Cu system, TRAB-Cu/Ni achieves similar maximum power (6.5 mW), but increased anodic coulombic efficiency (94%) and a significantly extended electrode operation time (>55 h). During electroplating, the structure of the composite electrode is influenced by the electroplating time and the concentrations of HEDP and Cu2+ in the electroplating baths. Optimal electroplating conditions for achieving maximum power (electroplating time of 60 min, HEDP concentration of 0.48 M, and Cu2+ concentration of 0.06 M) are also identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.05.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.05.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yingjie Zhao; Guo-qing Wei; Li-juan Shi; Li-juan Shi; Qun Yi; Qun Yi; Qun Yi; Usama Mohamed; Usama Mohamed; William Nimmo;A life cycle energy use, CO2 emissions and cost input evaluation of a 650 MW Biomass Chemical Looping Gasification Combined Cycle (BCLGCC) and Biomass/Coal Integrated Gasification Combined Cycle (BIGCC/CIGCC) power generation plants with and without (w/o) CO2 capture & storage (CCS) are analysed. These were then compared to coal/biomass combustion technologies. The life cycle evaluation covers the whole power generation process including biomass/coal supply chain, electricity generation at the power plant and the CCS process. Gasification power plants showed lower energy input and CO2 emissions, yet higher costs compared to combustion power plants. Coal power plants illustrated lower energy and cost input; however higher CO2 emissions compared to biomass power plants. Coal CCS plants can reduce CO2 emissions to near zero, while BCLGCC and BIGCC plants with CCS resulted in negative 680 kg-CO2/MWh and 769 kg-CO2/MWh, respectively, which is due to higher biomass utilization efficiency for BCLGCC compared to BIGCC hence less CO2 captured and stored. Regarding the total life cycle costs input (TLCCI), BCLGCC with and without CCS equal to 149.3 £/MWh and 199.6 £/MWh, and the total life cycle energy input (TLCEI) for both with and without CCS is equal to 2162 MJ/MWh and 1765 MJ/MWh, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.05.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.05.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Ling Jihong; Deng Na; Xu Changzhong; Zhang Yufeng;Abstract This paper analyzes various methods of disposal of municipal solid waste in China, including refuse incineration, garbage power and landfill technology. Based on the conventional pyrolysis principle, a new apparatus has been developed for waste disposal in China. It is especially useful in China as the waste is not sorted. The experiment shows that the concentration of dioxins meets the emission standard of 0.1 ng-TE/N m3 by controlling the residence time and temperature. The expulsive solid weight is as low as 5–7% of the whole refuse. At the same time, a great deal of fire gas was generated in the treatment process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(03)00065-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(03)00065-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Yanchao Zhang; Guoxing Lin; Zhimin Yang; Qingchun Dong; Jincan Chen; Jian Lin;Abstract An unreported model of the cylindrical thermophotovoltaic cell (TPVC) composed of an emitter and a photovoltaic (PV) cell is proposed and used to recycle the waste heat released by the automobile exhaust pipe to generate electricity. To theoretically analyze the performance of this system, expressions of the power output and the conversion efficiency of the thermophotovoltaic cell driven by the automobile exhaust are derived analytically. The optimal functions of the temperature distributions of the automobile exhaust pipe and TPVC are obtained by the variational method and the modified Lagrangian formulation. The maximum power output is calculated. The performance characteristics of the whole system at the maximum power output are represented. The optimal regions of the voltage output of the PV cell, the energy gap of the material in the PV cell, and the inlet heat flow of the gas pipe are determined. The effects of the size of the gas pipe on the performance of the TPVC are discussed. The theoretical efficiencies of the TPVC and thermoelectric generator driven by the automobile exhaust are compared. The advantages of the TPVC are revealed. The results obtained show that the optimally designed TPVC can significantly harvest the waste heat of the automobile exhaust.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Saydaliev, Hayot Berk; Lan, Jing; Anser, Muhammad Khalid; Ali, Sajid; Liu, Zhen;Renewable energy has become more popular since it is cost-effective and more efficient than conventional energy sources. Biomass-based renewable energy is primarily used in emerging economies to ensure environmental sustainability. This study examines the asymmetric correlation between biomass energy consumption and CO2 emissions in the top-10 biomass energy consumer countries (Brazil, Canada, Thailand, China, Italy, India, Germany, USA, UK, and Japan). A new approach "Quantile-onQuantile (QQ)" is employed by utilizing the data from 1991 to 2018. Biomass energy consumption, with the exception of Thailand, significantly mitigates CO2 emissions at various quantiles in selected countries. As a robustness check, we used the quantile regression test, whose findings are consistent with the outcomes from the quantile-on-quantile method. However, the degree of asymmetry in the biomass energy-CO2 nexus varies by country, necessitating extra attention and government vigilance when developing biomass energy and environmental policies.
Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Muhammad Farhan Bashir; Benjiang MA; Hafezali Iqbal Hussain; Muhammad Shahbaz; Kemal Koca; Irum Shahzadi;© 2021 Elsevier LtdDespite extensive research to address the impact of environmental reforms under the Paris Climate Agreement, current literature has failed to provide sufficient insights into Regional Comprehensive Economic Partnership (RCEP) countries. To this end, the current study attempts to address the impact of the economic complexity on environmental quality in the presence of renewable energy consumption, financial development, urbanization and energy innovation in RCEP countries from 1990 to 2019. Our empirical estimates confirm a significant association between environmental quality, economic complexity index, renewable energy consumption, financial development, urbanization and energy innovation in the short-run and long run. Based on extensive econometric analysis (CS-ARDL, AMG, PMG, FMOLS, and DOLS), we conclude that economic complexity, renewable energy, and energy innovation effectively mitigate environmental degradation. At the same time, financial development and urbanization have an adverse impact on the environment. These findings have extensive policy implications for policymakers and environmental stakeholders, who are aiming to achieve sustainable energy policy and economic growth to meet the environmental commitments under Paris Climate Agreement.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.11.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu127 citations 127 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.11.102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Bingshuo Li; Rundong Li; Tianhua Yang; Xingping Kai; Liu Yixuan; Feng Bixuan; Shurong Wang;Abstract Hydrothermal liquefaction (HTL) of biomass into biocrude is attractive but the biocrude themselves are poor fuels, which need to be upgraded for further utilization. Compared with the traditional catalytic upgradation process, a non-catalytic method for biocrude upgrading in the aqueous waste (HTL-AW) derived from HTL of cornstalk was proposed. Optimal reaction conditions of upgradation process were obtained at 356 °C (temperature), 37 min (reaction time) and 19 mL/g (HTL-AW/biocrude) based on the response surface methodology. The biocrude was effectively upgraded in the HTL-AW and a high hydrogen to carbon effective (H/Ceff) ratio of 1.07 with a higher heating value of 36.94 MJ/kg was observed. The energy recovery of ∼80% from biocrude to upgraded biocrude was feasible. GC–MS analysis showed that the contents of phenols and ketones were decreased from 65.61% to 48.38% and 22.39%–16.78%, respectively, while the contents of nitrogen-containing compounds n-hexadecanoic acid were increased from 2.25% to 10.15% and 9.56%–22.23%, respectively. The high H/Ceff was attributed to the promoted deoxygenation by alkali and alkaline earth metals as well as H+ enriched in the HTL-AW. This study demonstrates the feasibility of improving the H/Ceff of biocrude in the HTL-AW under a relatively mild reaction condition.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Timothy Lee; John S. Corsi; Eric Detsi; Jintao Fu; Victoria M. Basile; Zeyu Wang; Zeyu Wang;Abstract The sale of value-added byproducts from hydrogen-generating reactions is a strategic approach to lower the costs of hydrogen fuel in order to realize a truly sustainable hydrogen economy. Metal hydrolysis is a chemical process that produces hydrogen together with a metal hydroxide species; however, this reaction is rarely observed without chemical additives or extreme reaction conditions. Previously, we demonstrated that hierarchical nanoporous aluminum can create hydrogen at standard conditions for temperature and pressure via hydrolysis without any additives. The advantage of this method is the co-production of pure aluminum hydroxide (Al(OH)3). Here we explore the transformation of this Al(OH)3 hydrolysis byproduct into valuable materials to elucidate strategies in reducing the overall cost of hydrogen generated. In particular, we demonstrate in this work that (i) the synthesis of hierarchical nanoporous aluminum is scalable to meet the needs of large-scale production for a hydrogen economy, and (ii) the Al(OH)3 hydrolysis byproduct can be transformed to create high surface-area “activated alumina” (Al2O3) as a commercially viable product.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.03.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.03.072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammad Mohsin; Farhad Taghizadeh-Hesary; Nadeem Iqbal; Hayot Berk Saydaliev;This study aims to measure the relationship between technological progress, renewable energy, and green economic growth (GEG). This study uses a data envelopment analysis (DEA) estimation method to evaluate the association between government expenditure on research and development (R&D), renewable energy deployment, and GEG in the Economic Community of West African States (ECOWAS) between 1990 and 2018. The estimates revealed an inconsistent GEG indicator in the analysis, suggesting the lesser impact disposition of public policy. In addition, the energy efficiency ratio of ECOWAS subregion is under 0.50, implying energy poverty in the sub-region. Many people do not have sufficient energy to heat and cool their homes to enough temperature and meet their basic needs and energy security concerns. This research discovered that a percentage growth increase in renewable energy deployment results in a 3.2% increase in growth in sustainable performance. Alongside an essential effect of one percentage point growth in R&D expenditure boosts economic system sustainable performance to 4.4% combined with a supported effect of one percent. This research reveals that the ECOWAS government expenditure on human resources and R&D of sustainable energy resources would result in a low carbon growth via an advanced technological production process; nevertheless, the impacts are varied in the various countries in ECOWAS. (c) 2022 Elsevier Ltd. All rights reserved.
Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu192 citations 192 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.076&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV Authors: Zheng Hongfei; Ge Xinshi;Abstract An active regenerative solar still with an area of 1.03 m 2 , enabling one to reuse the latent heat of condensation and sensible heat of brine, is constructed and tested indoors, using a solar simulator for irradiation. In this still, a considerable fraction of the latent and sensible heat is successfully recycled and utilized for preheating the feedstock and recycling air via a falling film evaporator–condenser. The forced thin layer evaporation and film condensation, which are the efficient enhanced processes for heat transfer, are applied in this unit. As a result, the performance ratio of the unit is about two to three times greater than that of a conventional basin-type solar still (single-effect).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(00)00208-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(00)00208-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Qian Fu; Qian Fu; Qiang Liao; Qiang Liao; Yongsheng Zhang; Yongsheng Zhang; Jun Li; Jun Li; Xun Zhu; Xun Zhu; Yu Shi; Yu Shi; Liang Zhang; Liang Zhang;Abstract A Cu/Ni composite electrode is proposed for increasing the anodic coulombic efficiency and electrode operation time in thermally regenerative ammonia batteries (TRABs) used for converting low-grade waste heat into electrical power. The performance of a TRAB employing a Cu/Ni composite electrode (TRAB-Cu/Ni) is comparably studied, and the effects of the electroplating conditions are investigated. In comparison to the TRAB-Cu system, TRAB-Cu/Ni achieves similar maximum power (6.5 mW), but increased anodic coulombic efficiency (94%) and a significantly extended electrode operation time (>55 h). During electroplating, the structure of the composite electrode is influenced by the electroplating time and the concentrations of HEDP and Cu2+ in the electroplating baths. Optimal electroplating conditions for achieving maximum power (electroplating time of 60 min, HEDP concentration of 0.48 M, and Cu2+ concentration of 0.06 M) are also identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.05.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2020.05.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Yingjie Zhao; Guo-qing Wei; Li-juan Shi; Li-juan Shi; Qun Yi; Qun Yi; Qun Yi; Usama Mohamed; Usama Mohamed; William Nimmo;A life cycle energy use, CO2 emissions and cost input evaluation of a 650 MW Biomass Chemical Looping Gasification Combined Cycle (BCLGCC) and Biomass/Coal Integrated Gasification Combined Cycle (BIGCC/CIGCC) power generation plants with and without (w/o) CO2 capture & storage (CCS) are analysed. These were then compared to coal/biomass combustion technologies. The life cycle evaluation covers the whole power generation process including biomass/coal supply chain, electricity generation at the power plant and the CCS process. Gasification power plants showed lower energy input and CO2 emissions, yet higher costs compared to combustion power plants. Coal power plants illustrated lower energy and cost input; however higher CO2 emissions compared to biomass power plants. Coal CCS plants can reduce CO2 emissions to near zero, while BCLGCC and BIGCC plants with CCS resulted in negative 680 kg-CO2/MWh and 769 kg-CO2/MWh, respectively, which is due to higher biomass utilization efficiency for BCLGCC compared to BIGCC hence less CO2 captured and stored. Regarding the total life cycle costs input (TLCCI), BCLGCC with and without CCS equal to 149.3 £/MWh and 199.6 £/MWh, and the total life cycle energy input (TLCEI) for both with and without CCS is equal to 2162 MJ/MWh and 1765 MJ/MWh, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.05.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.05.067&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: Ling Jihong; Deng Na; Xu Changzhong; Zhang Yufeng;Abstract This paper analyzes various methods of disposal of municipal solid waste in China, including refuse incineration, garbage power and landfill technology. Based on the conventional pyrolysis principle, a new apparatus has been developed for waste disposal in China. It is especially useful in China as the waste is not sorted. The experiment shows that the concentration of dioxins meets the emission standard of 0.1 ng-TE/N m3 by controlling the residence time and temperature. The expulsive solid weight is as low as 5–7% of the whole refuse. At the same time, a great deal of fire gas was generated in the treatment process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(03)00065-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu40 citations 40 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(03)00065-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Yanchao Zhang; Guoxing Lin; Zhimin Yang; Qingchun Dong; Jincan Chen; Jian Lin;Abstract An unreported model of the cylindrical thermophotovoltaic cell (TPVC) composed of an emitter and a photovoltaic (PV) cell is proposed and used to recycle the waste heat released by the automobile exhaust pipe to generate electricity. To theoretically analyze the performance of this system, expressions of the power output and the conversion efficiency of the thermophotovoltaic cell driven by the automobile exhaust are derived analytically. The optimal functions of the temperature distributions of the automobile exhaust pipe and TPVC are obtained by the variational method and the modified Lagrangian formulation. The maximum power output is calculated. The performance characteristics of the whole system at the maximum power output are represented. The optimal regions of the voltage output of the PV cell, the energy gap of the material in the PV cell, and the inlet heat flow of the gas pipe are determined. The effects of the size of the gas pipe on the performance of the TPVC are discussed. The theoretical efficiencies of the TPVC and thermoelectric generator driven by the automobile exhaust are compared. The advantages of the TPVC are revealed. The results obtained show that the optimally designed TPVC can significantly harvest the waste heat of the automobile exhaust.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu