- home
- Advanced Search
- Energy Research
- 13. Climate action
- 15. Life on land
- PK
- HK
- Energies
- Energy Research
- 13. Climate action
- 15. Life on land
- PK
- HK
- Energies
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Masilu Marupi; Munira Batool; Morteza Alizadeh; Noor Zanib;doi: 10.3390/en16020689
The global climate protection policy aimed at achieving a zero greenhouse gas emissions target has led to the fast incorporation of large-scale photovoltaics into the power network. The conventional AC grid was not modeled to be incorporated with large-scale non-synchronous inverter-based energy resources (IBR). Incorporating inertia-free IBR into the grid leads to technical issues such as the degradation of system strength and inertia, therefore affecting the safety and reliability of the electrical power system. This research introduced a new solution to incorporate a flywheel in the rotor of a synchronous machine to improve the dynamic inertia control during a system disruption and to maintain the constancy of the system. The objective of this work is to enhance large-scale photovoltaic systems in such a way that they can avoid failures during a fault. A model of transient constancy with two synchronous generators and a LSPV is established in PowerWorld modeling software. A line-to-ground and three-phase fault are simulated in a system with up to 50% IBR penetration. The outcomes showed that the power network was able to ride through faults (RTFs) and that the stability of frequency and voltage are enhanced because of a flywheel that improved grid inertia and strength.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 MalaysiaPublisher:MDPI AG Bazgha Ijaz; Muhammad Asif Hanif; Umer Rashid; Muhammad Zubair; Zahid Mushtaq; Haq Nawaz; Thomas Shean Yaw Choong; Imededdine Arbi Nehdi;doi: 10.3390/en13112858
Biodiesel offers an advantage only if it can be used as a direct replacement for ordinary diesel. There are many reasons to promote biodiesel. However, biodiesel cannot get wide acceptance until its drawbacks have been overcome including poor low temperature flow properties, variation in the quality of biodiesel produced from different feedstocks and fuel filter blocking. In the present study, a much cheaper and simpler method called high vacuum fractional distillation (HVFD) has been used as an alternative to produce high-quality refined biodiesel and to improve on the abovementioned drawbacks of biodiesel. The results of the present study showed that none of biodiesel sample produced from crude Azadirachta indica (neem) oil met standard biodiesel cetane number requirements. The high vacuum fractional distillation (HVFD) process improved the cetane number of produced biodiesels which ranged from 44–87.3. Similarly, biodiesel produced from fractionated Azadirachta indica oil has shown lower iodine values (91.2) and much better cloud (−2.6 °C) and pour point (−4.9 °C) than pure Azadirachta indica oil. In conclusion, the crude oil needs to be vacuum fractioned for superior biodiesel production for direct utilization in engine and consistent quality production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Asta Mikalauskiene; Justas Štreimikis; Ignas Mikalauskas; Gintarė Stankūnienė; Rimantas Dapkus;doi: 10.3390/en12030529
The paper performed comparative assessment of greenhouse gas (GHG) emission trends and climate change mitigation policies in the fuel combustion sector of selected EU member states with similar economic development levels and historical pasts, and implementing main EU energy and climate change mitigation policies, having achieved different success in GHG emission reduction. The impact of climate change mitigation policies on GHG emission reduction was assessed based on analysis of countries’ reports to UNFCCC by identifying the key areas of GHG emission reduction, their GHG emission reduction potential, and the driving forces behind them. The study revealed that climate change mitigation policies that have been implemented so far in Bulgaria are less efficient than in Lithuania, as Bulgaria places priorities not on energy efficiency improvement and penetration of renewable energy sources, but on switching from coal to natural gas. The policy implications for strengthening GHG emissions reduction efforts are provided based on analysis conducted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Publicly fundedAtiq Ur Rehman; Shakil R. Sheikh; Zareena Kausar; Michael Grimes; Sarah J. McCormack;doi: 10.3390/en15176356
Thermal energy storage integration using phase change materials (PCMs) in buildings has great potential for energy conservation and greenhouse gas (GHG) emission reduction. Cutting-edge research and innovative ideas are required when using multilayered PCMs within typical construction materials to take advantage of their heat storage capability over a wide temperature range within buildings. This current study was carried out to experimentally test the efficacy of using dual PCMs RT28HC and RT21HC with different melting temperature ranges (28 °C and 21 °C) under variable thermal loading. The transient thermal response of various PCM-based configurations of concrete and cement blocks at different temperature inputs was obtained to determine the effectiveness of dual PCMs and their optimized configuration under experimental laboratory conditions. The range of the temperature input was varied from 22 °C to 50 °C, suitable for hot climatic conditions such as those in Pakistan. Laboratory ambient temperatures remained at ~17 °C for all experimental tests. Moreover, the results were compared using two parameters, i.e., decrement factor (DF) and time lag (TL). With DF and TL values of 0.10 and 5.72, respectively, in the high-temperature heating (HTH) regime and a low DF value of 0.08 and high TL of 5.17 in the moderate-temperature heating (MTH) regime, the RT28HC–RT21HC combination proved to be the most effective. The application of the RT28HC–RT21HC combination provided up to a 54.3% reduction in indoor temperatures in the HTH regime. This research contributes through experimental validation that these novel configurations are capable of providing substantial improvement in indoor thermal comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Giovanni Ferrari; Andrea Pezzuolo; Abdul-Sattar Nizami; Francesco Marinello;doi: 10.3390/en13143714
This paper aims to provide a bibliometric analysis of publication trends on the themes of biomass and bioenergy worldwide. A wide range of studies have been performed in the field of the usage of biomass for energy production, in order to contribute to the green transition from fossil fuels to renewable energies. Over the past 20 years (from 2000 to 2019), approximately 10,000 articles have been published in the “Agricultural and Biological Sciences” field on this theme, covering all stages of production—from the harvesting of crops to the particular type of energy produced. Articles were obtained from the SCOPUS database and examined with a text mining tool in order to analyze publication trends over the last two decades. Publications per year in the bioenergy theme have grown from 91 in 2000 to 773 in 2019. In particular the analyses showed how environmental aspects have increased their importance (from 7.3% to 11.8%), along with studies related to crop conditions (from 10.4% to 18.6%). Regarding the use of energy produced, growing trends were recognized for the impact of biofuels (mentions moved from 0.14 times per article in 2000 to 0.38 in 2019) and biogases (from 0.14 to 0.42 mentions). Environmental objectives have guided the interest of researchers, encouraging studies on biomass sources and the optimal use of the energy produced. This analysis aims to describe the research evolution, providing an analysis that can be helpful to predict future scenarios and participation among stakeholders in the sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Syed Abbas; Zulfiqar Ali; Anzar Mahmood; Syed Haider; Anila Kousar; Sohail Razzaq; Tehzeeb Hassan; Chun-Lien Su;doi: 10.3390/en15197044
Smart grid plays a vital role in energy management systems. It helps to mitigate the demand side management of electricity by managing the microgrid. In the modern era, the concept of hybrid microgrids emerged which helps the smart grid management of electricity. Additionally, the Internet of Things (IoT) technology is used to integrate the hybrid microgrid. Thus, various policies and topologies are employed to perform the task meticulously. Pakistan being an energy deficient country has recently introduced some new policies such as Energy Wheeling Policy (EWP), Energy Import Policy (EIP), and Net Metering/Distributed Generation Policy (NMP) to manage the electricity demand effectively. In addition, the Energy Efficiency and Conservation Act (EECA) has also been introduced. In this paper, we present the overview and impact of these policies in the context of the local energy market and modern information and communication mechanisms proposed for smart grids. These new policies primarily focus on energy demand–supply for various types of consumers such as the demand for bulk energy for industrial ventures and the distributed production by consumers. The EWP deals with obtaining power from remote areas within the country to ease the energy situation in populated load centers and the EIP highlights energy import guidelines from foreign countries. The NMP deals with the integration of renewable energy resources and EECA is more focused on the measures and standardization for energy efficiency and conservation. The benefits and challenges related to EWP, NMP, and EIP have also been discussed concerning the present energy crisis in Pakistan. The generalized lessons learned and comparison of a few aspects of these policies with some other countries are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15197044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15197044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Kalim Ullah; Sajjad Ali; Taimoor Ahmad Khan; Imran Khan; Sadaqat Jan; Ibrar Ali Shah; Ghulam Hafeez;doi: 10.3390/en13215718
An energy optimization strategy is proposed to minimize operation cost and carbon emission with and without demand response programs (DRPs) in the smart grid (SG) integrated with renewable energy sources (RESs). To achieve optimized results, probability density function (PDF) is proposed to predict the behavior of wind and solar energy sources. To overcome uncertainty in power produced by wind and solar RESs, DRPs are proposed with the involvement of residential, commercial, and industrial consumers. In this model, to execute DRPs, we introduced incentive-based payment as price offered packages. Simulations are divided into three steps for optimization of operation cost and carbon emission: (i) solving optimization problem using multi-objective genetic algorithm (MOGA), (ii) optimization of operating cost and carbon emission without DRPs, and (iii) optimization of operating cost and carbon emission with DRPs. To endorse the applicability of the proposed optimization model based on MOGA, a smart sample grid is employed serving residential, commercial, and industrial consumers. In addition, the proposed optimization model based on MOGA is compared to the existing model based on multi-objective particle swarm optimization (MOPSO) algorithm in terms of operation cost and carbon emission. The proposed optimization model based on MOGA outperforms the existing model based on the MOPSO algorithm in terms of operation cost and carbon emission. Experimental results show that the operation cost and carbon emission are reduced by 24% and 28% through MOGA with and without the participation of DRPs, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Muhammad Qasim; Tariq Mahmood Ansari; Mazhar Hussain;doi: 10.3390/en10071023
The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25) obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO) and waste canola oil methyl esters (WCOME) with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF).The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC), brake thermal efficiency (BTE) and exhaust gas temperature (EGT) values for BLF blends as compared to diesel. The hydrocarbon (HC) and carbon monoxide (CO) emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of diesel fuel. Smoke opacity was significantly reduced. FTIR analysis has confirmed the presence of saturated alkanes and halide groups in BLF fuel. In comparison to BLF20 and BLF25, the blend BLF15 has shown higher brake thermal efficiency and lower fuel consumption values. The HC, CO, and smoke emissions of BLF15 were found lower than those of petroleum diesel. The fuel blend BLF15 is suggested to be used as an alternative fuel for diesel engines without any engine modification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10071023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10071023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Hafiz Abd ul Muqeet; Josep M. Guerrero; Muhammad Shahzad; Mohsin Jamil; Mohsin Jamil; Haseeb javed; Hafiz Mudassir Munir;doi: 10.3390/en14206525
The multiple uncertainties in a microgrid, such as limited photovoltaic generations, ups and downs in the market price, and controlling different loads, are challenging points in managing campus energy with multiple microgrid systems and are a hot topic of research in the current era. Microgrids deployed at multiple campuses can be successfully operated with an exemplary energy management system (EMS) to address these challenges, offering several solutions to minimize the greenhouse gas (GHG) emissions, maintenance costs, and peak load demands of the microgrid infrastructure. This literature survey presents a comparative analysis of multiple campus microgrids’ energy management at different universities in different locations, and it also studies different approaches to managing their peak demand and achieving the maximum output power for campus microgrids. In this paper, the analysis is also focused on managing and addressing the uncertain nature of renewable energies, considering the storage technologies implemented on various campuses. A comparative analysis was also considered for the energy management of campus microgrids, which were investigated with multiple optimization techniques, simulation tools, and different types of energy storage technologies. Finally, the challenges for future research are highlighted, considering campus microgrids’ importance globally. Moreover, this paper is expected to open innovative paths in the future for new researchers working in the domain of campus microgrids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Waseem Amjad; Muhammad Ali Raza; Furqan Asghar; Anjum Munir; Faisal Mahmood; Syed Nabeel Husnain; Muhammad Imtiaz Hussain; Jun-Tae Kim;doi: 10.3390/en15041505
