Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
267 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 13. Climate action
  • 1. No poverty
  • ID
  • US
  • Indonesian

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Santoso, Arif Dwi; H.S, Abdil; Diyono;

    Global warming has become an increasingly important issue around the world today due to the rise of anthropogenic greenhouse gases emission, which gives several negative impacts on human life. There are some techniques have been studied and assessed i.e. physical mechanism by injected CO2 to the geological formations, chemical mechanism with artificial tree technology and biological mechanism by increasing the primary production through iron enrichment in high nutrient-low chlorophyll (HNLC) waters as well as mixing of water column below the sea surface. Those technologies, which are well known as Carbon Capture Storage ‘(CCS) technology, are expected to be applied to reduce the oncentration of anthropogenic CO2 in the atmosphere and to minimize the global warming. The Center of Environmental Technology, Agency for the Assessment and Application of Technology (BPPT) will carry out a research concerning CO2 reduction by a phytoplankton culture in a photobioreactor in three years. The main objective of this research is to assess the CO2 uptake capability of tropical phytoplankton. In this paper, we would showed the creteria and design to assembly a photobioreactor esspesially a air lift photobioreactor. To improve performance photobioreaktor, the materials included design criteria and the dynamics of fluids in fotobioreaktor have to considered propoerly. Other the hand, the selection of the most productive species and selection of appropriate media and economically also important to be done.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2010
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2010
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: URAY IBNU FARUQ;

    - Source of electrical energy is currently the main problems in Singkawang city, this is because the number of population density increased annually. Besides, the problem of the amount of waste continues to rise, these two problems can be solved with one solution to convert a renewable energy that makes a potential where trash converted into power plant of waste to energy. To determine whether the waste can be a solution to the energy crisis by conducting a study of potential waste or garbage into fuel power plant. writing this essay described how rubbish can produce electrical energy for 24833.76 kWh / day if operating for one year amounted to 9,064,322.4 kWh / year or 9064.32 MWh / year, The first step is to know the total amount of organic waste per day, the number of calories in the organic waste, the amount of energy (kWh) / day, the capacity of power generation, the power output of the boiler, steam turbine net power.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Noer, Abyor Handayani; Dessy, Ariyanti;

    The first use of microalgae by humans as food detected in the dates back 2000 years, but the development ofbiotechnology of microalgae just began in the middle of this century. Microalgae refer to biomass resourcecontain many useful components such as protein, carbohydrate, fatty acid, etc. Products based microalgae arediverse from human food and nutrition, animal feed and nutrition up to fine chemicals such as triglycerideswhich is able to be converted to biodiesel. Microalgae is a promising biomass resources, (i) microalgae isrenewable resources which has high biodiversity properties, (ii) production cost of converting process frommicroalgae biomass into its derivatives relatively low, (iii) product derivatives of microalgae have a highdemand in market. Based on above, microalgae can be developed further to be applied as raw material for food,energy and pharmacy. This paper described microalgae in general and the developing technology used toproduce commercial microalgae based product.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2012
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2012
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: I. Wayan Sutapa;

    Various scientific studies illustrate that carbon dioxide (CO2) in the atmosphere layer that is a consequence of the result of the combustion of coal, timber, oil and gas, has increased by almost nearing 20 % since the start of the industrial revolution. Industrial area are built almost in the entire continent of the world has resulted in waste of “Greenhouse Gases (GHG) such as carbon dioxide (CO2), methane (CH4) and nitrousoksida (N2O) that caused the blanket effect. The purpose of this research was to detect the presence or absence of climate change and determine the projected climate change due to global warming. This research was conducted in the city of Palu, Central Sulawesi, using daily data and analyzed on a daily, monthly and yearly. Trend projections of climate change and changes in the method of analysis Makesens (Mann - Kendall and Sen 'S). The conclusion of this research is the change of climate in the city of Palu is characterized by slowly increasing temperature , increased precipitation and decreased evapotranspiration and the results of the calculation value of Z indicates Makesens method occurs climate trend, either positive direction (increasing) and negative (decreasing). Regression equation projected annual average temperature (as an example) is; f (year) = 0.018 (year - first year) + 26.931.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Utami, Inshani; Solikhah, Roikhatus; Istadi, I;

