Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
37,663 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • PL
  • AT

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Thyrring, Jakob; Wegeberg, Susse; Blicher, Martin E.; Krause-Jensen, Dorte; +6 Authors

    The data contains three supporting datasets: 1. Mid-intertidal data 2. Vertical transect data 3. GPS coordinates for all sites

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Overview The following dataset presents the energy cycle characteristics for 5G/6G mobile systems supported by Renewable Energy Sources (RES) and/or Unmanned Aerial Vehicles (UAVs) and Reconfigurable Intelligent Surfaces (RISs). In addition, within the dataset, the energy gain related to the engagement of RES within the Radio Access Network (RAN) has also been distinguished. Scenario The considered network scenario includes 8 three- (_results_gcas.csv) or one-cell (_results_scas.csv & _results_kras.csv) base stations (BSs) placed within the Poznan city (surroundings of the old market) and supported by Renewable Energy Sources — photovoltaic panels (PVs) and/or wind turbines (WTs). The aforementioned base stations can be treated as stationary towers or mobile access points (e.g., drones/UAVs). Those latter have been additionally equipped with RIS devices, which are able to reflect and manipulate a radio signal to influence occurrences such as interferences, coverage, or human exposure. However, the use of RISs has been taken into account only to evaluate the impact of the engagement of such devices on the energy side of the mobile system, omitting the changes in radio characteristics. The network traffic has been assumed to be fixed (64 mobile users (UEs) with 100 Mbps downlink — DL, and 25 Mbps uplink — UL, per each), however, its density in specific parts of the city is modeled randomly for each simulation run. The simulation runs have been performed for 4 dates (vernal equinox, summer solstice, autumn equinox, winter solstice), each one from a different season of the year. The aim of such an approach was to highlight the impact of the time of the day and the year on the energy gain obtained thanks to enabling RES generators. The weather conditions assumed within the simulation are typical for the climate in Poland. Methodology The energy-cycle calculations (system's power consumption, renewable energy production, and excessive energy storage) have been based on the mathematical formulas from the scientific literature and performed within the digital simulation runs by using the Green Radio Access Network Design (GRAND) tool (developed by teams from the Ghent University & Poznan University of Technology). The UE-BS association process within the mobile system has been done by doing multi-objective optimization using the Gurobi software, which has taken into account parameters like path loss, predicted power consumption of BSs, and guaranteed DL & UL bit rates for UEs. Simulation setup The setup of the input parameters for used mathematical models (power consumption, energy generation, energy storage) has been done in accordance with the values attached within the delivered literature positions (cited within the publications included in the Related works section of the following dataset) and adjusted to the considered study. Furthermore, the data used to model the network environment (building distribution, coverage area, base stations' locations) as well as to predict weather conditions are the real data (for the year 2022) collected by the city hall of Poznan, one of the Polish mobile operators, and weather stations placed in Poznan, respectively. The number of simulation runs performed has been equal to 10 (each run has included energy-cycle calculations for 4 seasons of the year), with the time step of a single run set to 1 hour of the day. Results The results of the aforementioned investigations have been included in the attached files, which can be described as follows: File _results_gcas.csv The first column denotes the date (season of the year), for which the values have been obtained. The columns from second to fifth present observed values of the State of Charge (SoC) of a battery system (in %) for a single network cell on average in a time step. Those columns are the obtained values for the RAN, in which no RES, only PVs, only WTs, and both types of RES generators have been enabled, respectively. Files _results_scas.csv & _results_kras.csv The first column denotes the date (season of the year), for which the values have been obtained. The second and third columns denote the number of drone base station (DBS) exchanges within the wireless system on average in a particular time step, where no RES and only PVs are enabled, respectively. The fourth and fifth columns present the conventional (fossil-fuels-based) energy consumption (in kWh) for the whole system in a specific time step, in which no RES and only PVs are engaged for all the access nodes. The sixth column is the energy savings (in kWh) related to the use of RES generators within the mobile network. Furthermore, the seventh and eighth columns represent the amount of renewable energy harvested from the solar radiation in total and the peak value of this amount observed during the entire day, respectively. Acknowledgment More details about the conducted studies have been described within the attached papers (Related works section). The data has been collected within the COST CA10210 INTERACT. M. Deruyck is a Post-Doctoral Fellow of the FWO-V (Research Foundation – Flanders, ref: 12Z5621N). The work (including the following dataset preparation) by A. Samorzewski and A. Kliks was realized within project no. 2021/43/B/ST7/01365 funded by the National Science Center in Poland.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: ZENODO
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: ZENODO
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Larocca Conte, Gabriele; Aleksinski, Adam; Liao, Ashley; Kriwet, Jürgen; +5 Authors