In this study, for the first time an advanced exergy analysis was applied to a solar hybrid food dehydrator to find out the causes of the inefficacies and to assess the actual improvement potential. The dryer was integrated with an evacuated solar tube collector and gas burner as a heating sources. Drying experiments were performed using bell pepper at 55 °C under three heating options i.e., gas, solar and dual. The rates of exergy destructions were split into unavoidable (EdUN) and avoidable (EdAV) which further split into four parameters termed unavoidable endogenous (EdUN,EN), unavoidable exogenous (EdUN,EX), avoidable endogenous (EdAV,EX) and avoidable exogenous (EdAV,EN). Conventional exergy analysis revealed that drying chamber possess lower improvement potential rate (IP) than heating components while outcomes of advanced exergy analysis showed that both the design and system components interaction of heating unit imparted a major effect on its efficiency. Optimizing the operating conditions of the heating sources could reduce their higher amount of inefficiencies. The values of exergy efficiency for the overall system were calculated to be 86.66%, 84.18%, 83.74% (conventional) and 97.41%, 95.99%, 96.16% (advanced) under gas, dual and solar heating modes respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Masilu Marupi; Munira Batool; Morteza Alizadeh; Noor Zanib;doi: 10.3390/en16020689
The global climate protection policy aimed at achieving a zero greenhouse gas emissions target has led to the fast incorporation of large-scale photovoltaics into the power network. The conventional AC grid was not modeled to be incorporated with large-scale non-synchronous inverter-based energy resources (IBR). Incorporating inertia-free IBR into the grid leads to technical issues such as the degradation of system strength and inertia, therefore affecting the safety and reliability of the electrical power system. This research introduced a new solution to incorporate a flywheel in the rotor of a synchronous machine to improve the dynamic inertia control during a system disruption and to maintain the constancy of the system. The objective of this work is to enhance large-scale photovoltaic systems in such a way that they can avoid failures during a fault. A model of transient constancy with two synchronous generators and a LSPV is established in PowerWorld modeling software. A line-to-ground and three-phase fault are simulated in a system with up to 50% IBR penetration. The outcomes showed that the power network was able to ride through faults (RTFs) and that the stability of frequency and voltage are enhanced because of a flywheel that improved grid inertia and strength.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 MalaysiaPublisher:MDPI AG Bazgha Ijaz; Muhammad Asif Hanif; Umer Rashid; Muhammad Zubair; Zahid Mushtaq; Haq Nawaz; Thomas Shean Yaw Choong; Imededdine Arbi Nehdi;doi: 10.3390/en13112858
Biodiesel offers an advantage only if it can be used as a direct replacement for ordinary diesel. There are many reasons to promote biodiesel. However, biodiesel cannot get wide acceptance until its drawbacks have been overcome including poor low temperature flow properties, variation in the quality of biodiesel produced from different feedstocks and fuel filter blocking. In the present study, a much cheaper and simpler method called high vacuum fractional distillation (HVFD) has been used as an alternative to produce high-quality refined biodiesel and to improve on the abovementioned drawbacks of biodiesel. The results of the present study showed that none of biodiesel sample produced from crude Azadirachta indica (neem) oil met standard biodiesel cetane number requirements. The high vacuum fractional distillation (HVFD) process improved the cetane number of produced biodiesels which ranged from 44–87.3. Similarly, biodiesel produced from fractionated Azadirachta indica oil has shown lower iodine values (91.2) and much better cloud (−2.6 °C) and pour point (−4.9 °C) than pure Azadirachta indica oil. In conclusion, the crude oil needs to be vacuum fractioned for superior biodiesel production for direct utilization in engine and consistent quality production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112858&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Asta Mikalauskiene; Justas Štreimikis; Ignas Mikalauskas; Gintarė Stankūnienė; Rimantas Dapkus;doi: 10.3390/en12030529