    The issue of energy is a global issue that must be discussed by all countries in the world. Rising oil prices and a dwindling supply push every country to develop new renewable energy alternatives. One of this alternative energy is biodiesel. The biodiesel production can be done by using vegetable oil as the raw material over supported homogeneous catalyst, heterogeneous catalyst and enzymatic catalyst. In this study the use of palm oil as the main material to be reacted with methanol and the catalyst used as heterogeneous catalysts SO42-/ZnO by changing variables used are long reaction times (1, 2.5 and 4 hours) and the weight ratio of catalyst / oil (4 , 6, and 8).The studybeganwith thepreparation of catalyst SO42-/ZnO followed by aransesterification reaction between palm oil with methanol. The resultsofthis studyshowed that the super acid catalyst SO42-/ZnOcan be usedin making biodiesel.Optimum operatingcondition for this catalytic reaction is the weight ratio of catalyst/oil 3,8 during 2,5 hours with 78% yield of the resulting ester metal.Longer time ofthe transesterificationreaction, the higher the % yield ofthe resulting ester metal, while adding more catalyst produced the lower theyield.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2012
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2012
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Suhada, Hendrata;

    In Bahasa Indonesia : Kendaraan bermotor yang merupakan alat transportasi yang sangat dibutuhkan oleh masyarakat di negara-negara modern, menimbulkan masalah besar terhadap lingkungan dan akibat polusinya sudah sangat terasa, terutama di kota-kota besar. Untuk menanggulangi masalah ini, maka sejak pertengahan abad 20 telah banyak dilakukan tindakan-tindakan yang bertujuan mengurangi atau melenyapkan pengaruh gas yang ditimbulkan oleh motor bakar. Sejak akhir abad 20 telah mulai dikembangkan alat untuk menggantikan motor bakar yang ternyata mempunyai beberapa keuntungan yang sangat menonjol, yaitu fuel cell yang dapat menghasilkan energi melalui proses elektro kimiawi. Berhubung fuel cell sangat berbeda dari motor bakar, maka kendaraan yang menggunakannya mengalami Perubahan komponen yang cukup radikal diantaranya sistem bahan bakar, sistem penerus energi dan sistem kontrol. Dari hasil pengembangan dan penelitian yang telah dilakukan ternyata jenis fuel cell ini sangat menjanjikan keuntungan-keuntungan yang tidak dimiliki oleh motor bakar, sehingga bukanlah hal yang mustahil bahwa fuel cell akan menggantikan motor bakar. Kata kunci: otomotif, fuel cell, polusi. Cars powered by engine is one of transport vehicle used in developed countries, which caused ecological problem to the environment, the effect of this problem is faced nowadays especially in big cities. Since medio of 20th century many researches and developments have been done, to cope with that problem, to have less emission in the environment. One of the equipment to replace engines, have been developed since the last decade of 20th century, give a lot of advantages called fuel cell, which can produce energy by electric-chemically process. Due to the differences of fuel cell compare with conventional engine, vehicles using fuel cell has to be redesign, some components have to be changed radically, like the fuel system, drive train and control system. The result of researches and developments which have been done, promise a lot of advantages, which conventional engines can not give, therefore it is probable that fuel cell will replace conventional engine.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2001
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2001
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Baharsyah, Aji; Supriyandi, S; Satriadi, Hantoro; Widayat, W;

    Limitations of diesel which is a non-renewable energy sources, requires alternative fuels to renewable and environmentally friendly, for example is biodiesel. The main reaction is the production of biodiesel esterification and transesterification, but these conventional reactions are slow, requires a lot of alcohol and a catalyst, the reaction has not been perfect, and the products do not meet SNI and ASTM standards. In this research, mixing castor oil and palm oil as biodiesel feedstock, but it aims to obtain the optimum conditions for the blending ratio variable mass castor and palm oil, the amount of catalyst to oil, and the mole ratio of methanol-oil with helped by ultrasonic waves. The resulting biodiesel product is expected to meet SNI and ASTM standards. The main tool used is the ultrasonic cleaner. Variable that is the ratio of the mass of castor oil and palm 1:1, 2:1, and 3:1, the amount of catalyst KOH 1%, 1.5%, and 2% by mass of oil, and methanol-oil mole ratio 3:1, 6 : 1, and 9:1. The results obtained highest conversion achieved in the mass ratio 2:1 castor oil and palm oil, catalyst 1.5% by mass of oil, and the mole ratio of 6:1 with a mixture of methanol-conversion 95.341% where diesel fuel product meets SNI and ASTM standards.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2013
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2013
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hidayat, Mohamad Rusdi;