    # Data from: Eocene Shark Teeth from Peninsular Antarctica: Windows to Habitat Use and Paleoceanography. [https://doi.org/10.5061/dryad.qz612jmq2](https://doi.org/10.5061/dryad.qz612jmq2) The repository folder includes scripts and spreadsheets for phosphate oxygen stable isotope (δ18Op) analysis measured from shark tooth biogenic apatite collected from the Eocene deposits of the La Meseta and Submeseta formations (West Antarctica, Seymour Island). It also contains Fourier-Transform Infrared Spectroscopy (FTIR) analysis, a Bayesian model for temperature estimates, and model output extraction scripts from the iCESM simulation for the Early Eocene (Zhu et al., 2020). Scripts and data are stored in specific folders on the type of analysis. All scripts are in R or Python language. **Usage notes** **1 "iCESM modeling scripts" directory** The folder includes scripts in Jupiter Notebook format for extracting and plotting iCESM seawater outputs for the Eocene. The folder includes two files: 1) “d18Ow Analysis Script.ipynb” - This is a Python script primarily using the XArray library, to import iCESM output from Zhu et al. (2020), calculating δ18Ow, and reorganizing the output into monthly time intervals along 25 m and 115 m depth slices, while also averaging output down to these depths; 2) “NetCDF Plotting.ipynb” - this is a Python script primarily using the XArray, Matplotlib, and Cartopy libraries. The script writes a single callable function that creates Matplotlib contour plots from iCESM history output. Variables include temperature, salinity, ideal age, oxygen isotopes, and neodymium isotopes, and map projections include Plate Carree, Mollweide, and orthographic (centering on the Drake Passage). Options are built to enable scale normalization or to set maximum and minimum values for data and select colormaps from a predefined selection of Matplotlib’s “Spectral”, “Viridis”, “Coolwarm”, “GNUplot2”, “PiYG”, “RdYlBu”, and “RdYlGn”. For further questions on model output scripts, please email Adam Aleksinski at [aaleksin@purdue.edu](https://datadryad.org/stash/dataset/doi:10.5061/aaleksin@purdue.edu). **2 "d18O data and maps" directory** The folder includes δ18Op of shark tooth bioapatite and other datasets to interpret shark paleoecology. These datasets include: · δ18Op of shark tooth bioapatite (“shark FEST d18Op.csv”). Isotope measurements were run at the Stable Isotope Ecosystem Laboratory of (SIELO) University of California, Merced (California, USA). · Reference silver phosphate material δ18Op for analytical accuracy and precision (“TCEA reference materials.csv"). Isotope measurements were run at the Stable Isotope Ecosystem Laboratory of (SIELO) University of California, Merced (California, USA). · Bulk and serially sampled δ18Oc data of co-occurring bivalves (Ivany et al., 2008; Judd et al., 2019) (“Ivany et al. 2008_bulk.csv” and “Judd et al., 2019_serial sampling.csv"). · iCESM model temperature and δ18Ow outputs at 3x and 6x pre-industrial CO2 levels for the Early Eocene (Zhu et al., 2020) (“SpinupX3_25m_Mean_Monthly.nc”, “SpinupX6_25m_Mean_Monthly.nc.”, and “CA_x3CO2.csv”). Simulations are integrated from the surface to 25 m. · δ18O values of invertebrate species published in Longinelli (1965) and Longinelli & Nuti (1973), used to convert bulk δ18Oc (V-SMOW) data of bivalves into δ18Op (V-SMOW) values after δ18Oc (V-PDB) - δ18Oc (V-SMOW) conversion found in Kim et al. (2015) (“d18O carbonate and phosphate references.csv”). · R script for data analysis ("d18O data and maps.Rmd”). The script provides annotation through libraries, instrumental accuracy and precision tests, tables, statistical analysis, figures, and model output extractions. . ("TELM_diversity.csv") displays diversity trends of chondrichthyans across TELMs in one of the main figures of the manuscript. **2.1 Dataset description** **shark FEST d18Op.csv** · *Sample_ID*: Identification number of tooth specimens. · *Other_ID*: Temporary identification number of tooth specimens. · *Taxon*: Species assigned to shark tooth specimens. · *TELM*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *d18Op*: Mean δ18Op values of silver phosphate crystals precipitated from shark tooth bioapatite. Specimens were run in triplicates, corrected, and standardized on the V-SMOW scale. · *sd*: Standard deviation of silver phosphate triplicate samples per specimen. · *Protocol*: Silver phosphate protocols used to precipitate crystals from shark tooth bioapatite. We adopted the Rapid UC (“UC_Rapid”) and the SPORA (“SPORA”) protocols after Mine et al. and (2017) Larocca Conte et al. (2024) based on the tooth specimen size and sampling strategy. Descriptions of the methods are included in the main manuscript. · *Environment*: Inferred shark habitat based on taxonomy classified as benthic or pelagic environment. · *Collection*: Institutional abbreviations of museum collections from which shark tooth specimens are housed. NRM-PZ is the abbreviation for the Swedish Natural History Museum (Stockholm, Sweden), PRI is the abbreviation for the Paleontological Research Institute (Ithaca, New York, United States), and UCMP is the University of California Museum of Paleontology (Berkeley, California, United States). **TCEA reference materials.csv** · *Identifier_1*: unique identifier number per sample. · *sample*: reference silver phosphate materials (USGS 80 and USGS 81). · *amount*: weight of samples in mg. · *Area 28*: peak area of mass 28 (12C16O). · *Area 30*: peak area of mass 30 (12C18O). · *d18O_corrected*: corrected δ18Op value of reference materials following drift correction, linearity correction, and 2-point calibration to report values on the V-SMOW scale. **Ivany et al. 2008_bulk.csv** · *Telm*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *Locality*: Locality code from which bivalves were collected. · *Genus*: Genera of bivalves. Specimens are assigned to *Cucullaea* and *Eurhomalea* genera. · *Line*: Sampling areas of specimens. The sampling strategy is described in Ivany et al. (2008). · *d13C*: δ13C values of specimens from sampled lines. Values are reported in the V-PDB scale. · *d18Oc_PDB*: δ18Oc values of specimens from sampled lines. Values are reported in the V-PDB scale. **Judd et al., 2019_serial sampling.csv** · *Horizon:* horizons of the TELM 5 unit (La Meseta Formation) from which bivalves were collected. Horizon 1 is stratigraphically the lowest, while horizon 4 is the highest (Judd et al., 2019). · *ID*: Identification number of specimens. · *Latitude*: Geographic coordinate where bivalve specimens were collected. · *Longitude*: Geographic coordinate where bivalve specimens were collected. · *Surface sampled*: Specific sampling area, indicating whether sampling occurred in the interior or exterior portion of shells. · *distance*: The distance from the umbo in mm from which sampling occurred along a single shell. · *d18Oc_PDB*: δ18Oc values of specimens from sampled areas of shells. Values are reported on the V-PDB scale. **SpinupX3_25m_Mean_Monthly.nc** See section 1 ("iCESM modeling scripts" directory, “d18Ow Analysis Script.ipynb” script) for a full description of the iCESM model output extraction. **SpinupX6_25m_Mean_Monthly.nc** See section 1 ("iCESM modeling scripts" directory, “d18Ow Analysis Script.ipynb” script) for a full description of the iCESM model output extraction. **CA_x3CO2.csv** · *lat*: Geographic coordinate where temperature and δ18Ow model values are extracted from the iCESM simulation scaled at 3x preindustrial CO2 levels (values averaged within a seawater column depth of 25 m). · *long*: Geographic coordinate where temperature and δ18Ow model values are extracted from the iCESM simulation scaled at 3x preindustrial CO2 levels (values averaged within a seawater column depth of 25 m). · *T_mean*: Simulated seawater temperature values in °C. · *d18Ow*: Simulated seawater δ18Ow values (V-SMOW). · *d18Op*: Simulated seawater δ18Op values (V-SMOW). Values were calculated by using seawater temperature and δ18Ow arrays following the paleothermometer equation after Lécuyer et al. (2013). **d18O carbonate and phosphate references.csv** · *species*: Species of invertebrate taxa. · *type*: Specimen type, including barnacles, brachiopods, crabs, and mollusks. · *depth*: Depth of seawater column where specimens were collected, reported in meters below sea level when specified. · *d18Op*: δ18Op values of invertebrate specimens (V-SMOW). · *d18Oc_PDB*: δ18Oc values of invertebrate specimens (V-PDB). · *Reference*: Citations from which data were taken to build the dataset (Longinelli, 1965; Longinelli & Nuti, 1973). **TELM diversity.csv** · *genus:* genera of sharks and rays compiled from literature (Engelbrecht et al., 2016a, 2016b, 2017a, 2017b, 2019; Kriwet, 2005; Kriwet et al., 2016; Long, 1992; Marramá et al., 2018). · *species*: species of sharks and rays compiled from literature (Engelbrecht et al., 2016a, 2016b, 2017a, 2017b, 2019; Kriwet, 2005; Kriwet et al., 2016; Long, 1992; Marramá et al., 2018). · *Environment*: Inferred shark habitat based on taxonomy classified as benthic or pelagic environment. · *TELM*: Stratigraphic units of La Meseta (TELM 1-5; ~44 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). **3 “FTIR data” directory** The folder includes FTIR acquisitions and data analysis scripts on reference materials and shark tooth bioapatite for quality checks to test diagenesis effects on δ18Op of sharks. The folder includes: · The R project file “apatite_ftir.Rproj”. This project file navigates through scripts for raw data processing and data analysis. The background of the raw data was processed following custom R functions from Trayler et al. (2023; [https://github.com/robintrayler/collagen_demineralization](https://github.com/robintrayler/collagen_demineralization)). · The “.Rproj.user” folder includes project-specific temporary files (e.g. auto-saved source documents, window-state, etc.) stored by the R project file “apatite_ftir.Rproj”. The folder may be hidden depending on directory view options. · The “raw data” directory stores spectra acquisitions as .dpt files. Spectra files are stored in the folders “apatite” and “calcite” based on the material type. Spectra were obtained in the 400 – 4000 cm⁻¹ range using a Bruker Vertex 70 Far-Infrared in ATR located at the Nuclear Magnetic Resonance Facility at the University of California Merced (California, USA). · The “processed” directory includes processed spectra stored as .csv files (“apatite_data.csv” and “calcite_data.csv”) following the background correction (Trayler et al., 2023) and processed infrared data from Larocca Conte et al. (2024) (“Larocca Conte et al._SPORA_apatite_data.csv”) from which the NIST SRM 120c spectrum was filtered. Infrared spectra data in “Larocca Conte et al._SPORA_apatite_data.csv” were obtained and corrected following the same methodologies mentioned above. · The “R” directory includes R scripts of customized source functions for background correction (Trayler et al., 2023; inspect the "functions" directory and the R script "0_process_data.R") and data analysis (“data_analysis.R”). The scripts provide annotation through libraries and functions used for data processing and analysis. · Additional datasets. The “data_FTIR_d18O.csv” includes infrared data and δ18Op values of specimens, while the “Grunenwald et al., 2014_CO3.csv” is the dataset after Grunenwald et al. (2014) used to predict carbonate content from the materials featured in this work. **3.1 Dataset description** Spreadsheets included in the “processed” directory The datasets “apatite_data.csv”, “calcite_data.csv”, and “Larocca Conte et al._SPORA_apatite_data.csv” are structured with the following variables: · *wavenumber*: infrared wavenumber in cm-1. · *absorbance*: infrared absorbance value. · *file_name:* .dpt file name from which infrared wavenumber and absorbance values were obtained following the background correction. **data_FTIR_d18O.csv** · *file_name:* .dpt file name from which infrared wavenumber and absorbance values were obtained following the background correction. · *v4PO4_565_wavenumber*: Wavenumber of maximum infrared absorbance around the first νPO4 band, usually at 565 cm-1. · *v4PO4_565*: Peak absorbance value of the first ν4PO4 band (~565 cm-1). · *v4PO4_valley_wavenumber*: Wavenumber of valley between ν4PO4 bands. · *v4PO4_valley*: Absorbance value of the valley between ν4PO4 bands. · *v4PO4_603_wavenumber*: Wavenumber of maximum infrared absorbance around the second ν4PO4 band, usually at 603 cm-1. · *v4PO4_603*: Peak absorbance value of the second ν4PO4 band (~603 cm-1). · *CI*: Crystallinity index calculated after equation provided in (Shemesh, 1990) as (*v4PO4_565* + *v4PO4_603* / *v4PO4_valley*) (i.e., the sum of peak absorbance of νPO4 bands divided by the absorbance value of the valley between peaks). · *material*: Material type of samples (i.e., standard material, enameloid, dentin sampled from the crown or root area of shark teeth, and enameloid mixed with dentin). · *AUC_v3PO4*: Area under the curve of the ν3PO4 and ν1PO4 bands where maximum absorbance is at ~1025 cm-1 and ~960 cm-1, respectively. · *AUC_v3CO3*: Area under the curves of Type-A and Type-B carbonate bands having maximum infrared absorbance at ~1410 (Type-B), ~1456 (Type-B), and ~1545 cm-1 (Type-A). · *v3CO3_v3PO4_ratio*: Ratio between area under the curves of carbonate and phosphate bands (i.e., *AUC_v3CO3* / *AUC_v3PO4*). · *CO3_wt*: Estimated mean carbonate content following the equation in Grunenwald et al. (2014) (i.e. *CO3_wt* = 28.4793 (±1.4803) *v3CO3_v3PO4_ratio* + 0.1808(±0.2710); R2 = 0.985). · *CO3_wt_sd*: Standard deviation of estimated carbonate content calculated by propagating the error around coefficients provided in the Grunenwald et al. (2014) equation (see full equation in *CO3_wt*). · *Taxon*: Species assigned to shark tooth specimens. · *TELM*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *d18Op*: Mean δ18Op values of silver phosphate crystals precipitated from shark tooth bioapatite. Specimens were run in triplicates, corrected, and standardized on the V-SMOW scale. · *sd*: Standard deviation of silver phosphate triplicate samples per specimen. · *Collection*: Institutional abbreviations of museum collections where shark tooth specimens are housed. Infrared spectra were obtained from a selected subset of tooth specimens in the care of the Swedish Natural History Museum (NRM-PZ; Stockholm, Sweden). **Grunenwald et al., 2014_CO3.csv** · *sample*: Sample code. · *material*: Material type of samples (i.e., standard material, bone, and enamel). · *v3CO3*: Area under the curves of Type-A and Type-B carbonate bands having maximum infrared absorbance at ~1410 (Type-B), ~1456 (Type-B), and ~1545 cm-1 (Type-A). · *v3PO4*: *AUC_v3PO4*: Area under the curve of the ν3PO4 and ν1PO4 bands where maximum absorbance is at ~1025 cm-1 and ~960 cm-1, respectively. · *v3CO3_v3PO4_ratio*: *v3CO3_v3PO4_ratio*: Ratio between area under the curves of carbonate and phosphate bands (i.e., *v3CO3* /*v3PO4*). · *CO3_wt*: Carbonate content measured via CO2 coulometry. Further details about the analytical measurements are found in Grunenwald et al. (2014). **4 “Bayes_FEST_Temperautre Estimates” directory** The folder includes the Bayesian approach used to estimate posterior seawater temperature, δ18Ow values from δ18Op of sharks bioapatite using a Bayesian approach modified after Griffiths et al. (2023). The original scripts used in Griffiths et al. (2023) are reposited here: [https://github.com/robintrayler/bayesian_phosphate](https://github.com/robintrayler/bayesian_phosphate). The directory includes: · The R project file “Bayes_FEST.Rproj”. This project file navigates through scripts for raw data analysis. · The “.Rproj.user” folder includes project-specific temporary files (e.g. auto-saved source documents, window-state, etc.) stored by the R project file “Bayes_FEST.Rproj”. The folder may be hidden depending on directory view options. · The “data” folder includes the spreadsheets for modeled seawater temperature and δ18Ow values (“CA_x3CO2.csv”) and δ18Op values of shark tooth bioapatite (“shark FEST d18Op.csv”) used as prior information for the Bayesian model. We refer to section 2.1 for the full description of spreadsheets. · The “R” folder includes customized functions for the Bayesian model stored in the “functions” directory and the script for data analysis (“01_model_sharks.R”). The script includes a comparison of paleothermometer equations after Kolodny et al. (1983), Lécuyer et al. (2013), Longinelli & Nuti (1973), and (Pucéat et al. (2010) using the bulk δ18Op shark tooth bioapatite, simulated seawater temperature and δ18Ow values as prior inputs. While all paleothermometers estimate similar posterior bulk δ18Op close to empirical values, temperature estimates using the Pucéat et al. (2010) method are often the highest, generating estimates ~8°C higher than other equations. We therefore used the Lécuyer et al. (2013) paleothermomether for temperature estimates using δ18Op of shark bioapatite grouped by taxa because it: 1\) Provides consistent posterior temperature estimates relative to other equations (Longinelli & Nuti, 1973, Kolodny et al., 1983). 