The paper performed comparative assessment of greenhouse gas (GHG) emission trends and climate change mitigation policies in the fuel combustion sector of selected EU member states with similar economic development levels and historical pasts, and implementing main EU energy and climate change mitigation policies, having achieved different success in GHG emission reduction. The impact of climate change mitigation policies on GHG emission reduction was assessed based on analysis of countries’ reports to UNFCCC by identifying the key areas of GHG emission reduction, their GHG emission reduction potential, and the driving forces behind them. The study revealed that climate change mitigation policies that have been implemented so far in Bulgaria are less efficient than in Lithuania, as Bulgaria places priorities not on energy efficiency improvement and penetration of renewable energy sources, but on switching from coal to natural gas. The policy implications for strengthening GHG emissions reduction efforts are provided based on analysis conducted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12030529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Publicly fundedAtiq Ur Rehman; Shakil R. Sheikh; Zareena Kausar; Michael Grimes; Sarah J. McCormack;doi: 10.3390/en15176356
Thermal energy storage integration using phase change materials (PCMs) in buildings has great potential for energy conservation and greenhouse gas (GHG) emission reduction. Cutting-edge research and innovative ideas are required when using multilayered PCMs within typical construction materials to take advantage of their heat storage capability over a wide temperature range within buildings. This current study was carried out to experimentally test the efficacy of using dual PCMs RT28HC and RT21HC with different melting temperature ranges (28 °C and 21 °C) under variable thermal loading. The transient thermal response of various PCM-based configurations of concrete and cement blocks at different temperature inputs was obtained to determine the effectiveness of dual PCMs and their optimized configuration under experimental laboratory conditions. The range of the temperature input was varied from 22 °C to 50 °C, suitable for hot climatic conditions such as those in Pakistan. Laboratory ambient temperatures remained at ~17 °C for all experimental tests. Moreover, the results were compared using two parameters, i.e., decrement factor (DF) and time lag (TL). With DF and TL values of 0.10 and 5.72, respectively, in the high-temperature heating (HTH) regime and a low DF value of 0.08 and high TL of 5.17 in the moderate-temperature heating (MTH) regime, the RT28HC–RT21HC combination proved to be the most effective. The application of the RT28HC–RT21HC combination provided up to a 54.3% reduction in indoor temperatures in the HTH regime. This research contributes through experimental validation that these novel configurations are capable of providing substantial improvement in indoor thermal comfort.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15176356&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Giovanni Ferrari; Andrea Pezzuolo; Abdul-Sattar Nizami; Francesco Marinello;doi: 10.3390/en13143714
This paper aims to provide a bibliometric analysis of publication trends on the themes of biomass and bioenergy worldwide. A wide range of studies have been performed in the field of the usage of biomass for energy production, in order to contribute to the green transition from fossil fuels to renewable energies. Over the past 20 years (from 2000 to 2019), approximately 10,000 articles have been published in the “Agricultural and Biological Sciences” field on this theme, covering all stages of production—from the harvesting of crops to the particular type of energy produced. Articles were obtained from the SCOPUS database and examined with a text mining tool in order to analyze publication trends over the last two decades. Publications per year in the bioenergy theme have grown from 91 in 2000 to 773 in 2019. In particular the analyses showed how environmental aspects have increased their importance (from 7.3% to 11.8%), along with studies related to crop conditions (from 10.4% to 18.6%). Regarding the use of energy produced, growing trends were recognized for the impact of biofuels (mentions moved from 0.14 times per article in 2000 to 0.38 in 2019) and biogases (from 0.14 to 0.42 mentions). Environmental objectives have guided the interest of researchers, encouraging studies on biomass sources and the optimal use of the energy produced. This analysis aims to describe the research evolution, providing an analysis that can be helpful to predict future scenarios and participation among stakeholders in the sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13143714&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Syed Abbas; Zulfiqar Ali; Anzar Mahmood; Syed Haider; Anila Kousar; Sohail Razzaq; Tehzeeb Hassan; Chun-Lien Su;doi: 10.3390/en15197044