    Bioethanol is one type of biofuel that developed significantly. The utilization of bioethanol is not only limited for fuel, but also could be used as material for various industries such as pharmaceuticals, cosmetics, and food. With wide utilization and relatively simple production technology has made bioethanol as the most favored biofuel currently. The use of lignocellulosic biomass, microalgae, seaweeds, even GMO (Genetically modified organisms) as substrates for bioethanol production has been widely tested. Differences in the materials eventually led to change in the production technology used. Pretreatment technology in the bioethanol production using lignocellulosic currently experiencing rapid development. It is a key process and crucial for the whole next steps. Based on the advantages and disadvantages from all methods, steam explotion and liquid hot water methods are the most promising pretreatment technology available.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2013
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2013
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: ', Zainuddin '; Ervianto, Edy ';

    Tide height is an important parameter in obtaining the amount of tidal energy by utilizing the potential energy contained in the water caused by the movement of sea water caused tidal. Karimun waters of Riau Island province has a reservoir of 29.69 Ha former tin mining which is directly related to the sea connected by floodgates that allegedly contained the potential for tidal energy is high. Karimun tidal waters that occurs twice ebb tide twice the difference between the highest to the lowest ebb during spring tide reaches 3.8 m while the difference during neap 0.2 m. In the planning of generating tidal power necessary to study potential energy, mechanical energy, in addition to the natural factors that must be considered is the morphology of the beach, water characteristics, topography, rainfall, sea depth and lithology underwater, because it influences the volume of reservoirs, construction field and construction of energy converters. Design of tidal power generation using penstock pipe dimensions of 3.7 m, designed stainless kaplan turbines installed perpendicular coupled to a synchronous generator pole shoe (salient) 39889.7 kW generator power output. Results of analysis of tidal energy potential of an average of 46910.6 kWh in 2013 and average of 46605.4 kWh in 2014. It was concluded that the use of energy known to be used as a reference in planning tidal power plant.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Supriadi, Handi;