2\) provides temperature values from fish tooth specimens consistent with estimates of co-existing bivalves or brachiopod carbonate shells. The script provides annotation through libraries, statistical analysis, figures, and tables. **4 Software** **4.1 R** R and R Studio (R Development Core Team, 2024; RStudio Team, 2024) are required to run scripts included in the "d18O data and maps", “FTIR data”, and “Bayes_FEST_Temperautre Estimates” directories, which were created using versions 4.4.1 and 2024.04.02, respectively. Install the following libraries before running scripts: “cowplot” (Wilke, 2024), “colorspace” (Zeileis et al., 2020), “DescTools” (Signorell, 2024), “lattice” (Sarkar, 2008), “flextable” (Gohel & Skintzos, 2024), “ggh4x” (van den Brand, 2024), “ggnewscale” (Campitelli, 2024), “ggpubr” (Kassambara, 2023a), “ggspatial” (Dunnington, 2023), “ggstance” (Henry et al., 2024), “ggstar” (Xu, 2022), “greekLetters” (Kévin Allan Sales Rodrigues, 2023), “gridExtra” (Auguie, 2017), “mapdata” (code by Richard A. Becker & version by Ray Brownrigg., 2022); “mapproj” (for R by Ray Brownrigg et al., 2023), “maps” (code by Richard A. Becker et al., 2023), “ncdf4” (Pierce, 2023), “oce” (Kelley & Richards, 2023), “rasterVis” (Oscar Perpiñán & Robert Hijmans, 2023), “RColorBrewer” (Neuwirth, 2022), “rnaturalearth” (Massicotte & South, 2023), “rnaturalearthhires” (South et al., 2024),”rstatix” (Kassambara, 2023b), “scales” (Wickham et al., 2023), “tidyverse” (Wickham et al., 2019), “viridisLite” (Garnier et al., 2023). **4.2 Python** Python scripts, including “d18O Analysis Script.ipynb” and “NetCDF Plotting.ipynb”, utilize the Jupyter Notebook interactive ‘platform and are executed using Python version 3.9.16. Install the following libraries before running scripts: “xarray” (Hoyer & Joseph, 2017), “matplotlib” (Hunter, 2007), “cartopy” (Met Office, 2015). **5 References** Amenábar, C. R., Montes, M., Nozal, F., & Santillana, S. (2020). Dinoflagellate cysts of the la Meseta Formation (middle to late Eocene), Antarctic Peninsula: Implications for biostratigraphy, palaeoceanography and palaeoenvironment. *Geological Magazine*, *157*(3), 351–366. [https://doi.org/10.1017/S0016756819000591](https://doi.org/10.1017/S0016756819000591) Auguie, B. (2017). gridExtra: Miscellaneous Functions for “Grid” Graphics. Retrieved from [https://cran.r-project.org/package=gridExtra](https://cran.r-project.org/package=gridExtra) van den Brand, T. (2024). ggh4x: Hacks for “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggh4x](https://cran.r-project.org/package=ggh4x) Campitelli, E. (2024). ggnewscale: Multiple Fill and Colour Scales in “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggnewscale](https://cran.r-project.org/package=ggnewscale) code by Richard A. Becker, O. S., & version by Ray Brownrigg., A. R. W. R. (2022). mapdata: Extra Map Databases. Retrieved from [https://cran.r-project.org/package=mapdata](https://cran.r-project.org/package=mapdata) code by Richard A. Becker, O. S., version by Ray Brownrigg. Enhancements by Thomas P Minka, A. R. W. R., & Deckmyn., A. (2023). maps: Draw Geographical Maps. Retrieved from [https://cran.r-project.org/package=maps](https://cran.r-project.org/package=maps) Douglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W. P., Sluijs, A., et al. (2014). Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. *Proceedings of the National Academy of Sciences of the United States of America*, *111*(18), 6582–6587. [https://doi.org/10.1073/pnas.1321441111](https://doi.org/10.1073/pnas.1321441111) Dunnington, D. (2023). ggspatial: Spatial Data Framework for ggplot2. Retrieved from [https://cran.r-project.org/package=ggspatial](https://cran.r-project.org/package=ggspatial) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2016a). A new sawshark, Pristiophorus laevis, from the Eocene of Antarctica with comments on Pristiophorus lanceolatus. *Historical Biology*, *29*(6), 841–853. [https://doi.org/10.1080/08912963.2016.1252761](https://doi.org/10.1080/08912963.2016.1252761) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2016b). Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula. *Journal of Systematic Palaeontology*, *15*(12), 969–990. [https://doi.org/10.1080/14772019.2016.1266048](https://doi.org/10.1080/14772019.2016.1266048) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2017a). Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica. *Journal of South American Earth Sciences*, *78*, 175–189. [https://doi.org/10.1016/j.jsames.2017.07.006](https://doi.org/10.1016/j.jsames.2017.07.006) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2017b). New carcharhiniform sharks (Chondrichthyes, Elasmobranchii) from the early to middle Eocene of Seymour Island, Antarctic Peninsula. *Journal of Vertebrate Paleontology*, *37*(6). [https://doi.org/10.1080/02724634.2017.1371724](https://doi.org/10.1080/02724634.2017.1371724) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2019). Skates and rays (Elasmobranchii, Batomorphii) from the Eocene La Meseta and Submeseta formations, Seymour Island, Antarctica. *Historical Biology*, *31*(8), 1028–1044. [https://doi.org/10.1080/08912963.2017.1417403](https://doi.org/10.1080/08912963.2017.1417403) for R by Ray Brownrigg, D. M. P., Minka, T. P., & transition to Plan 9 codebase by Roger Bivand. (2023). mapproj: Map Projections. Retrieved from [https://cran.r-project.org/package=mapproj](https://cran.r-project.org/package=mapproj) Garnier, Simon, Ross, Noam, Rudis, Robert, et al. (2023). {viridis(Lite)} - Colorblind-Friendly Color Maps for R. [https://doi.org/10.5281/zenodo.4678327](https://doi.org/10.5281/zenodo.4678327) Gohel, D., & Skintzos, P. (2024). flextable: Functions for Tabular Reporting. Retrieved from [https://cran.r-project.org/package=flextable](https://cran.r-project.org/package=flextable) Griffiths, M. L., Eagle, R. A., Kim, S. L., Flores, R. J., Becker, M. A., IV, H. M. M., et al. (2023). Endothermic physiology of extinct megatooth sharks. *Proceedings of the National Academy of Sciences*, *120*(27), e2218153120. [https://doi.org/10.1073/PNAS.2218153120](https://doi.org/10.1073/PNAS.2218153120) Grunenwald, A., Keyser, C., Sautereau, A. M., Crubézy, E., Ludes, B., & Drouet, C. (2014). Revisiting carbonate quantification in apatite (bio)minerals: A validated FTIR methodology. *Journal of Archaeological Science*, *49*(1), 134–141. [https://doi.org/10.1016/j.jas.2014.05.004](https://doi.org/10.1016/j.jas.2014.05.004) Henry, L., Wickham, H., & Chang, W. (2024). ggstance: Horizontal “ggplot2” Components. Retrieved from [https://cran.r-project.org/package=ggstance](https://cran.r-project.org/package=ggstance) Hoyer, S., & Joseph, H. (2017). xarray: N-D labeled Arrays and Datasets in Python. *Journal of Open Research Software*, *5*(1), 17. [https://doi.org/10.5334/jors.148](https://doi.org/10.5334/jors.148) Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. *Computing in Science & Engineering*, *9*(3), 90–95. [https://doi.org/10.1109/MCSE.2007.55](https://doi.org/10.1109/MCSE.2007.55) Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson, R. B., & Moody, R. M. (2008). Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. *Bulletin of the Geological Society of America*, *120*(5–6), 659–678. [https://doi.org/10.1130/B26269.1](https://doi.org/10.1130/B26269.1) Judd, E. J., Ivany, L. C., DeConto, R. M., Halberstadt, A. R. W., Miklus, N. M., Junium, C. K., & Uveges, B. T. (2019). Seasonally Resolved Proxy Data From the Antarctic Peninsula Support a Heterogeneous Middle Eocene Southern Ocean. *Paleoceanography and Paleoclimatology*, *34*(5), 787–799. [https://doi.org/10.1029/2019PA003581](https://doi.org/10.1029/2019PA003581) Kassambara, A. (2023a). ggpubr: “ggplot2” Based Publication Ready Plots. Retrieved from [https://cran.r-project.org/package=ggpubr](https://cran.r-project.org/package=ggpubr) Kassambara, A. (2023b). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. Retrieved from [https://cran.r-project.org/package=rstatix](https://cran.r-project.org/package=rstatix) Kelley, D., & Richards, C. (2023). oce: Analysis of Oceanographic Data. Retrieved from [https://cran.r-project.org/package=oce](https://cran.r-project.org/package=oce) Kévin Allan Sales Rodrigues. (2023). greekLetters: routines for writing Greek letters and mathematical symbols on the RStudio and RGui. Retrieved from [https://cran.r-project.org/package=greekLetters](https://cran.r-project.org/package=greekLetters) Kolodny, Y., Luz, B., & Navon, O. (1983). Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite-rechecking the rules of the game. *Earth and Planetary Science Letters*, *64*(3), 398–404. [https://doi.org/10.1016/0012-821X(83)90100-0](https://doi.org/10.1016/0012-821X\(83\)90100-0) Kriwet, J. (2005). Additions to the Eocene selachian fauna of Antarctica with comments on Antarctic selachian diversity. *Journal of Vertebrate Paleontology*, *25*(1), 1–7. [https://doi.org/10.1671/0272-4634(2005)025\[0001:ATTESF\]2.0.CO;2](https://doi.org/10.1671/0272-4634\(2005\)025[0001:ATTESF]2.0.CO;2) Kriwet, J., Engelbrecht, A., Mörs, T., Reguero, M., & Pfaff, C. (2016). Ultimate Eocene (Priabonian) chondrichthyans (Holocephali, Elasmobranchii) of Antarctica. *Journal of Vertebrate Paleontology*, *36*(4). [https://doi.org/10.1080/02724634.2016.1160911](https://doi.org/10.1080/02724634.2016.1160911) Larocca Conte, G., Lopes, L. E., Mine, A. H., Trayler, R. B., & Kim, S. L. (2024). SPORA, a new silver phosphate precipitation protocol for oxygen isotope analysis of small, organic-rich bioapatite samples. *Chemical Geology*, *651*, 122000. [https://doi.org/10.1016/J.CHEMGEO.2024.122000](https://doi.org/10.1016/J.CHEMGEO.2024.122000) Lécuyer, C., Amiot, R., Touzeau, A., & Trotter, J. (2013). Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations. *Chemical Geology*, *347*, 217–226. [https://doi.org/10.1016/j.chemgeo.2013.03.008](https://doi.org/10.1016/j.chemgeo.2013.03.008) Long, D. J. (1992). Sharks from the La Meseta Formation (Eocene), Seymour Island, Antarctic Peninsula. *Journal of Vertebrate Paleontology*, *12*(1), 11–32. [https://doi.org/10.1080/02724634.1992.10011428](https://doi.org/10.1080/02724634.1992.10011428) Longinelli, A. (1965). Oxygen isotopic composition of orthophosphate from shells of living marine organisms. *Nature*, *207*(4998), 716–719. [https://doi.org/10.1038/207716a0](https://doi.org/10.1038/207716a0) Longinelli, A., & Nuti, S. (1973). Revised phosphate-water isotopic temperature scale. *Earth and Planetary Science Letters*, *19*(3), 373–376. [https://doi.org/10.1016/0012-821X(73)90088-5](https://doi.org/10.1016/0012-821X\(73\)90088-5) Marramá, G., Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2018). The southernmost occurrence of Brachycarcharias (Lamniformes, Odontaspididae) from the Eocene of Antarctica provides new information about the paleobiogeography and paleobiology of Paleogene sand tiger sharks. *Rivista Italiana Di Paleontologia e Stratigrafia*, *124*(2), 283–297. Massicotte, P., & South, A. (2023). rnaturalearth: World Map Data from Natural Earth. Retrieved from [https://cran.r-project.org/package=rnaturalearth](https://cran.r-project.org/package=rnaturalearth) Met Office. (2015). Cartopy: a cartographic python library with a Matplotlib interface. Exeter, Devon. Retrieved from [https://scitools.org.uk/cartopy](https://scitools.org.uk/cartopy) Mine, A. H., Waldeck, A., Olack, G., Hoerner, M. E., Alex, S., & Colman, A. S. (2017). Microprecipitation and δ18O analysis of phosphate for paleoclimate and biogeochemistry research. *Chemical Geology*, *460*(March), 1–14. [https://doi.org/10.1016/j.chemgeo.2017.03.032](https://doi.org/10.1016/j.chemgeo.2017.03.032) Montes, M., Nozal, F., Santillana, S., Marenssi, S., & Olivero, E. (2013). Mapa Geológico de Isla Marambio (Seymour), Antártida, escala 1:20,000. *Serie Cartográfica*. Neuwirth, E. (2022). RColorBrewer: ColorBrewer Palettes. Retrieved from [https://cran.r-project.org/package=RColorBrewer](https://cran.r-project.org/package=RColorBrewer) Oscar Perpiñán, & Robert Hijmans. (2023). rasterVis. Retrieved from [https://oscarperpinan.github.io/rastervis/](https://oscarperpinan.github.io/rastervis/) Pierce, D. (2023). ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. Retrieved from [https://cran.r-project.org/package=ncdf4](https://cran.r-project.org/package=ncdf4) Pucéat, E., Joachimski, M. M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., et al. (2010). Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. *Earth and Planetary Science Letters*, *298*(1–2), 135–142. [https://doi.org/10.1016/j.epsl.2010.07.034](https://doi.org/10.1016/j.epsl.2010.07.034) R Development Core Team. (2024). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Vienna, Austria. RStudio Team. (2024). RStudio: Integrated Development for R. Boston, MA: RStudio, PBC. Retrieved from [http://www.rstudio.com/](http://www.rstudio.com/). Sarkar, D. (2008). *Lattice: Multivariate Data Visualization with R*. New York: Springer. Retrieved from [http://lmdvr.r-forge.r-project.org](http://lmdvr.r-forge.r-project.org) Shemesh, A. (1990). Crystallinity and diagenesis of sedimentary apatites. *Geochimica et Cosmochimica Acta*, *54*(9), 2433–2438. [https://doi.org/10.1016/0016-7037(90)90230-I](https://doi.org/10.1016/0016-7037\(90\)90230-I) Signorell, A. (2024). DescTools: Tools for Descriptive Statistics. Retrieved from [https://cran.r-project.org/package=DescTools](https://cran.r-project.org/package=DescTools) South, A., Michael, S., & Massicotte, P. (2024). rnaturalearthhires: High Resolution World Vector Map Data from Natural Earth used in rnaturalearth. Retrieved from [https://github.com/ropensci/rnaturalearthhires](https://github.com/ropensci/rnaturalearthhires) Trayler, R. B., Landa, P. V., & Kim, S. L. (2023). Evaluating the efficacy of collagen isolation using stable isotope analysis and infrared spectroscopy. *Journal of Archaeological Science*, *151*, 105727. [https://doi.org/10.1016/j.jas.2023.105727](https://doi.org/10.1016/j.jas.2023.105727) Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al. (2019). Welcome to the {tidyverse}. *Journal of Open Source Software*, *4*(43), 1686. [https://doi.org/10.21105/joss.01686](https://doi.org/10.21105/joss.01686) Wickham, H., Pedersen, T. L., & Seidel, D. (2023). scales: Scale Functions for Visualization. Retrieved from [https://cran.r-project.org/package=scales](https://cran.r-project.org/package=scales) Wilke, C. O. (2024). cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” Retrieved from [https://cran.r-project.org/package=cowplot](https://cran.r-project.org/package=cowplot) Xu, S. (2022). ggstar: Multiple Geometric Shape Point Layer for “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggstar](https://cran.r-project.org/package=ggstar) Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., et al. (2020). {colorspace}: A Toolbox for Manipulating and Assessing Colors and Palettes. *Journal of Statistical Software*, *96*(1), 1–49. [https://doi.org/10.18637/jss.v096.i01](https://doi.org/10.18637/jss.v096.i01) Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C., & Noone, D. C. (2020). Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction. *Earth and Planetary Science Letters*, *537*, 116164. [https://doi.org/10.1016/j.epsl.2020.116164](https://doi.org/10.1016/j.epsl.2020.116164) Eocene climate cooling, driven by the falling pCO2 and tectonic changes in the Southern Ocean, impacted marine ecosystems. Sharks in high-latitude oceans, sensitive to these changes, offer insights into both environmental shifts and biological responses, yet few paleoecological studies exist. The Middle-to-Late Eocene units on Seymour Island, Antarctica, provide a rich, diverse fossil record, including sharks. We analyzed the oxygen isotope composition of phosphate from shark tooth bioapatite (δ18Op) and compared our results to co-occurring bivalves and predictions from an isotope-enabled global climate model to investigate habitat use and environmental conditions. Bulk δ18Op values (mean 22.0 ± 1.3‰) show no significant changes through the Eocene. Furthermore, the variation in bulk δ18Op values often exceeds that in simulated seasonal and regional values. Pelagic and benthic sharks exhibit similar δ18Op values across units but are offset relative to bivalve and modeled values. Some taxa suggest movements into warmer or more brackish waters (e.g., Striatolamia, Carcharias) or deeper, colder waters (e.g., Pristiophorus). Taxa like Raja and Squalus display no shift, tracking local conditions in Seymour Island. The lack of difference in δ18Op values between pelagic and benthic sharks in the Late Eocene could suggest a poorly stratified water column, inconsistent with a fully opened Drake Passage. Our findings demonstrate that shark tooth bioapatite tracks the preferred habitat conditions for individual taxa rather than recording environmental conditions where they are found. A lack of secular variation in δ18Op values says more about species ecology than the absence of regional or global environmental changes. See methods in Larocca Conte, G., Aleksinski, A., Liao, A., Kriwet, J., Mörs, T., Trayler, R. B., Ivany, L. C., Huber, M., Kim, S. L. (2024). Eocene Shark Teeth From Peninsular Antarctica: Windows to Habitat Use and Paleoceanography. Paleoceanography and Paleoclimatology, 39, e2024PA004965.