Smart grid plays a vital role in energy management systems. It helps to mitigate the demand side management of electricity by managing the microgrid. In the modern era, the concept of hybrid microgrids emerged which helps the smart grid management of electricity. Additionally, the Internet of Things (IoT) technology is used to integrate the hybrid microgrid. Thus, various policies and topologies are employed to perform the task meticulously. Pakistan being an energy deficient country has recently introduced some new policies such as Energy Wheeling Policy (EWP), Energy Import Policy (EIP), and Net Metering/Distributed Generation Policy (NMP) to manage the electricity demand effectively. In addition, the Energy Efficiency and Conservation Act (EECA) has also been introduced. In this paper, we present the overview and impact of these policies in the context of the local energy market and modern information and communication mechanisms proposed for smart grids. These new policies primarily focus on energy demand–supply for various types of consumers such as the demand for bulk energy for industrial ventures and the distributed production by consumers. The EWP deals with obtaining power from remote areas within the country to ease the energy situation in populated load centers and the EIP highlights energy import guidelines from foreign countries. The NMP deals with the integration of renewable energy resources and EECA is more focused on the measures and standardization for energy efficiency and conservation. The benefits and challenges related to EWP, NMP, and EIP have also been discussed concerning the present energy crisis in Pakistan. The generalized lessons learned and comparison of a few aspects of these policies with some other countries are also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15197044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15197044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Kalim Ullah; Sajjad Ali; Taimoor Ahmad Khan; Imran Khan; Sadaqat Jan; Ibrar Ali Shah; Ghulam Hafeez;doi: 10.3390/en13215718
An energy optimization strategy is proposed to minimize operation cost and carbon emission with and without demand response programs (DRPs) in the smart grid (SG) integrated with renewable energy sources (RESs). To achieve optimized results, probability density function (PDF) is proposed to predict the behavior of wind and solar energy sources. To overcome uncertainty in power produced by wind and solar RESs, DRPs are proposed with the involvement of residential, commercial, and industrial consumers. In this model, to execute DRPs, we introduced incentive-based payment as price offered packages. Simulations are divided into three steps for optimization of operation cost and carbon emission: (i) solving optimization problem using multi-objective genetic algorithm (MOGA), (ii) optimization of operating cost and carbon emission without DRPs, and (iii) optimization of operating cost and carbon emission with DRPs. To endorse the applicability of the proposed optimization model based on MOGA, a smart sample grid is employed serving residential, commercial, and industrial consumers. In addition, the proposed optimization model based on MOGA is compared to the existing model based on multi-objective particle swarm optimization (MOPSO) algorithm in terms of operation cost and carbon emission. The proposed optimization model based on MOGA outperforms the existing model based on the MOPSO algorithm in terms of operation cost and carbon emission. Experimental results show that the operation cost and carbon emission are reduced by 24% and 28% through MOGA with and without the participation of DRPs, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215718&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:MDPI AG Authors: Muhammad Qasim; Tariq Mahmood Ansari; Mazhar Hussain;doi: 10.3390/en10071023