    Terjadinya Perubahan iklim pada saat ini telah mengkibatkan dampak buruk terhadap kehidupan makhluk hidup di permukaan bumi. Kekeringan, banjir atau rob, gelombang udara panas, dan badai merupakan beberapa contoh yang disebabkan oleh Perubahan iklim. Pada sektor pertanian, kondisi tersebut akan menyebabkan produksi tanaman mengalami penurunan yang cukup signifikan sehingga mengganggu ketahanan pangan nasional dan menurunkan pendapatan petani dan devisa negara. Penyebab utama terjadinya Perubahan iklim adalah meningkatnya emisi gas rumah kaca (terutama gas CO2) di udara, yang dihasilkan oleh aktivitas manusia (antropogenik). Untuk mengurangi emisi gas CO2 Pemerintah Republik Indonesia telah mencanangkan Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca (RAN-GRK) sesuai Peraturan Presiden Nomor 61 tahun 2011. Salah satu kegiatan utamanya adalah penanaman 105.200 ha tanaman karet. Peran ekologis tanaman karet yaitu tajuknya dapat menyerap gas CO2 dari udara dan dari hasil biji karet dapat dibuat biodiesel dengan gas buang CO2 yang lebih rendah dari bahan bakar minyak (solar), sehingga tanaman karet mempunyai peran yang penting dalam mengurangi kejadian Perubahan iklim (mitigasi). Jumlah CO2 yang diserap oleh tanaman karet bervariasi tergantung kepada umur tanaman, kondisi tanaman, kesuburan tanah, dan teknis budidaya yang diterapkan. Rata-rata stok karbon pada karet tradional (perkebunan rakyat) 19,8 ton C/ha, sedangkan pada karet klon unggul (perkebunan besar) 42,4 ton C/ha. Jumlah gas CO2 yang diserap oleh perkebunan karet di Indonesia mencapai 291,16 Mton CO2e. Potensi produksi biodiesel dari RSO di Indonesia mencapai 424.460 ton. Campuran solar dan biodiesel dari RSO dapat menurunkan emisi gas buang CO2 sebesar 40,14%. Role of rubber plant in climate change mitigation Climate change happened and resulted in adverse effect of our life on the earth's surface. Droughts, floods, or rob, heatwaves, and hurricanes happened recently of incident that might be caused by climate change. In the agricultural sector, these conditions will lead to reduction of yields significantly, in turn disrupt the national food security and reduce foreign exchange. Major factor that may induce climate change is the increased greenhouse gas emissions primarily CO2 in air, generated by human activity (anthropogenic). To reduce emissions of CO2 gas, Government of Indonesia has launched the National Action Plan for Reducing Emissions of Greenhouse Gases (RAN-GRK) through Presidential Decree No. 61 of 2011. One of the main activity is the planting of 105,200 ha of rubber trees. Ecological role of the rubber plant is an sequestration CO2 from the air. Moreover, rubber yielded may be converted into biodiesel fuel having CO2 content being lower than diesel oil in otherwords, rubber plant has an important role in reducing of incidences of climate change (mitigation). The amount of CO2 is sequestrated by rubber plant varies depending on the age of the plant, crop conditions, soil fertility and technical cultivation applied. Average of carbon stock of those rubber plants cultivated traditionally was 19.8 ton C / ha, while those superior clone ones was 42.4 ton C/ha. The amount of CO2 gas sequestrated by rubber in Indonesia reached of 291.16 Mton CO2e. Potentially biodiesel production developed from the RSO in Indonesia reached 424,460 ton, blending of diesel oil and biodiesel from RSO able to reduce CO2 emissions of 40.14%.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2012
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2012
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
267 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Santoso, Arif Dwi; H.S, Abdil; Diyono;

    Global warming has become an increasingly important issue around the world today due to the rise of anthropogenic greenhouse gases emission, which gives several negative impacts on human life. There are some techniques have been studied and assessed i.e. physical mechanism by injected CO2 to the geological formations, chemical mechanism with artificial tree technology and biological mechanism by increasing the primary production through iron enrichment in high nutrient-low chlorophyll (HNLC) waters as well as mixing of water column below the sea surface. Those technologies, which are well known as Carbon Capture Storage ‘(CCS) technology, are expected to be applied to reduce the oncentration of anthropogenic CO2 in the atmosphere and to minimize the global warming. The Center of Environmental Technology, Agency for the Assessment and Application of Technology (BPPT) will carry out a research concerning CO2 reduction by a phytoplankton culture in a photobioreactor in three years. The main objective of this research is to assess the CO2 uptake capability of tropical phytoplankton. In this paper, we would showed the creteria and design to assembly a photobioreactor esspesially a air lift photobioreactor. To improve performance photobioreaktor, the materials included design criteria and the dynamics of fluids in fotobioreaktor have to considered propoerly. Other the hand, the selection of the most productive species and selection of appropriate media and economically also important to be done.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2010
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2010
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: URAY IBNU FARUQ;

    - Source of electrical energy is currently the main problems in Singkawang city, this is because the number of population density increased annually. Besides, the problem of the amount of waste continues to rise, these two problems can be solved with one solution to convert a renewable energy that makes a potential where trash converted into power plant of waste to energy. To determine whether the waste can be a solution to the energy crisis by conducting a study of potential waste or garbage into fuel power plant. writing this essay described how rubbish can produce electrical energy for 24833.76 kWh / day if operating for one year amounted to 9,064,322.4 kWh / year or 9064.32 MWh / year, The first step is to know the total amount of organic waste per day, the number of calories in the organic waste, the amount of energy (kWh) / day, the capacity of power generation, the power output of the boiler, steam turbine net power.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Noer, Abyor Handayani; Dessy, Ariyanti;

    The first use of microalgae by humans as food detected in the dates back 2000 years, but the development ofbiotechnology of microalgae just began in the middle of this century. Microalgae refer to biomass resourcecontain many useful components such as protein, carbohydrate, fatty acid, etc. Products based microalgae arediverse from human food and nutrition, animal feed and nutrition up to fine chemicals such as triglycerideswhich is able to be converted to biodiesel. Microalgae is a promising biomass resources, (i) microalgae isrenewable resources which has high biodiversity properties, (ii) production cost of converting process frommicroalgae biomass into its derivatives relatively low, (iii) product derivatives of microalgae have a highdemand in market. Based on above, microalgae can be developed further to be applied as raw material for food,energy and pharmacy. This paper described microalgae in general and the developing technology used toproduce commercial microalgae based product.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2012
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2012
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: I. Wayan Sutapa;

    Various scientific studies illustrate that carbon dioxide (CO2) in the atmosphere layer that is a consequence of the result of the combustion of coal, timber, oil and gas, has increased by almost nearing 20 % since the start of the industrial revolution. Industrial area are built almost in the entire continent of the world has resulted in waste of “Greenhouse Gases (GHG) such as carbon dioxide (CO2), methane (CH4) and nitrousoksida (N2O) that caused the blanket effect. The purpose of this research was to detect the presence or absence of climate change and determine the projected climate change due to global warming. This research was conducted in the city of Palu, Central Sulawesi, using daily data and analyzed on a daily, monthly and yearly. Trend projections of climate change and changes in the method of analysis Makesens (Mann - Kendall and Sen 'S). The conclusion of this research is the change of climate in the city of Palu is characterized by slowly increasing temperature , increased precipitation and decreased evapotranspiration and the results of the calculation value of Z indicates Makesens method occurs climate trend, either positive direction (increasing) and negative (decreasing). Regression equation projected annual average temperature (as an example) is; f (year) = 0.018 (year - first year) + 26.931.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2014
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2014
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Utami, Inshani; Solikhah, Roikhatus; Istadi, I;

    The issue of energy is a global issue that must be discussed by all countries in the world. Rising oil prices and a dwindling supply push every country to develop new renewable energy alternatives. One of this alternative energy is biodiesel. The biodiesel production can be done by using vegetable oil as the raw material over supported homogeneous catalyst, heterogeneous catalyst and enzymatic catalyst. In this study the use of palm oil as the main material to be reacted with methanol and the catalyst used as heterogeneous catalysts SO42-/ZnO by changing variables used are long reaction times (1, 2.5 and 4 hours) and the weight ratio of catalyst / oil (4 , 6, and 8).The studybeganwith thepreparation of catalyst SO42-/ZnO followed by aransesterification reaction between palm oil with methanol. The resultsofthis studyshowed that the super acid catalyst SO42-/ZnOcan be usedin making biodiesel.Optimum operatingcondition for this catalytic reaction is the weight ratio of catalyst/oil 3,8 during 2,5 hours with 78% yield of the resulting ester metal.Longer time ofthe transesterificationreaction, the higher the % yield ofthe resulting ester metal, while adding more catalyst produced the lower theyield.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2012
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2012
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Suhada, Hendrata;

    In Bahasa Indonesia : Kendaraan bermotor yang merupakan alat transportasi yang sangat dibutuhkan oleh masyarakat di negara-negara modern, menimbulkan masalah besar terhadap lingkungan dan akibat polusinya sudah sangat terasa, terutama di kota-kota besar. Untuk menanggulangi masalah ini, maka sejak pertengahan abad 20 telah banyak dilakukan tindakan-tindakan yang bertujuan mengurangi atau melenyapkan pengaruh gas yang ditimbulkan oleh motor bakar. Sejak akhir abad 20 telah mulai dikembangkan alat untuk menggantikan motor bakar yang ternyata mempunyai beberapa keuntungan yang sangat menonjol, yaitu fuel cell yang dapat menghasilkan energi melalui proses elektro kimiawi. Berhubung fuel cell sangat berbeda dari motor bakar, maka kendaraan yang menggunakannya mengalami Perubahan komponen yang cukup radikal diantaranya sistem bahan bakar, sistem penerus energi dan sistem kontrol. Dari hasil pengembangan dan penelitian yang telah dilakukan ternyata jenis fuel cell ini sangat menjanjikan keuntungan-keuntungan yang tidak dimiliki oleh motor bakar, sehingga bukanlah hal yang mustahil bahwa fuel cell akan menggantikan motor bakar. Kata kunci: otomotif, fuel cell, polusi. Cars powered by engine is one of transport vehicle used in developed countries, which caused ecological problem to the environment, the effect of this problem is faced nowadays especially in big cities. Since medio of 20th century many researches and developments have been done, to cope with that problem, to have less emission in the environment. One of the equipment to replace engines, have been developed since the last decade of 20th century, give a lot of advantages called fuel cell, which can produce energy by electric-chemically process. Due to the differences of fuel cell compare with conventional engine, vehicles using fuel cell has to be redesign, some components have to be changed radically, like the fuel system, drive train and control system. The result of researches and developments which have been done, promise a lot of advantages, which conventional engines can not give, therefore it is probable that fuel cell will replace conventional engine.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2001
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2001
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Baharsyah, Aji; Supriyandi, S; Satriadi, Hantoro; Widayat, W;

    Limitations of diesel which is a non-renewable energy sources, requires alternative fuels to renewable and environmentally friendly, for example is biodiesel. The main reaction is the production of biodiesel esterification and transesterification, but these conventional reactions are slow, requires a lot of alcohol and a catalyst, the reaction has not been perfect, and the products do not meet SNI and ASTM standards. In this research, mixing castor oil and palm oil as biodiesel feedstock, but it aims to obtain the optimum conditions for the blending ratio variable mass castor and palm oil, the amount of catalyst to oil, and the mole ratio of methanol-oil with helped by ultrasonic waves. The resulting biodiesel product is expected to meet SNI and ASTM standards. The main tool used is the ultrasonic cleaner. Variable that is the ratio of the mass of castor oil and palm 1:1, 2:1, and 3:1, the amount of catalyst KOH 1%, 1.5%, and 2% by mass of oil, and methanol-oil mole ratio 3:1, 6 : 1, and 9:1. The results obtained highest conversion achieved in the mass ratio 2:1 castor oil and palm oil, catalyst 1.5% by mass of oil, and the mole ratio of 6:1 with a mixture of methanol-conversion 95.341% where diesel fuel product meets SNI and ASTM standards.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2013
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2013
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hidayat, Mohamad Rusdi;

    Bioethanol is one type of biofuel that developed significantly. The utilization of bioethanol is not only limited for fuel, but also could be used as material for various industries such as pharmaceuticals, cosmetics, and food. With wide utilization and relatively simple production technology has made bioethanol as the most favored biofuel currently. The use of lignocellulosic biomass, microalgae, seaweeds, even GMO (Genetically modified organisms) as substrates for bioethanol production has been widely tested. Differences in the materials eventually led to change in the production technology used. Pretreatment technology in the bioethanol production using lignocellulosic currently experiencing rapid development. It is a key process and crucial for the whole next steps. Based on the advantages and disadvantages from all methods, steam explotion and liquid hot water methods are the most promising pretreatment technology available.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2013
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2013
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: ', Zainuddin '; Ervianto, Edy ';

    Tide height is an important parameter in obtaining the amount of tidal energy by utilizing the potential energy contained in the water caused by the movement of sea water caused tidal. Karimun waters of Riau Island province has a reservoir of 29.69 Ha former tin mining which is directly related to the sea connected by floodgates that allegedly contained the potential for tidal energy is high. Karimun tidal waters that occurs twice ebb tide twice the difference between the highest to the lowest ebb during spring tide reaches 3.8 m while the difference during neap 0.2 m. In the planning of generating tidal power necessary to study potential energy, mechanical energy, in addition to the natural factors that must be considered is the morphology of the beach, water characteristics, topography, rainfall, sea depth and lithology underwater, because it influences the volume of reservoirs, construction field and construction of energy converters. Design of tidal power generation using penstock pipe dimensions of 3.7 m, designed stainless kaplan turbines installed perpendicular coupled to a synchronous generator pole shoe (salient) 39889.7 kW generator power output. Results of analysis of tidal energy potential of an average of 46910.6 kWh in 2013 and average of 46605.4 kWh in 2014. It was concluded that the use of energy known to be used as a reference in planning tidal power plant.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2016
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2016
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Supriadi, Handi;

    Terjadinya Perubahan iklim pada saat ini telah mengkibatkan dampak buruk terhadap kehidupan makhluk hidup di permukaan bumi. Kekeringan, banjir atau rob, gelombang udara panas, dan badai merupakan beberapa contoh yang disebabkan oleh Perubahan iklim. Pada sektor pertanian, kondisi tersebut akan menyebabkan produksi tanaman mengalami penurunan yang cukup signifikan sehingga mengganggu ketahanan pangan nasional dan menurunkan pendapatan petani dan devisa negara. Penyebab utama terjadinya Perubahan iklim adalah meningkatnya emisi gas rumah kaca (terutama gas CO2) di udara, yang dihasilkan oleh aktivitas manusia (antropogenik). Untuk mengurangi emisi gas CO2 Pemerintah Republik Indonesia telah mencanangkan Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca (RAN-GRK) sesuai Peraturan Presiden Nomor 61 tahun 2011. Salah satu kegiatan utamanya adalah penanaman 105.200 ha tanaman karet. Peran ekologis tanaman karet yaitu tajuknya dapat menyerap gas CO2 dari udara dan dari hasil biji karet dapat dibuat biodiesel dengan gas buang CO2 yang lebih rendah dari bahan bakar minyak (solar), sehingga tanaman karet mempunyai peran yang penting dalam mengurangi kejadian Perubahan iklim (mitigasi). Jumlah CO2 yang diserap oleh tanaman karet bervariasi tergantung kepada umur tanaman, kondisi tanaman, kesuburan tanah, dan teknis budidaya yang diterapkan. Rata-rata stok karbon pada karet tradional (perkebunan rakyat) 19,8 ton C/ha, sedangkan pada karet klon unggul (perkebunan besar) 42,4 ton C/ha. Jumlah gas CO2 yang diserap oleh perkebunan karet di Indonesia mencapai 291,16 Mton CO2e. Potensi produksi biodiesel dari RSO di Indonesia mencapai 424.460 ton. Campuran solar dan biodiesel dari RSO dapat menurunkan emisi gas buang CO2 sebesar 40,14%. Role of rubber plant in climate change mitigation Climate change happened and resulted in adverse effect of our life on the earth's surface. Droughts, floods, or rob, heatwaves, and hurricanes happened recently of incident that might be caused by climate change. In the agricultural sector, these conditions will lead to reduction of yields significantly, in turn disrupt the national food security and reduce foreign exchange. Major factor that may induce climate change is the increased greenhouse gas emissions primarily CO2 in air, generated by human activity (anthropogenic). To reduce emissions of CO2 gas, Government of Indonesia has launched the National Action Plan for Reducing Emissions of Greenhouse Gases (RAN-GRK) through Presidential Decree No. 61 of 2011. One of the main activity is the planting of 105,200 ha of rubber trees. Ecological role of the rubber plant is an sequestration CO2 from the air. Moreover, rubber yielded may be converted into biodiesel fuel having CO2 content being lower than diesel oil in otherwords, rubber plant has an important role in reducing of incidences of climate change (mitigation). The amount of CO2 is sequestrated by rubber plant varies depending on the age of the plant, crop conditions, soil fertility and technical cultivation applied. Average of carbon stock of those rubber plants cultivated traditionally was 19.8 ton C / ha, while those superior clone ones was 42.4 ton C/ha. The amount of CO2 gas sequestrated by rubber in Indonesia reached of 291.16 Mton CO2e. Potentially biodiesel production developed from the RSO in Indonesia reached 424,460 ton, blending of diesel oil and biodiesel from RSO able to reduce CO2 emissions of 40.14%.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Neliti
    2012
    Data sources: Neliti
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nelitiarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Neliti
      2012
      Data sources: Neliti
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.