    DRYADarrow_drop_down
    DRYAD
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      DRYADarrow_drop_down
      DRYAD
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hoffmann, Roman; Dimitrova, Anna; Muttarak, Raya; Crespo Cuaresma, Jesus; +1 Authors

    Complete replication data and code for article "A Meta-Analysis of Country Level Studies on Environmental Change and Migration". The rdata file contains both the meta and country level data. The data is also saved separately as xlsx files.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Harvard Dataverse
    Dataset . 2020
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Harvard Dataverse
      Dataset . 2020
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Prof. Claude Pichard;

    Background and Aims: This study aims at evaluating the ease of use of the new calorimeter for the measurement of energy expenditure (EE) in intensive care unit (ICU) patients. EE in ICU patients is highly variable depending on the severity of the disease and treatments. Clinicians need to measure EE by indirect calorimetry (IC) to optimize nutritional support for the better clinical outcome. However, indirect calorimeters available on the market have insufficient accuracy for clinical and research use. Difficulties of handling and interpretation of results often limit IC in ICU patients. An accurate, easy-to-use calorimeter has been developed to meet these needs. The Study Device: The new calorimeter (Quark RMR 2.0, COSMED) is capable of IC measurements in mechanically ventilated patients without warm-up and limited calibration. The disposable in-line pneumotach flow meter and direct sampling of respiratory gas from the ventilator circuit enables the accurate measurement of oxygen consumption volume (VO2) and CO2 production volume (VCO2) to derive the energy expenditure. The software interface to manage the device and the collected data provides easy-to-use, user-friendly interface. This calorimeter bears an European Commission (EC) Conformity Mark, and will be used in the way it is intended to be used as described in the instruction manual. Currently used indirect calorimeters at each study center will be used as the comparator. This study will evaluate the ease of use of the new calorimeter (Quark RMR 2.0 (COSMED, Italy)) in intensive care unit (ICU) patients compared to currently used calorimeters (i.e. Quark RMR 1.0(COSMED, Italy) or Deltatrac Metabolic Monitor (Datex, Finland)), as well as the stability and the feasibility of the measurements in various clinically relevant situations. Time needed to prepare and start indirect calorimetry (IC) measurement will be compared as the measure of the ease of use of the calorimeter.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OpenTrialsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    OpenTrials
    Clinical Trial . 2016
    Data sources: OpenTrials
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    OpenTrials
    Clinical Trial . 2016
    Data sources: OpenTrials
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ClinicalTrials.gov
    Clinical Trial . 2016
    Data sources: ClinicalTrials.gov
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ClinicalTrials.gov
    Clinical Trial . 2016
    Data sources: ClinicalTrials.gov
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OpenTrialsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      OpenTrials
      Clinical Trial . 2016
      Data sources: OpenTrials
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      OpenTrials
      Clinical Trial . 2016
      Data sources: OpenTrials
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ClinicalTrials.gov
      Clinical Trial . 2016
      Data sources: ClinicalTrials.gov
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ClinicalTrials.gov
      Clinical Trial . 2016
      Data sources: ClinicalTrials.gov
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Thiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; +33 Authors

    This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility317
    visibilityviews317
    downloaddownloads197
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ausems, Anne; Kuepper, Nadja; Archuby, Diego; Braun, Christina; +15 Authors

    This data set describes the population dynamics of Wilson's Storm Petrels (Oceanites oceanicus) at King George Island (Isla 25 de Mayo, Antarctica) over a forty year period (1978 – 2020). It includes all available data on Wilson's Storm Petrels from two colonies: around the Argentinian Base Carlini (62°14′S, 58°40′W; CA, formerly called Base Jubany) and the Henryk Arctowski Polish Antarctic Station (62°09′S, 58°27′W; HA). Data on population productivity (number of nests, eggs, chicks and fledglings) was collected by regular visits to the colonies and searching for nest burrows, or monitoring of the egg or chick if found. Data on adult abundance and estimated age categories (i.e., presence of foot spots; Quillfeldt et al. (2000, doi:10.1007/s003000000167) were collected at CA by using the same size mistnet every study year in the same location within the breeding colony. Chicks were measured regularly (varying intervals depending on the study) at both CA and HA. Chick tarsus was measured using callipers (vernier or digital depending on the study year) to the nearest 0.1 mm, chick wing length was measured using wing rulers to the nearest 1 mm, and chick body mass was measured using mechanical or digital scales depending on the study year to the nearest 0.1 g. Chick growth rates were calculated based on the linear growth period following Ausems et al. (2020, doi:10.1016/j.scitotenv.2020.138768). Chick food loads (g) were recorded at CA and determined based on changes in chick body mass on consecutive days (Gladbach et al. (2009, doi:10.1007/s00300-009-0628-z); Kuepper et al. (2018, doi:10.1016/j.cbpa.2018.06.018). This study was further supported by the Erasmus+ programm and thee German Academic Exchange Service (DAAD)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEAarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2023
    Data sources: PANGAEA
    PANGAEA - Data Publisher for Earth and Environmental Science
    Collection . 2023
    License: CC BY SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEAarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2023
      Data sources: PANGAEA
      PANGAEA - Data Publisher for Earth and Environmental Science
      Collection . 2023
      License: CC BY SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    In an era of climate change, supply chain issues and the necessary transitions, green chemistry, green engineering and inherent safety offer possibilities for a more safe and resilient industry. A literature study with application to a pilot Organosolv lignocellulosic feedstock bioreactor should show possibilities and ways to strengthen sustainable and safer production. It highlights challenges in practical implementation like solvent selection, solvent recovery, intrinsically safe equipment and process intensification like membrane processes for saving energy. Process safety techniques should guide the way to and should help to find possible restrictions and opportunities for more resilient processes and a more resilient future. Keywords: process safety; green chemistry; organosolv; biorefinery; sustainability; solvent selection;

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mendeley Dataarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Mendeley Data
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Mendeley Data
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mendeley Dataarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Mendeley Data
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Mendeley Data
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: O'Reilly, Ryan; Cohen, Jed; Reichl, Johannes;

    Three data files are provided for Case Study 1 in the openENTRANCE project: Full_potential.V9.csv, metaData.Full_Potential.csv, and acheivable_NUTS2_summary.csv. The data covers 10 residential devices on the NUTS2 level for the EU27 + UK +TR + NO + CH from 2020-2050. The devices included are storage heater, water heater with storage capabilitites, air conditiong, heat circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier. Full_potential.V9.csv shows the NUTS2 level unadjusted loads for residential storage heater, water heater, air conditiong, circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier using representative hours from 2020-2050. The loads provided here have not been adjusted with the direct load participation rates (see paper for more details). More details on the dataset can be found in the metaData.Full_Potential.csv file. The acheivable_NUTS2_summary.csv shows the NUTS2 level acheivable direct load control potentials for the average hour in the respective year (years - 2020, 2022,2030,2040, 2050).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility26
    visibilityviews26
    downloaddownloads33
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The dataset consists of the code and data used for the preprint "Climate change contribution to the 2023 autumn temperature records in Vienna". It contains two objects: The station data of mean monthly temperature for Vienna Hohe-Warte from 1750 to 2023 (vienna_hohe-warte.csv), which also can be downloaded here: http://www.zamg.ac.at/histalp/dataset/station/csv.php. The code for modeling and producing the figures of the preprint (autumn_temperature.R).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
37,663 Research products
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Thyrring, Jakob; Wegeberg, Susse; Blicher, Martin E.; Krause-Jensen, Dorte; +6 Authors

    The data contains three supporting datasets: 1. Mid-intertidal data 2. Vertical transect data 3. GPS coordinates for all sites

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2020
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2020
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    Overview The following dataset presents the energy cycle characteristics for 5G/6G mobile systems supported by Renewable Energy Sources (RES) and/or Unmanned Aerial Vehicles (UAVs) and Reconfigurable Intelligent Surfaces (RISs). In addition, within the dataset, the energy gain related to the engagement of RES within the Radio Access Network (RAN) has also been distinguished. Scenario The considered network scenario includes 8 three- (_results_gcas.csv) or one-cell (_results_scas.csv & _results_kras.csv) base stations (BSs) placed within the Poznan city (surroundings of the old market) and supported by Renewable Energy Sources — photovoltaic panels (PVs) and/or wind turbines (WTs). The aforementioned base stations can be treated as stationary towers or mobile access points (e.g., drones/UAVs). Those latter have been additionally equipped with RIS devices, which are able to reflect and manipulate a radio signal to influence occurrences such as interferences, coverage, or human exposure. However, the use of RISs has been taken into account only to evaluate the impact of the engagement of such devices on the energy side of the mobile system, omitting the changes in radio characteristics. The network traffic has been assumed to be fixed (64 mobile users (UEs) with 100 Mbps downlink — DL, and 25 Mbps uplink — UL, per each), however, its density in specific parts of the city is modeled randomly for each simulation run. The simulation runs have been performed for 4 dates (vernal equinox, summer solstice, autumn equinox, winter solstice), each one from a different season of the year. The aim of such an approach was to highlight the impact of the time of the day and the year on the energy gain obtained thanks to enabling RES generators. The weather conditions assumed within the simulation are typical for the climate in Poland. Methodology The energy-cycle calculations (system's power consumption, renewable energy production, and excessive energy storage) have been based on the mathematical formulas from the scientific literature and performed within the digital simulation runs by using the Green Radio Access Network Design (GRAND) tool (developed by teams from the Ghent University & Poznan University of Technology). The UE-BS association process within the mobile system has been done by doing multi-objective optimization using the Gurobi software, which has taken into account parameters like path loss, predicted power consumption of BSs, and guaranteed DL & UL bit rates for UEs. Simulation setup The setup of the input parameters for used mathematical models (power consumption, energy generation, energy storage) has been done in accordance with the values attached within the delivered literature positions (cited within the publications included in the Related works section of the following dataset) and adjusted to the considered study. Furthermore, the data used to model the network environment (building distribution, coverage area, base stations' locations) as well as to predict weather conditions are the real data (for the year 2022) collected by the city hall of Poznan, one of the Polish mobile operators, and weather stations placed in Poznan, respectively. The number of simulation runs performed has been equal to 10 (each run has included energy-cycle calculations for 4 seasons of the year), with the time step of a single run set to 1 hour of the day. Results The results of the aforementioned investigations have been included in the attached files, which can be described as follows: File _results_gcas.csv The first column denotes the date (season of the year), for which the values have been obtained. The columns from second to fifth present observed values of the State of Charge (SoC) of a battery system (in %) for a single network cell on average in a time step. Those columns are the obtained values for the RAN, in which no RES, only PVs, only WTs, and both types of RES generators have been enabled, respectively. Files _results_scas.csv & _results_kras.csv The first column denotes the date (season of the year), for which the values have been obtained. The second and third columns denote the number of drone base station (DBS) exchanges within the wireless system on average in a particular time step, where no RES and only PVs are enabled, respectively. The fourth and fifth columns present the conventional (fossil-fuels-based) energy consumption (in kWh) for the whole system in a specific time step, in which no RES and only PVs are engaged for all the access nodes. The sixth column is the energy savings (in kWh) related to the use of RES generators within the mobile network. Furthermore, the seventh and eighth columns represent the amount of renewable energy harvested from the solar radiation in total and the peak value of this amount observed during the entire day, respectively. Acknowledgment More details about the conducted studies have been described within the attached papers (Related works section). The data has been collected within the COST CA10210 INTERACT. M. Deruyck is a Post-Doctoral Fellow of the FWO-V (Research Foundation – Flanders, ref: 12Z5621N). The work (including the following dataset preparation) by A. Samorzewski and A. Kliks was realized within project no. 2021/43/B/ST7/01365 funded by the National Science Center in Poland.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: ZENODO
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    ZENODO
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: ZENODO
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      ZENODO
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Larocca Conte, Gabriele; Aleksinski, Adam; Liao, Ashley; Kriwet, Jürgen; +5 Authors

    # Data from: Eocene Shark Teeth from Peninsular Antarctica: Windows to Habitat Use and Paleoceanography. [https://doi.org/10.5061/dryad.qz612jmq2](https://doi.org/10.5061/dryad.qz612jmq2) The repository folder includes scripts and spreadsheets for phosphate oxygen stable isotope (δ18Op) analysis measured from shark tooth biogenic apatite collected from the Eocene deposits of the La Meseta and Submeseta formations (West Antarctica, Seymour Island). It also contains Fourier-Transform Infrared Spectroscopy (FTIR) analysis, a Bayesian model for temperature estimates, and model output extraction scripts from the iCESM simulation for the Early Eocene (Zhu et al., 2020). Scripts and data are stored in specific folders on the type of analysis. All scripts are in R or Python language. **Usage notes** **1 "iCESM modeling scripts" directory** The folder includes scripts in Jupiter Notebook format for extracting and plotting iCESM seawater outputs for the Eocene. The folder includes two files: 1) “d18Ow Analysis Script.ipynb” - This is a Python script primarily using the XArray library, to import iCESM output from Zhu et al. (2020), calculating δ18Ow, and reorganizing the output into monthly time intervals along 25 m and 115 m depth slices, while also averaging output down to these depths; 2) “NetCDF Plotting.ipynb” - this is a Python script primarily using the XArray, Matplotlib, and Cartopy libraries. The script writes a single callable function that creates Matplotlib contour plots from iCESM history output. Variables include temperature, salinity, ideal age, oxygen isotopes, and neodymium isotopes, and map projections include Plate Carree, Mollweide, and orthographic (centering on the Drake Passage). Options are built to enable scale normalization or to set maximum and minimum values for data and select colormaps from a predefined selection of Matplotlib’s “Spectral”, “Viridis”, “Coolwarm”, “GNUplot2”, “PiYG”, “RdYlBu”, and “RdYlGn”. For further questions on model output scripts, please email Adam Aleksinski at [aaleksin@purdue.edu](https://datadryad.org/stash/dataset/doi:10.5061/aaleksin@purdue.edu). **2 "d18O data and maps" directory** The folder includes δ18Op of shark tooth bioapatite and other datasets to interpret shark paleoecology. These datasets include: · δ18Op of shark tooth bioapatite (“shark FEST d18Op.csv”). Isotope measurements were run at the Stable Isotope Ecosystem Laboratory of (SIELO) University of California, Merced (California, USA). · Reference silver phosphate material δ18Op for analytical accuracy and precision (“TCEA reference materials.csv"). Isotope measurements were run at the Stable Isotope Ecosystem Laboratory of (SIELO) University of California, Merced (California, USA). · Bulk and serially sampled δ18Oc data of co-occurring bivalves (Ivany et al., 2008; Judd et al., 2019) (“Ivany et al. 2008_bulk.csv” and “Judd et al., 2019_serial sampling.csv"). · iCESM model temperature and δ18Ow outputs at 3x and 6x pre-industrial CO2 levels for the Early Eocene (Zhu et al., 2020) (“SpinupX3_25m_Mean_Monthly.nc”, “SpinupX6_25m_Mean_Monthly.nc.”, and “CA_x3CO2.csv”). Simulations are integrated from the surface to 25 m. · δ18O values of invertebrate species published in Longinelli (1965) and Longinelli & Nuti (1973), used to convert bulk δ18Oc (V-SMOW) data of bivalves into δ18Op (V-SMOW) values after δ18Oc (V-PDB) - δ18Oc (V-SMOW) conversion found in Kim et al. (2015) (“d18O carbonate and phosphate references.csv”). · R script for data analysis ("d18O data and maps.Rmd”). The script provides annotation through libraries, instrumental accuracy and precision tests, tables, statistical analysis, figures, and model output extractions. . ("TELM_diversity.csv") displays diversity trends of chondrichthyans across TELMs in one of the main figures of the manuscript. **2.1 Dataset description** **shark FEST d18Op.csv** · *Sample_ID*: Identification number of tooth specimens. · *Other_ID*: Temporary identification number of tooth specimens. · *Taxon*: Species assigned to shark tooth specimens. · *TELM*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *d18Op*: Mean δ18Op values of silver phosphate crystals precipitated from shark tooth bioapatite. Specimens were run in triplicates, corrected, and standardized on the V-SMOW scale. · *sd*: Standard deviation of silver phosphate triplicate samples per specimen. · *Protocol*: Silver phosphate protocols used to precipitate crystals from shark tooth bioapatite. We adopted the Rapid UC (“UC_Rapid”) and the SPORA (“SPORA”) protocols after Mine et al. and (2017) Larocca Conte et al. (2024) based on the tooth specimen size and sampling strategy. Descriptions of the methods are included in the main manuscript. · *Environment*: Inferred shark habitat based on taxonomy classified as benthic or pelagic environment. · *Collection*: Institutional abbreviations of museum collections from which shark tooth specimens are housed. NRM-PZ is the abbreviation for the Swedish Natural History Museum (Stockholm, Sweden), PRI is the abbreviation for the Paleontological Research Institute (Ithaca, New York, United States), and UCMP is the University of California Museum of Paleontology (Berkeley, California, United States). **TCEA reference materials.csv** · *Identifier_1*: unique identifier number per sample. · *sample*: reference silver phosphate materials (USGS 80 and USGS 81). · *amount*: weight of samples in mg. · *Area 28*: peak area of mass 28 (12C16O). · *Area 30*: peak area of mass 30 (12C18O). · *d18O_corrected*: corrected δ18Op value of reference materials following drift correction, linearity correction, and 2-point calibration to report values on the V-SMOW scale. **Ivany et al. 2008_bulk.csv** · *Telm*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *Locality*: Locality code from which bivalves were collected. · *Genus*: Genera of bivalves. Specimens are assigned to *Cucullaea* and *Eurhomalea* genera. · *Line*: Sampling areas of specimens. The sampling strategy is described in Ivany et al. (2008). · *d13C*: δ13C values of specimens from sampled lines. Values are reported in the V-PDB scale. · *d18Oc_PDB*: δ18Oc values of specimens from sampled lines. Values are reported in the V-PDB scale. **Judd et al., 2019_serial sampling.csv** · *Horizon:* horizons of the TELM 5 unit (La Meseta Formation) from which bivalves were collected. Horizon 1 is stratigraphically the lowest, while horizon 4 is the highest (Judd et al., 2019). · *ID*: Identification number of specimens. · *Latitude*: Geographic coordinate where bivalve specimens were collected. · *Longitude*: Geographic coordinate where bivalve specimens were collected. · *Surface sampled*: Specific sampling area, indicating whether sampling occurred in the interior or exterior portion of shells. · *distance*: The distance from the umbo in mm from which sampling occurred along a single shell. · *d18Oc_PDB*: δ18Oc values of specimens from sampled areas of shells. Values are reported on the V-PDB scale. **SpinupX3_25m_Mean_Monthly.nc** See section 1 ("iCESM modeling scripts" directory, “d18Ow Analysis Script.ipynb” script) for a full description of the iCESM model output extraction. **SpinupX6_25m_Mean_Monthly.nc** See section 1 ("iCESM modeling scripts" directory, “d18Ow Analysis Script.ipynb” script) for a full description of the iCESM model output extraction. **CA_x3CO2.csv** · *lat*: Geographic coordinate where temperature and δ18Ow model values are extracted from the iCESM simulation scaled at 3x preindustrial CO2 levels (values averaged within a seawater column depth of 25 m). · *long*: Geographic coordinate where temperature and δ18Ow model values are extracted from the iCESM simulation scaled at 3x preindustrial CO2 levels (values averaged within a seawater column depth of 25 m). · *T_mean*: Simulated seawater temperature values in °C. · *d18Ow*: Simulated seawater δ18Ow values (V-SMOW). · *d18Op*: Simulated seawater δ18Op values (V-SMOW). Values were calculated by using seawater temperature and δ18Ow arrays following the paleothermometer equation after Lécuyer et al. (2013). **d18O carbonate and phosphate references.csv** · *species*: Species of invertebrate taxa. · *type*: Specimen type, including barnacles, brachiopods, crabs, and mollusks. · *depth*: Depth of seawater column where specimens were collected, reported in meters below sea level when specified. · *d18Op*: δ18Op values of invertebrate specimens (V-SMOW). · *d18Oc_PDB*: δ18Oc values of invertebrate specimens (V-PDB). · *Reference*: Citations from which data were taken to build the dataset (Longinelli, 1965; Longinelli & Nuti, 1973). **TELM diversity.csv** · *genus:* genera of sharks and rays compiled from literature (Engelbrecht et al., 2016a, 2016b, 2017a, 2017b, 2019; Kriwet, 2005; Kriwet et al., 2016; Long, 1992; Marramá et al., 2018). · *species*: species of sharks and rays compiled from literature (Engelbrecht et al., 2016a, 2016b, 2017a, 2017b, 2019; Kriwet, 2005; Kriwet et al., 2016; Long, 1992; Marramá et al., 2018). · *Environment*: Inferred shark habitat based on taxonomy classified as benthic or pelagic environment. · *TELM*: Stratigraphic units of La Meseta (TELM 1-5; ~44 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). **3 “FTIR data” directory** The folder includes FTIR acquisitions and data analysis scripts on reference materials and shark tooth bioapatite for quality checks to test diagenesis effects on δ18Op of sharks. The folder includes: · The R project file “apatite_ftir.Rproj”. This project file navigates through scripts for raw data processing and data analysis. The background of the raw data was processed following custom R functions from Trayler et al. (2023; [https://github.com/robintrayler/collagen_demineralization](https://github.com/robintrayler/collagen_demineralization)). · The “.Rproj.user” folder includes project-specific temporary files (e.g. auto-saved source documents, window-state, etc.) stored by the R project file “apatite_ftir.Rproj”. The folder may be hidden depending on directory view options. · The “raw data” directory stores spectra acquisitions as .dpt files. Spectra files are stored in the folders “apatite” and “calcite” based on the material type. Spectra were obtained in the 400 – 4000 cm⁻¹ range using a Bruker Vertex 70 Far-Infrared in ATR located at the Nuclear Magnetic Resonance Facility at the University of California Merced (California, USA). · The “processed” directory includes processed spectra stored as .csv files (“apatite_data.csv” and “calcite_data.csv”) following the background correction (Trayler et al., 2023) and processed infrared data from Larocca Conte et al. (2024) (“Larocca Conte et al._SPORA_apatite_data.csv”) from which the NIST SRM 120c spectrum was filtered. Infrared spectra data in “Larocca Conte et al._SPORA_apatite_data.csv” were obtained and corrected following the same methodologies mentioned above. · The “R” directory includes R scripts of customized source functions for background correction (Trayler et al., 2023; inspect the "functions" directory and the R script "0_process_data.R") and data analysis (“data_analysis.R”). The scripts provide annotation through libraries and functions used for data processing and analysis. · Additional datasets. The “data_FTIR_d18O.csv” includes infrared data and δ18Op values of specimens, while the “Grunenwald et al., 2014_CO3.csv” is the dataset after Grunenwald et al. (2014) used to predict carbonate content from the materials featured in this work. **3.1 Dataset description** Spreadsheets included in the “processed” directory The datasets “apatite_data.csv”, “calcite_data.csv”, and “Larocca Conte et al._SPORA_apatite_data.csv” are structured with the following variables: · *wavenumber*: infrared wavenumber in cm-1. · *absorbance*: infrared absorbance value. · *file_name:* .dpt file name from which infrared wavenumber and absorbance values were obtained following the background correction. **data_FTIR_d18O.csv** · *file_name:* .dpt file name from which infrared wavenumber and absorbance values were obtained following the background correction. · *v4PO4_565_wavenumber*: Wavenumber of maximum infrared absorbance around the first νPO4 band, usually at 565 cm-1. · *v4PO4_565*: Peak absorbance value of the first ν4PO4 band (~565 cm-1). · *v4PO4_valley_wavenumber*: Wavenumber of valley between ν4PO4 bands. · *v4PO4_valley*: Absorbance value of the valley between ν4PO4 bands. · *v4PO4_603_wavenumber*: Wavenumber of maximum infrared absorbance around the second ν4PO4 band, usually at 603 cm-1. · *v4PO4_603*: Peak absorbance value of the second ν4PO4 band (~603 cm-1). · *CI*: Crystallinity index calculated after equation provided in (Shemesh, 1990) as (*v4PO4_565* + *v4PO4_603* / *v4PO4_valley*) (i.e., the sum of peak absorbance of νPO4 bands divided by the absorbance value of the valley between peaks). · *material*: Material type of samples (i.e., standard material, enameloid, dentin sampled from the crown or root area of shark teeth, and enameloid mixed with dentin). · *AUC_v3PO4*: Area under the curve of the ν3PO4 and ν1PO4 bands where maximum absorbance is at ~1025 cm-1 and ~960 cm-1, respectively. · *AUC_v3CO3*: Area under the curves of Type-A and Type-B carbonate bands having maximum infrared absorbance at ~1410 (Type-B), ~1456 (Type-B), and ~1545 cm-1 (Type-A). · *v3CO3_v3PO4_ratio*: Ratio between area under the curves of carbonate and phosphate bands (i.e., *AUC_v3CO3* / *AUC_v3PO4*). · *CO3_wt*: Estimated mean carbonate content following the equation in Grunenwald et al. (2014) (i.e. *CO3_wt* = 28.4793 (±1.4803) *v3CO3_v3PO4_ratio* + 0.1808(±0.2710); R2 = 0.985). · *CO3_wt_sd*: Standard deviation of estimated carbonate content calculated by propagating the error around coefficients provided in the Grunenwald et al. (2014) equation (see full equation in *CO3_wt*). · *Taxon*: Species assigned to shark tooth specimens. · *TELM*: Stratigraphic units of La Meseta (TELM 2-5; ~45 to ~37 Ma) and Submeseta formations (TELMs 6 and 7; ~37 to ~34 Ma) (Amenábar et al., 2020; Douglas et al., 2014; Montes et al., 2013). · *d18Op*: Mean δ18Op values of silver phosphate crystals precipitated from shark tooth bioapatite. Specimens were run in triplicates, corrected, and standardized on the V-SMOW scale. · *sd*: Standard deviation of silver phosphate triplicate samples per specimen. · *Collection*: Institutional abbreviations of museum collections where shark tooth specimens are housed. Infrared spectra were obtained from a selected subset of tooth specimens in the care of the Swedish Natural History Museum (NRM-PZ; Stockholm, Sweden). **Grunenwald et al., 2014_CO3.csv** · *sample*: Sample code. · *material*: Material type of samples (i.e., standard material, bone, and enamel). · *v3CO3*: Area under the curves of Type-A and Type-B carbonate bands having maximum infrared absorbance at ~1410 (Type-B), ~1456 (Type-B), and ~1545 cm-1 (Type-A). · *v3PO4*: *AUC_v3PO4*: Area under the curve of the ν3PO4 and ν1PO4 bands where maximum absorbance is at ~1025 cm-1 and ~960 cm-1, respectively. · *v3CO3_v3PO4_ratio*: *v3CO3_v3PO4_ratio*: Ratio between area under the curves of carbonate and phosphate bands (i.e., *v3CO3* /*v3PO4*). · *CO3_wt*: Carbonate content measured via CO2 coulometry. Further details about the analytical measurements are found in Grunenwald et al. (2014). **4 “Bayes_FEST_Temperautre Estimates” directory** The folder includes the Bayesian approach used to estimate posterior seawater temperature, δ18Ow values from δ18Op of sharks bioapatite using a Bayesian approach modified after Griffiths et al. (2023). The original scripts used in Griffiths et al. (2023) are reposited here: [https://github.com/robintrayler/bayesian_phosphate](https://github.com/robintrayler/bayesian_phosphate). The directory includes: · The R project file “Bayes_FEST.Rproj”. This project file navigates through scripts for raw data analysis. · The “.Rproj.user” folder includes project-specific temporary files (e.g. auto-saved source documents, window-state, etc.) stored by the R project file “Bayes_FEST.Rproj”. The folder may be hidden depending on directory view options. · The “data” folder includes the spreadsheets for modeled seawater temperature and δ18Ow values (“CA_x3CO2.csv”) and δ18Op values of shark tooth bioapatite (“shark FEST d18Op.csv”) used as prior information for the Bayesian model. We refer to section 2.1 for the full description of spreadsheets. · The “R” folder includes customized functions for the Bayesian model stored in the “functions” directory and the script for data analysis (“01_model_sharks.R”). The script includes a comparison of paleothermometer equations after Kolodny et al. (1983), Lécuyer et al. (2013), Longinelli & Nuti (1973), and (Pucéat et al. (2010) using the bulk δ18Op shark tooth bioapatite, simulated seawater temperature and δ18Ow values as prior inputs. While all paleothermometers estimate similar posterior bulk δ18Op close to empirical values, temperature estimates using the Pucéat et al. (2010) method are often the highest, generating estimates ~8°C higher than other equations. We therefore used the Lécuyer et al. (2013) paleothermomether for temperature estimates using δ18Op of shark bioapatite grouped by taxa because it: 1\) Provides consistent posterior temperature estimates relative to other equations (Longinelli & Nuti, 1973, Kolodny et al., 1983). 2\) provides temperature values from fish tooth specimens consistent with estimates of co-existing bivalves or brachiopod carbonate shells. The script provides annotation through libraries, statistical analysis, figures, and tables. **4 Software** **4.1 R** R and R Studio (R Development Core Team, 2024; RStudio Team, 2024) are required to run scripts included in the "d18O data and maps", “FTIR data”, and “Bayes_FEST_Temperautre Estimates” directories, which were created using versions 4.4.1 and 2024.04.02, respectively. Install the following libraries before running scripts: “cowplot” (Wilke, 2024), “colorspace” (Zeileis et al., 2020), “DescTools” (Signorell, 2024), “lattice” (Sarkar, 2008), “flextable” (Gohel & Skintzos, 2024), “ggh4x” (van den Brand, 2024), “ggnewscale” (Campitelli, 2024), “ggpubr” (Kassambara, 2023a), “ggspatial” (Dunnington, 2023), “ggstance” (Henry et al., 2024), “ggstar” (Xu, 2022), “greekLetters” (Kévin Allan Sales Rodrigues, 2023), “gridExtra” (Auguie, 2017), “mapdata” (code by Richard A. Becker & version by Ray Brownrigg., 2022); “mapproj” (for R by Ray Brownrigg et al., 2023), “maps” (code by Richard A. Becker et al., 2023), “ncdf4” (Pierce, 2023), “oce” (Kelley & Richards, 2023), “rasterVis” (Oscar Perpiñán & Robert Hijmans, 2023), “RColorBrewer” (Neuwirth, 2022), “rnaturalearth” (Massicotte & South, 2023), “rnaturalearthhires” (South et al., 2024),”rstatix” (Kassambara, 2023b), “scales” (Wickham et al., 2023), “tidyverse” (Wickham et al., 2019), “viridisLite” (Garnier et al., 2023). **4.2 Python** Python scripts, including “d18O Analysis Script.ipynb” and “NetCDF Plotting.ipynb”, utilize the Jupyter Notebook interactive ‘platform and are executed using Python version 3.9.16. Install the following libraries before running scripts: “xarray” (Hoyer & Joseph, 2017), “matplotlib” (Hunter, 2007), “cartopy” (Met Office, 2015). **5 References** Amenábar, C. R., Montes, M., Nozal, F., & Santillana, S. (2020). Dinoflagellate cysts of the la Meseta Formation (middle to late Eocene), Antarctic Peninsula: Implications for biostratigraphy, palaeoceanography and palaeoenvironment. *Geological Magazine*, *157*(3), 351–366. [https://doi.org/10.1017/S0016756819000591](https://doi.org/10.1017/S0016756819000591) Auguie, B. (2017). gridExtra: Miscellaneous Functions for “Grid” Graphics. Retrieved from [https://cran.r-project.org/package=gridExtra](https://cran.r-project.org/package=gridExtra) van den Brand, T. (2024). ggh4x: Hacks for “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggh4x](https://cran.r-project.org/package=ggh4x) Campitelli, E. (2024). ggnewscale: Multiple Fill and Colour Scales in “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggnewscale](https://cran.r-project.org/package=ggnewscale) code by Richard A. Becker, O. S., & version by Ray Brownrigg., A. R. W. R. (2022). mapdata: Extra Map Databases. Retrieved from [https://cran.r-project.org/package=mapdata](https://cran.r-project.org/package=mapdata) code by Richard A. Becker, O. S., version by Ray Brownrigg. Enhancements by Thomas P Minka, A. R. W. R., & Deckmyn., A. (2023). maps: Draw Geographical Maps. Retrieved from [https://cran.r-project.org/package=maps](https://cran.r-project.org/package=maps) Douglas, P. M. J., Affek, H. P., Ivany, L. C., Houben, A. J. P., Sijp, W. P., Sluijs, A., et al. (2014). Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures. *Proceedings of the National Academy of Sciences of the United States of America*, *111*(18), 6582–6587. [https://doi.org/10.1073/pnas.1321441111](https://doi.org/10.1073/pnas.1321441111) Dunnington, D. (2023). ggspatial: Spatial Data Framework for ggplot2. Retrieved from [https://cran.r-project.org/package=ggspatial](https://cran.r-project.org/package=ggspatial) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2016a). A new sawshark, Pristiophorus laevis, from the Eocene of Antarctica with comments on Pristiophorus lanceolatus. *Historical Biology*, *29*(6), 841–853. [https://doi.org/10.1080/08912963.2016.1252761](https://doi.org/10.1080/08912963.2016.1252761) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2016b). Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula. *Journal of Systematic Palaeontology*, *15*(12), 969–990. [https://doi.org/10.1080/14772019.2016.1266048](https://doi.org/10.1080/14772019.2016.1266048) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2017a). Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica. *Journal of South American Earth Sciences*, *78*, 175–189. [https://doi.org/10.1016/j.jsames.2017.07.006](https://doi.org/10.1016/j.jsames.2017.07.006) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2017b). New carcharhiniform sharks (Chondrichthyes, Elasmobranchii) from the early to middle Eocene of Seymour Island, Antarctic Peninsula. *Journal of Vertebrate Paleontology*, *37*(6). [https://doi.org/10.1080/02724634.2017.1371724](https://doi.org/10.1080/02724634.2017.1371724) Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2019). Skates and rays (Elasmobranchii, Batomorphii) from the Eocene La Meseta and Submeseta formations, Seymour Island, Antarctica. *Historical Biology*, *31*(8), 1028–1044. [https://doi.org/10.1080/08912963.2017.1417403](https://doi.org/10.1080/08912963.2017.1417403) for R by Ray Brownrigg, D. M. P., Minka, T. P., & transition to Plan 9 codebase by Roger Bivand. (2023). mapproj: Map Projections. Retrieved from [https://cran.r-project.org/package=mapproj](https://cran.r-project.org/package=mapproj) Garnier, Simon, Ross, Noam, Rudis, Robert, et al. (2023). {viridis(Lite)} - Colorblind-Friendly Color Maps for R. [https://doi.org/10.5281/zenodo.4678327](https://doi.org/10.5281/zenodo.4678327) Gohel, D., & Skintzos, P. (2024). flextable: Functions for Tabular Reporting. Retrieved from [https://cran.r-project.org/package=flextable](https://cran.r-project.org/package=flextable) Griffiths, M. L., Eagle, R. A., Kim, S. L., Flores, R. J., Becker, M. A., IV, H. M. M., et al. (2023). Endothermic physiology of extinct megatooth sharks. *Proceedings of the National Academy of Sciences*, *120*(27), e2218153120. [https://doi.org/10.1073/PNAS.2218153120](https://doi.org/10.1073/PNAS.2218153120) Grunenwald, A., Keyser, C., Sautereau, A. M., Crubézy, E., Ludes, B., & Drouet, C. (2014). Revisiting carbonate quantification in apatite (bio)minerals: A validated FTIR methodology. *Journal of Archaeological Science*, *49*(1), 134–141. [https://doi.org/10.1016/j.jas.2014.05.004](https://doi.org/10.1016/j.jas.2014.05.004) Henry, L., Wickham, H., & Chang, W. (2024). ggstance: Horizontal “ggplot2” Components. Retrieved from [https://cran.r-project.org/package=ggstance](https://cran.r-project.org/package=ggstance) Hoyer, S., & Joseph, H. (2017). xarray: N-D labeled Arrays and Datasets in Python. *Journal of Open Research Software*, *5*(1), 17. [https://doi.org/10.5334/jors.148](https://doi.org/10.5334/jors.148) Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. *Computing in Science & Engineering*, *9*(3), 90–95. [https://doi.org/10.1109/MCSE.2007.55](https://doi.org/10.1109/MCSE.2007.55) Ivany, L. C., Lohmann, K. C., Hasiuk, F., Blake, D. B., Glass, A., Aronson, R. B., & Moody, R. M. (2008). Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. *Bulletin of the Geological Society of America*, *120*(5–6), 659–678. [https://doi.org/10.1130/B26269.1](https://doi.org/10.1130/B26269.1) Judd, E. J., Ivany, L. C., DeConto, R. M., Halberstadt, A. R. W., Miklus, N. M., Junium, C. K., & Uveges, B. T. (2019). Seasonally Resolved Proxy Data From the Antarctic Peninsula Support a Heterogeneous Middle Eocene Southern Ocean. *Paleoceanography and Paleoclimatology*, *34*(5), 787–799. [https://doi.org/10.1029/2019PA003581](https://doi.org/10.1029/2019PA003581) Kassambara, A. (2023a). ggpubr: “ggplot2” Based Publication Ready Plots. Retrieved from [https://cran.r-project.org/package=ggpubr](https://cran.r-project.org/package=ggpubr) Kassambara, A. (2023b). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. Retrieved from [https://cran.r-project.org/package=rstatix](https://cran.r-project.org/package=rstatix) Kelley, D., & Richards, C. (2023). oce: Analysis of Oceanographic Data. Retrieved from [https://cran.r-project.org/package=oce](https://cran.r-project.org/package=oce) Kévin Allan Sales Rodrigues. (2023). greekLetters: routines for writing Greek letters and mathematical symbols on the RStudio and RGui. Retrieved from [https://cran.r-project.org/package=greekLetters](https://cran.r-project.org/package=greekLetters) Kolodny, Y., Luz, B., & Navon, O. (1983). Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite-rechecking the rules of the game. *Earth and Planetary Science Letters*, *64*(3), 398–404. [https://doi.org/10.1016/0012-821X(83)90100-0](https://doi.org/10.1016/0012-821X\(83\)90100-0) Kriwet, J. (2005). Additions to the Eocene selachian fauna of Antarctica with comments on Antarctic selachian diversity. *Journal of Vertebrate Paleontology*, *25*(1), 1–7. [https://doi.org/10.1671/0272-4634(2005)025\[0001:ATTESF\]2.0.CO;2](https://doi.org/10.1671/0272-4634\(2005\)025[0001:ATTESF]2.0.CO;2) Kriwet, J., Engelbrecht, A., Mörs, T., Reguero, M., & Pfaff, C. (2016). Ultimate Eocene (Priabonian) chondrichthyans (Holocephali, Elasmobranchii) of Antarctica. *Journal of Vertebrate Paleontology*, *36*(4). [https://doi.org/10.1080/02724634.2016.1160911](https://doi.org/10.1080/02724634.2016.1160911) Larocca Conte, G., Lopes, L. E., Mine, A. H., Trayler, R. B., & Kim, S. L. (2024). SPORA, a new silver phosphate precipitation protocol for oxygen isotope analysis of small, organic-rich bioapatite samples. *Chemical Geology*, *651*, 122000. [https://doi.org/10.1016/J.CHEMGEO.2024.122000](https://doi.org/10.1016/J.CHEMGEO.2024.122000) Lécuyer, C., Amiot, R., Touzeau, A., & Trotter, J. (2013). Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations. *Chemical Geology*, *347*, 217–226. [https://doi.org/10.1016/j.chemgeo.2013.03.008](https://doi.org/10.1016/j.chemgeo.2013.03.008) Long, D. J. (1992). Sharks from the La Meseta Formation (Eocene), Seymour Island, Antarctic Peninsula. *Journal of Vertebrate Paleontology*, *12*(1), 11–32. [https://doi.org/10.1080/02724634.1992.10011428](https://doi.org/10.1080/02724634.1992.10011428) Longinelli, A. (1965). Oxygen isotopic composition of orthophosphate from shells of living marine organisms. *Nature*, *207*(4998), 716–719. [https://doi.org/10.1038/207716a0](https://doi.org/10.1038/207716a0) Longinelli, A., & Nuti, S. (1973). Revised phosphate-water isotopic temperature scale. *Earth and Planetary Science Letters*, *19*(3), 373–376. [https://doi.org/10.1016/0012-821X(73)90088-5](https://doi.org/10.1016/0012-821X\(73\)90088-5) Marramá, G., Engelbrecht, A., Mörs, T., Reguero, M. A., & Kriwet, J. (2018). The southernmost occurrence of Brachycarcharias (Lamniformes, Odontaspididae) from the Eocene of Antarctica provides new information about the paleobiogeography and paleobiology of Paleogene sand tiger sharks. *Rivista Italiana Di Paleontologia e Stratigrafia*, *124*(2), 283–297. Massicotte, P., & South, A. (2023). rnaturalearth: World Map Data from Natural Earth. Retrieved from [https://cran.r-project.org/package=rnaturalearth](https://cran.r-project.org/package=rnaturalearth) Met Office. (2015). Cartopy: a cartographic python library with a Matplotlib interface. Exeter, Devon. Retrieved from [https://scitools.org.uk/cartopy](https://scitools.org.uk/cartopy) Mine, A. H., Waldeck, A., Olack, G., Hoerner, M. E., Alex, S., & Colman, A. S. (2017). Microprecipitation and δ18O analysis of phosphate for paleoclimate and biogeochemistry research. *Chemical Geology*, *460*(March), 1–14. [https://doi.org/10.1016/j.chemgeo.2017.03.032](https://doi.org/10.1016/j.chemgeo.2017.03.032) Montes, M., Nozal, F., Santillana, S., Marenssi, S., & Olivero, E. (2013). Mapa Geológico de Isla Marambio (Seymour), Antártida, escala 1:20,000. *Serie Cartográfica*. Neuwirth, E. (2022). RColorBrewer: ColorBrewer Palettes. Retrieved from [https://cran.r-project.org/package=RColorBrewer](https://cran.r-project.org/package=RColorBrewer) Oscar Perpiñán, & Robert Hijmans. (2023). rasterVis. Retrieved from [https://oscarperpinan.github.io/rastervis/](https://oscarperpinan.github.io/rastervis/) Pierce, D. (2023). ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. Retrieved from [https://cran.r-project.org/package=ncdf4](https://cran.r-project.org/package=ncdf4) Pucéat, E., Joachimski, M. M., Bouilloux, A., Monna, F., Bonin, A., Motreuil, S., et al. (2010). Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. *Earth and Planetary Science Letters*, *298*(1–2), 135–142. [https://doi.org/10.1016/j.epsl.2010.07.034](https://doi.org/10.1016/j.epsl.2010.07.034) R Development Core Team. (2024). A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Vienna, Austria. RStudio Team. (2024). RStudio: Integrated Development for R. Boston, MA: RStudio, PBC. Retrieved from [http://www.rstudio.com/](http://www.rstudio.com/). Sarkar, D. (2008). *Lattice: Multivariate Data Visualization with R*. New York: Springer. Retrieved from [http://lmdvr.r-forge.r-project.org](http://lmdvr.r-forge.r-project.org) Shemesh, A. (1990). Crystallinity and diagenesis of sedimentary apatites. *Geochimica et Cosmochimica Acta*, *54*(9), 2433–2438. [https://doi.org/10.1016/0016-7037(90)90230-I](https://doi.org/10.1016/0016-7037\(90\)90230-I) Signorell, A. (2024). DescTools: Tools for Descriptive Statistics. Retrieved from [https://cran.r-project.org/package=DescTools](https://cran.r-project.org/package=DescTools) South, A., Michael, S., & Massicotte, P. (2024). rnaturalearthhires: High Resolution World Vector Map Data from Natural Earth used in rnaturalearth. Retrieved from [https://github.com/ropensci/rnaturalearthhires](https://github.com/ropensci/rnaturalearthhires) Trayler, R. B., Landa, P. V., & Kim, S. L. (2023). Evaluating the efficacy of collagen isolation using stable isotope analysis and infrared spectroscopy. *Journal of Archaeological Science*, *151*, 105727. [https://doi.org/10.1016/j.jas.2023.105727](https://doi.org/10.1016/j.jas.2023.105727) Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., et al. (2019). Welcome to the {tidyverse}. *Journal of Open Source Software*, *4*(43), 1686. [https://doi.org/10.21105/joss.01686](https://doi.org/10.21105/joss.01686) Wickham, H., Pedersen, T. L., & Seidel, D. (2023). scales: Scale Functions for Visualization. Retrieved from [https://cran.r-project.org/package=scales](https://cran.r-project.org/package=scales) Wilke, C. O. (2024). cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2.” Retrieved from [https://cran.r-project.org/package=cowplot](https://cran.r-project.org/package=cowplot) Xu, S. (2022). ggstar: Multiple Geometric Shape Point Layer for “ggplot2.” Retrieved from [https://cran.r-project.org/package=ggstar](https://cran.r-project.org/package=ggstar) Zeileis, A., Fisher, J. C., Hornik, K., Ihaka, R., McWhite, C. D., Murrell, P., et al. (2020). {colorspace}: A Toolbox for Manipulating and Assessing Colors and Palettes. *Journal of Statistical Software*, *96*(1), 1–49. [https://doi.org/10.18637/jss.v096.i01](https://doi.org/10.18637/jss.v096.i01) Zhu, J., Poulsen, C. J., Otto-Bliesner, B. L., Liu, Z., Brady, E. C., & Noone, D. C. (2020). Simulation of early Eocene water isotopes using an Earth system model and its implication for past climate reconstruction. *Earth and Planetary Science Letters*, *537*, 116164. [https://doi.org/10.1016/j.epsl.2020.116164](https://doi.org/10.1016/j.epsl.2020.116164) Eocene climate cooling, driven by the falling pCO2 and tectonic changes in the Southern Ocean, impacted marine ecosystems. Sharks in high-latitude oceans, sensitive to these changes, offer insights into both environmental shifts and biological responses, yet few paleoecological studies exist. The Middle-to-Late Eocene units on Seymour Island, Antarctica, provide a rich, diverse fossil record, including sharks. We analyzed the oxygen isotope composition of phosphate from shark tooth bioapatite (δ18Op) and compared our results to co-occurring bivalves and predictions from an isotope-enabled global climate model to investigate habitat use and environmental conditions. Bulk δ18Op values (mean 22.0 ± 1.3‰) show no significant changes through the Eocene. Furthermore, the variation in bulk δ18Op values often exceeds that in simulated seasonal and regional values. Pelagic and benthic sharks exhibit similar δ18Op values across units but are offset relative to bivalve and modeled values. Some taxa suggest movements into warmer or more brackish waters (e.g., Striatolamia, Carcharias) or deeper, colder waters (e.g., Pristiophorus). Taxa like Raja and Squalus display no shift, tracking local conditions in Seymour Island. The lack of difference in δ18Op values between pelagic and benthic sharks in the Late Eocene could suggest a poorly stratified water column, inconsistent with a fully opened Drake Passage. Our findings demonstrate that shark tooth bioapatite tracks the preferred habitat conditions for individual taxa rather than recording environmental conditions where they are found. A lack of secular variation in δ18Op values says more about species ecology than the absence of regional or global environmental changes. See methods in Larocca Conte, G., Aleksinski, A., Liao, A., Kriwet, J., Mörs, T., Trayler, R. B., Ivany, L. C., Huber, M., Kim, S. L. (2024). Eocene Shark Teeth From Peninsular Antarctica: Windows to Habitat Use and Paleoceanography. Paleoceanography and Paleoclimatology, 39, e2024PA004965.

    DRYADarrow_drop_down
    DRYAD
    Dataset . 2024
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      DRYADarrow_drop_down
      DRYAD
      Dataset . 2024
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hoffmann, Roman; Dimitrova, Anna; Muttarak, Raya; Crespo Cuaresma, Jesus; +1 Authors

    Complete replication data and code for article "A Meta-Analysis of Country Level Studies on Environmental Change and Migration". The rdata file contains both the meta and country level data. The data is also saved separately as xlsx files.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Harvard Dataverse
    Dataset . 2020
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Harvard Dataversearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Harvard Dataverse
      Dataset . 2020
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Prof. Claude Pichard;

    Background and Aims: This study aims at evaluating the ease of use of the new calorimeter for the measurement of energy expenditure (EE) in intensive care unit (ICU) patients. EE in ICU patients is highly variable depending on the severity of the disease and treatments. Clinicians need to measure EE by indirect calorimetry (IC) to optimize nutritional support for the better clinical outcome. However, indirect calorimeters available on the market have insufficient accuracy for clinical and research use. Difficulties of handling and interpretation of results often limit IC in ICU patients. An accurate, easy-to-use calorimeter has been developed to meet these needs. The Study Device: The new calorimeter (Quark RMR 2.0, COSMED) is capable of IC measurements in mechanically ventilated patients without warm-up and limited calibration. The disposable in-line pneumotach flow meter and direct sampling of respiratory gas from the ventilator circuit enables the accurate measurement of oxygen consumption volume (VO2) and CO2 production volume (VCO2) to derive the energy expenditure. The software interface to manage the device and the collected data provides easy-to-use, user-friendly interface. This calorimeter bears an European Commission (EC) Conformity Mark, and will be used in the way it is intended to be used as described in the instruction manual. Currently used indirect calorimeters at each study center will be used as the comparator. This study will evaluate the ease of use of the new calorimeter (Quark RMR 2.0 (COSMED, Italy)) in intensive care unit (ICU) patients compared to currently used calorimeters (i.e. Quark RMR 1.0(COSMED, Italy) or Deltatrac Metabolic Monitor (Datex, Finland)), as well as the stability and the feasibility of the measurements in various clinically relevant situations. Time needed to prepare and start indirect calorimetry (IC) measurement will be compared as the measure of the ease of use of the calorimeter.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OpenTrialsarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    OpenTrials
    Clinical Trial . 2016
    Data sources: OpenTrials
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    OpenTrials
    Clinical Trial . 2016
    Data sources: OpenTrials
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ClinicalTrials.gov
    Clinical Trial . 2016
    Data sources: ClinicalTrials.gov
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ClinicalTrials.gov
    Clinical Trial . 2016
    Data sources: ClinicalTrials.gov
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OpenTrialsarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      OpenTrials
      Clinical Trial . 2016
      Data sources: OpenTrials
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      OpenTrials
      Clinical Trial . 2016
      Data sources: OpenTrials
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ClinicalTrials.gov
      Clinical Trial . 2016
      Data sources: ClinicalTrials.gov
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ClinicalTrials.gov
      Clinical Trial . 2016
      Data sources: ClinicalTrials.gov
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Thiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; +33 Authors

    This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility317
    visibilityviews317
    downloaddownloads197
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ausems, Anne; Kuepper, Nadja; Archuby, Diego; Braun, Christina; +15 Authors

    This data set describes the population dynamics of Wilson's Storm Petrels (Oceanites oceanicus) at King George Island (Isla 25 de Mayo, Antarctica) over a forty year period (1978 – 2020). It includes all available data on Wilson's Storm Petrels from two colonies: around the Argentinian Base Carlini (62°14′S, 58°40′W; CA, formerly called Base Jubany) and the Henryk Arctowski Polish Antarctic Station (62°09′S, 58°27′W; HA). Data on population productivity (number of nests, eggs, chicks and fledglings) was collected by regular visits to the colonies and searching for nest burrows, or monitoring of the egg or chick if found. Data on adult abundance and estimated age categories (i.e., presence of foot spots; Quillfeldt et al. (2000, doi:10.1007/s003000000167) were collected at CA by using the same size mistnet every study year in the same location within the breeding colony. Chicks were measured regularly (varying intervals depending on the study) at both CA and HA. Chick tarsus was measured using callipers (vernier or digital depending on the study year) to the nearest 0.1 mm, chick wing length was measured using wing rulers to the nearest 1 mm, and chick body mass was measured using mechanical or digital scales depending on the study year to the nearest 0.1 g. Chick growth rates were calculated based on the linear growth period following Ausems et al. (2020, doi:10.1016/j.scitotenv.2020.138768). Chick food loads (g) were recorded at CA and determined based on changes in chick body mass on consecutive days (Gladbach et al. (2009, doi:10.1007/s00300-009-0628-z); Kuepper et al. (2018, doi:10.1016/j.cbpa.2018.06.018). This study was further supported by the Erasmus+ programm and thee German Academic Exchange Service (DAAD)

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEAarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    PANGAEA
    Dataset . 2023
    Data sources: PANGAEA
    PANGAEA - Data Publisher for Earth and Environmental Science
    Collection . 2023
    License: CC BY SA
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PANGAEAarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      PANGAEA
      Dataset . 2023
      Data sources: PANGAEA
      PANGAEA - Data Publisher for Earth and Environmental Science
      Collection . 2023
      License: CC BY SA
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    In an era of climate change, supply chain issues and the necessary transitions, green chemistry, green engineering and inherent safety offer possibilities for a more safe and resilient industry. A literature study with application to a pilot Organosolv lignocellulosic feedstock bioreactor should show possibilities and ways to strengthen sustainable and safer production. It highlights challenges in practical implementation like solvent selection, solvent recovery, intrinsically safe equipment and process intensification like membrane processes for saving energy. Process safety techniques should guide the way to and should help to find possible restrictions and opportunities for more resilient processes and a more resilient future. Keywords: process safety; green chemistry; organosolv; biorefinery; sustainability; solvent selection;

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mendeley Dataarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Mendeley Data
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Mendeley Data
    Dataset . 2023
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mendeley Dataarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Mendeley Data
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Mendeley Data
      Dataset . 2023
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: O'Reilly, Ryan; Cohen, Jed; Reichl, Johannes;

    Three data files are provided for Case Study 1 in the openENTRANCE project: Full_potential.V9.csv, metaData.Full_Potential.csv, and acheivable_NUTS2_summary.csv. The data covers 10 residential devices on the NUTS2 level for the EU27 + UK +TR + NO + CH from 2020-2050. The devices included are storage heater, water heater with storage capabilitites, air conditiong, heat circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier. Full_potential.V9.csv shows the NUTS2 level unadjusted loads for residential storage heater, water heater, air conditiong, circulation pump, air-to-air heat pump, refreigeration (includes refrigerators and freezers), dish washer, washing machine, and tumble drier using representative hours from 2020-2050. The loads provided here have not been adjusted with the direct load participation rates (see paper for more details). More details on the dataset can be found in the metaData.Full_Potential.csv file. The acheivable_NUTS2_summary.csv shows the NUTS2 level acheivable direct load control potentials for the average hour in the respective year (years - 2020, 2022,2030,2040, 2050).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC BY
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility26
    visibilityviews26
    downloaddownloads33
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC BY
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

    The dataset consists of the code and data used for the preprint "Climate change contribution to the 2023 autumn temperature records in Vienna". It contains two objects: The station data of mean monthly temperature for Vienna Hohe-Warte from 1750 to 2023 (vienna_hohe-warte.csv), which also can be downloaded here: http://www.zamg.ac.at/histalp/dataset/station/csv.php. The code for modeling and producing the figures of the preprint (autumn_temperature.R).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: ZENODO
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: ZENODO
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.