The aim of this work was to study the combustion, performance, and emission characteristics of a 5.5 kW four-stroke single-cylinder water-cooled direct-injection diesel engine operated with blends of biodiesel-like fuel (BLF15, BLF20 & BLF25) obtained from a 50:50 mixture of transesterified waste transformer oil (TWTO) and waste canola oil methyl esters (WCOME) with petroleum diesel. The mixture of the waste oils was named as biodiesel-like fuel (BLF).The engine fuelled with BLF blends was evaluated in terms of combustion, performance, and emission characteristics. FTIR analysis was carried out to know the functional groups in the BLF fuel. The experimental results revealed the shorter ignition delay and marginally higher brake specific fuel consumption (BSFC), brake thermal efficiency (BTE) and exhaust gas temperature (EGT) values for BLF blends as compared to diesel. The hydrocarbon (HC) and carbon monoxide (CO) emissions were decreased by 10.92–31.17% and 3.80–6.32%, respectively, as compared to those of diesel fuel. Smoke opacity was significantly reduced. FTIR analysis has confirmed the presence of saturated alkanes and halide groups in BLF fuel. In comparison to BLF20 and BLF25, the blend BLF15 has shown higher brake thermal efficiency and lower fuel consumption values. The HC, CO, and smoke emissions of BLF15 were found lower than those of petroleum diesel. The fuel blend BLF15 is suggested to be used as an alternative fuel for diesel engines without any engine modification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10071023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10071023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Hafiz Abd ul Muqeet; Josep M. Guerrero; Muhammad Shahzad; Mohsin Jamil; Mohsin Jamil; Haseeb javed; Hafiz Mudassir Munir;doi: 10.3390/en14206525
The multiple uncertainties in a microgrid, such as limited photovoltaic generations, ups and downs in the market price, and controlling different loads, are challenging points in managing campus energy with multiple microgrid systems and are a hot topic of research in the current era. Microgrids deployed at multiple campuses can be successfully operated with an exemplary energy management system (EMS) to address these challenges, offering several solutions to minimize the greenhouse gas (GHG) emissions, maintenance costs, and peak load demands of the microgrid infrastructure. This literature survey presents a comparative analysis of multiple campus microgrids’ energy management at different universities in different locations, and it also studies different approaches to managing their peak demand and achieving the maximum output power for campus microgrids. In this paper, the analysis is also focused on managing and addressing the uncertain nature of renewable energies, considering the storage technologies implemented on various campuses. A comparative analysis was also considered for the energy management of campus microgrids, which were investigated with multiple optimization techniques, simulation tools, and different types of energy storage technologies. Finally, the challenges for future research are highlighted, considering campus microgrids’ importance globally. Moreover, this paper is expected to open innovative paths in the future for new researchers working in the domain of campus microgrids.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14206525&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Waseem Amjad; Muhammad Ali Raza; Furqan Asghar; Anjum Munir; Faisal Mahmood; Syed Nabeel Husnain; Muhammad Imtiaz Hussain; Jun-Tae Kim;doi: 10.3390/en15041505
In this study, for the first time an advanced exergy analysis was applied to a solar hybrid food dehydrator to find out the causes of the inefficacies and to assess the actual improvement potential. The dryer was integrated with an evacuated solar tube collector and gas burner as a heating sources. Drying experiments were performed using bell pepper at 55 °C under three heating options i.e., gas, solar and dual. The rates of exergy destructions were split into unavoidable (EdUN) and avoidable (EdAV) which further split into four parameters termed unavoidable endogenous (EdUN,EN), unavoidable exogenous (EdUN,EX), avoidable endogenous (EdAV,EX) and avoidable exogenous (EdAV,EN). Conventional exergy analysis revealed that drying chamber possess lower improvement potential rate (IP) than heating components while outcomes of advanced exergy analysis showed that both the design and system components interaction of heating unit imparted a major effect on its efficiency. Optimizing the operating conditions of the heating sources could reduce their higher amount of inefficiencies. The values of exergy efficiency for the overall system were calculated to be 86.66%, 84.18%, 83.74% (conventional) and 97.41%, 95.99%, 96.16% (advanced) under gas, dual and solar heating modes respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu