- home
- Advanced Search
- Energy Research
- 2021-2025
- PL
- FR
- AT
- Energies
- Energy Research
- 2021-2025
- PL
- FR
- AT
- Energies
description Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Marcin Dębowski;
Marcin Dębowski
Marcin Dębowski in OpenAIREMarcin Zieliński;
Marcin Zieliński
Marcin Zieliński in OpenAIREJoanna Kazimierowicz;
Joanna Kazimierowicz
Joanna Kazimierowicz in OpenAIREAnna Nowicka;
+1 AuthorsAnna Nowicka
Anna Nowicka in OpenAIREMarcin Dębowski;
Marcin Dębowski
Marcin Dębowski in OpenAIREMarcin Zieliński;
Marcin Zieliński
Marcin Zieliński in OpenAIREJoanna Kazimierowicz;
Joanna Kazimierowicz
Joanna Kazimierowicz in OpenAIREAnna Nowicka;
Anna Nowicka
Anna Nowicka in OpenAIREMagda Dudek;
Magda Dudek
Magda Dudek in OpenAIREdoi: 10.3390/en17040922
The characteristics of excess aerobic granular sludge, related to its structure and chemical composition, limit the efficiency of anaerobic digestion. For this reason, pre-treatment methods and compositions with other organic substrates are used. In earlier work, no attempt was made to intensify the methane fermentation of the excess aerobic granular sludge by adding fatty waste materials. The aim of the research was to determine the effects of co-digestion of pre-hydrodynamically cavitated aerobic granular sludge with waste fats on the efficiency of methane fermentation under mesophilic and thermophilic conditions. The addition of waste fats improved the C/N ratio and increased its value to 19. Under mesophilic conditions, the highest effects were observed when the proportion of volatile solids from waste fats was 25%. The amount of biogas produced increased by 17.85% and CH4 by 19.85% compared to the control. The greatest effects were observed in thermophilic anaerobic digestion at 55 °C, where a 15% waste fat content in volatile solids was ensured. This resulted in the production of 1278.2 ± 40.2 mL/gVS biogas and 889.4 ± 29.7 mL/gVS CH4. The CH4 content of the biogas was 69.6 ± 1.3%. The increase in biogas and CH4 yield compared to pure aerobic granular sludge anaerobic digestion was 34.4% and 40.1%, respectively. An increase in the proportion of waste fats in the substrate had no significant effect on the efficiency of methane fermentation. Strong positive correlations (R2 > 0.9) were observed between biogas and CH4 production and the C/N ratio and VS concentration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17040922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17040922&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Andrzej Kubik;
Andrzej Kubik
Andrzej Kubik in OpenAIREKatarzyna Turoń;
Katarzyna Turoń
Katarzyna Turoń in OpenAIREPiotr Folęga;
Piotr Folęga
Piotr Folęga in OpenAIREFeng Chen;
Feng Chen
Feng Chen in OpenAIREdoi: 10.3390/en16052185
Car-sharing services are developing at an ever-increasing pace. Taking into account the reduction of carbon dioxide emissions and pursuit of the sustainable development of transport, implementing electric cars in car-sharing fleets is being proposed. On the one hand, these types of vehicles are referred to as emission-free, but on the other hand, their environmental friendliness is questionable due to the emission of carbon dioxide during the production of energy to power them. Although many scientific papers are devoted to the issue of reducing emissions through car sharing, there is a research gap concerning the real production of carbon dioxide by car-sharing vehicles during car-sharing trips. To fill this research gap, the objective of the article was to analyze the actual level of carbon dioxide emissions from combustion and electric vehicles from car-sharing systems produced when renting rides. The test results showed that the electric car turned out to be significantly less emitting. The use of electric vehicles in car-sharing fleets can reduce carbon dioxide emissions from 14% to 65% compared to using cars with internal combustion engines. However, the key role during car-sharing trips is played by the driving style of the drivers, which has been omitted from the literature to date. This should be properly regulated by service providers and focus on the proper use of energy from electric vehicle batteries, especially at low temperatures. The article provides support for operators planning to modernize their fleet of vehicles and fills the research gap concerning car-sharing emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Piotr Arabas;
Piotr Arabas
Piotr Arabas in OpenAIRETomasz Jóźwik;
Tomasz Jóźwik
Tomasz Jóźwik in OpenAIREEwa Niewiadomska-Szynkiewicz;
Ewa Niewiadomska-Szynkiewicz
Ewa Niewiadomska-Szynkiewicz in OpenAIREdoi: 10.3390/en16104136
This paper addresses the energy conservation problem in computing systems. The focus is on energy-efficient routing protocols. We formulated and solved a network-wide optimization problem for calculating energy-aware routing for the recommended network configuration. Considering the complexity of the mathematical models of data center networks and the limitations of calculating routing by solving large-scale optimization problems, and methods described in the literature, we propose an alternative solution. We designed and developed several efficient heuristics for equal-cost multipath (ECMP) and Valiant routing that reduce the energy consumption in the computer network interconnecting computing servers. Implementing these heuristics enables the selection of routing paths and relay nodes based on current and predicted internal network load. The utility and efficiency of our methods were verified by simulation. The test cases were carried out on several synthetic network topologies, giving encouraging results. Similar results of using our efficient heuristic algorithm and solving the optimization task confirmed the usability and effectiveness of our solution. Thus, we produced well-justified recommendations for energy-aware computing system design to conclude the paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Kamil Krasuski;
Kamil Krasuski
Kamil Krasuski in OpenAIREAdam Ciećko;
Adam Ciećko
Adam Ciećko in OpenAIREMieczysław Bakuła;
Mieczysław Bakuła
Mieczysław Bakuła in OpenAIREGrzegorz Grunwald;
Grzegorz Grunwald
Grzegorz Grunwald in OpenAIREdoi: 10.3390/en15207776
The paper presents a modified algorithm for determining the accuracy parameter of the system for differential corrections and monitoring (SDCM) navigation solution in air navigation. For this purpose, a solution to determine the resultant accuracy parameter was proposed by using two on-board global navigation satellite system (GNSS) receivers. The mathematical algorithm takes into account the calculation of a single point positioning accuracy for a given GNSS receiver and a weighting factor combining the position error values. The weighting factor was determined as a function of the number of tracked GNSS satellites used in the SDCM single point positioning solution. The resultant accuracy parameter was expressed in ellipsoidal coordinates BLh (B—latitude, L—longitude, h—ellipsoidal height). The study used GNSS kinematic data recorded by two on-board receivers: Trimble Alloy and Septentrio AsterRx2i, located in a Diamond DA 20-C1 aircraft. The test flight was performed near the city of Olsztyn in north-eastern Poland. Calculations and analyses were performed using RTKLIB software and the Scilab environment. On the basis of the performed tests, it was found that the proposed algorithm for SDCM system allows for improvement in the determination of the resultant accuracy value by 56–80% in relation to the results of position errors from a single GNSS receiver. Additionally, the proposed algorithm was tested for the European Geostationary Navigation Overlay Service (EGNOS) system, and in this case, the improvement in the accuracy parameter was even better and was in the range of 69–89%. The resulting SDCM and EGNOS positioning accuracy met the International Civil Aviation Organization (ICAO) certification requirements for SBAS systems in air navigation. The mathematical algorithm developed in this work was tested positively and can be implemented within the SBAS augmentation system in air navigation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207776&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG doi: 10.3390/en14061696
This paper investigates the sensitivity (resistance) of a quadcopter on-board gyroscope system for the observation and tracking of a moving ground target to changing parameters of its regulator under interference conditions. It was shown that the gain in matrix elements is most sensitive, and even their slightest deviation from optimal values can lead to reduced target tracking efficiency and even loss of control system stability. Furthermore, the authors studied the energy expenditure at various gyroscope system control parameter values, while homing a quadcopter onto a ground target. A Matlab/Simulink environment was used to conduct simulations of the controlled gyroscope system dynamics. Selected test results are shown in graphic form.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14061696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Pierre-Antoine Muselli; Jean-Nicolas Antoniotti;Marc Muselli;
Marc Muselli
Marc Muselli in OpenAIREdoi: 10.3390/en16010249
The EU’s hydrogen strategy consists of studying the potential for renewable hydrogen to help decarbonize the EU in a cost-effective way. Today, hydrogen accounts for less than 2% of Europe’s energy consumption. It is primarily used to produce chemical products. However, 96% of this hydrogen production is through natural gas, leading to significant amounts of CO2 emissions. In this paper, we investigated PV electrolysis H2 gas (noted H2(g)) production for mapping this resource at Europe’s scale. The Cordex/Copernicus RCPs scenarios allow for evaluating the impact of climate changes on the H2-produced mass and the equivalent energy, according to both extreme RCPs scenarios. New linear regressions are investigated to study the great dependence in H2(g) produced masses (kg·yr−1) and equivalent energies (MWh·yr−1) for European countries. Computational scenarios are investigated from a reference year (2005) to the end of the century (2100) by steps of 5 years. According to RCPs 2.6 (favorable)/8.5 (extreme), 31.7% and 77.4% of Europe’s area presents a decrease of H2(g)-produced masses between 2005 and 2100. For the unfavorable scenario (8.5), only a few regions located in the northeast of France, Germany, Austria, Romania, Bulgaria and Greece present a positive balance in H2(g) production for supplying remote houses or smart grids in electricity and heat energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG doi: 10.3390/en15155448
In this paper, the author intends to show the interaction between the living standards of the population and the financial situation of Polish local government units at the commune level. The first (theoretical) part of the paper provides a synthetic description of topics related to defining the economic terms and to the local government’s ability to impact the standards of living of the local population. In view of the multifaceted nature of terms covered by this analysis, the second part uses a canonical analysis (which means multiple linear regressions are generalized for two sets of variables) in order to identify the relationships between them. The analysis resulted in identifying a number of indicators, including canonical correlations, total redundancy and variances extracted, as well as six statistically significant canonical variates, which enabled the identification of multidimensional relationships between the categories considered. The greatest and the most statistically significant canonical correlation coefficient was over 0.93; for the last statistically significant canonical variate, it was over 0.57. The analysis provides grounds for concluding that when the values of variables representing the financial capacity of Polish rural communes are known, they can be used to explain over 32% of the variance in the set of variables relating to the population’s standards of living. The statistical data originated from the author’s own surveys carried out with presidents and vice-presidents of commune councils.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155448&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Dhanasingh Sivalinga Vijayan;
Dhanasingh Sivalinga Vijayan
Dhanasingh Sivalinga Vijayan in OpenAIREEugeniusz Koda;
Eugeniusz Koda
Eugeniusz Koda in OpenAIREArvindan Sivasuriyan;
Arvindan Sivasuriyan
Arvindan Sivasuriyan in OpenAIREJan Winkler;
+6 AuthorsJan Winkler
Jan Winkler in OpenAIREDhanasingh Sivalinga Vijayan;
Dhanasingh Sivalinga Vijayan
Dhanasingh Sivalinga Vijayan in OpenAIREEugeniusz Koda;
Eugeniusz Koda
Eugeniusz Koda in OpenAIREArvindan Sivasuriyan;
Arvindan Sivasuriyan
Arvindan Sivasuriyan in OpenAIREJan Winkler;
Jan Winkler
Jan Winkler in OpenAIREParthiban Devarajan;
Parthiban Devarajan
Parthiban Devarajan in OpenAIRERamamoorthy Sanjay Kumar;
Aleksandra Jakimiuk;Ramamoorthy Sanjay Kumar
Ramamoorthy Sanjay Kumar in OpenAIREPiotr Osinski;
Piotr Osinski
Piotr Osinski in OpenAIREAnna Podlasek;
Anna Podlasek
Anna Podlasek in OpenAIREMagdalena Daria Vaverková;
Magdalena Daria Vaverková
Magdalena Daria Vaverková in OpenAIREdoi: 10.3390/en16186579
Globally, solar energy has become a major contributor to the rapid adoption of renewable energy. Significant energy savings have resulted from the widespread utilization of solar energy in the industrial, residential, and commercial divisions. This review article comprises research conducted over the past 15 years (2008–2023), utilizing a comprehensive collection of 163 references. Significantly, a considerable focus is directed towards the period from 2020 to 2023, encompassing an extensive investigation into the latest developments in solar panel technology in civil engineering. The article examines the incorporation of solar panels into building designs and addresses installation-related structural considerations. In addition, the present review examines the applications of solar panels in terms of innovative infrastructure development applications of solar panels, such as photovoltaic parking lot canopies and photovoltaic noise barriers, which contribute to improved energy efficiency. It also emphasizes their role in water management systems, including water treatment plants, water pumping and irrigation systems, energy-efficient solar desalination technologies, and promoting sustainable water practices. In addition, this study examines how solar panels have been incorporated into urban planning, including smart cities and public parks, thereby transforming urban landscapes into greener alternatives. This study also examined the use of solar panels in building materials, such as façade systems and solar-powered building envelope solutions, demonstrating their versatility in the construction industry. This review explores the diverse applications of solar energy, which promotes sustainable practices in various industries. Owing to the ongoing research, solar energy holds great promise for a greener and cleaner future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16186579&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors:Paweł Ziółkowski;
Paweł Ziółkowski
Paweł Ziółkowski in OpenAIREPaweł Madejski;
Paweł Madejski
Paweł Madejski in OpenAIREMilad Amiri;
Milad Amiri
Milad Amiri in OpenAIRETomasz Kuś;
+6 AuthorsTomasz Kuś
Tomasz Kuś in OpenAIREPaweł Ziółkowski;
Paweł Ziółkowski
Paweł Ziółkowski in OpenAIREPaweł Madejski;
Paweł Madejski
Paweł Madejski in OpenAIREMilad Amiri;
Milad Amiri
Milad Amiri in OpenAIRETomasz Kuś;
Tomasz Kuś
Tomasz Kuś in OpenAIREKamil Stasiak;
Kamil Stasiak
Kamil Stasiak in OpenAIRENavaneethan Subramanian;
Navaneethan Subramanian
Navaneethan Subramanian in OpenAIREHalina Pawlak-Kruczek;
Janusz Badur;Halina Pawlak-Kruczek
Halina Pawlak-Kruczek in OpenAIREŁukasz Niedźwiecki;
Łukasz Niedźwiecki
Łukasz Niedźwiecki in OpenAIREDariusz Mikielewicz;
Dariusz Mikielewicz
Dariusz Mikielewicz in OpenAIREdoi: 10.3390/en14196304
The article presents results of thermodynamic analysis using a zero-dimensional mathematical models of a negative CO2 emission power plant. The developed cycle of a negative CO2 emission power plant allows the production of electricity using gasified sewage sludge as a main fuel. The negative emission can be achieved by the use this type of fuel which is already a “zero-emissive” energy source. Together with carbon capture installation, there is a possibility to decrease CO2 emission below the “zero” level. Developed models of a novel gas cycle which use selected codes allow the prediction of basic parameters of thermodynamic cycles such as output power, efficiency, combustion composition, exhaust temperature, etc. The paper presents results of thermodynamic analysis of two novel cycles, called PDF0 and PFD1, by using different thermodynamic codes. A comparison of results obtained by three different codes offered the chance to verify results because the experimental data are currently not available. The comparison of predictions between three different software in the literature is something new, according to studies made by authors. For gross efficiency (54.74%, 55.18%, and 52.00%), there is a similar relationship for turbine power output (155.9 kW, 157.19 kW, and 148.16 kW). Additionally, the chemical energy rate of the fuel is taken into account, which ultimately results in higher efficiencies for flue gases with increased steam production. A similar trend is assessed for increased CO2 in the flue gas. The developed precise models are particularly important for a carbon capture and storage (CCS) energy system, where relatively new devices mutually cooperate and their thermodynamic parameters affect those devices. Proposed software employs extended a gas–steam turbine cycle to determine the effect of cycle into environment. First of all, it should be stated that there is a slight influence of the software used on the results obtained, but the basic tendencies are the same, which makes it possible to analyze various types of thermodynamic cycles. Secondly, the possibility of a negative CO2 emission power plant and the positive environmental impact of the proposed solution has been demonstrated, which is also a novelty in the area of thermodynamic cycles.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors:Wojciech Cieslik;
Wojciech Cieslik
Wojciech Cieslik in OpenAIREFilip Szwajca;
Jedrzej Zawartowski; Katarzyna Pietrzak; +3 AuthorsFilip Szwajca
Filip Szwajca in OpenAIREWojciech Cieslik;
Wojciech Cieslik
Wojciech Cieslik in OpenAIREFilip Szwajca;
Jedrzej Zawartowski; Katarzyna Pietrzak;Filip Szwajca
Filip Szwajca in OpenAIRESlawomir Rosolski;
Kamil Szkarlat;Slawomir Rosolski
Slawomir Rosolski in OpenAIREMichal Rutkowski;
Michal Rutkowski
Michal Rutkowski in OpenAIREdoi: 10.3390/en14227591
The growing number of electric vehicles in recent years is observable in almost all countries. The country’s energy transition should accompany this rise in electromobility if it is currently generated from non-renewable sources. Only electric vehicles powered by renewable energy sources can be considered zero-emission. Therefore, it is essential to conduct interdisciplinary research on the feasibility of combining energy recovery/generation structures and testing the energy consumption of electric vehicles under real driving conditions. This work presents a comprehensive approach for evaluating the energy consumption of a modern public building–electric vehicle system within a specific location. The original methodology developed includes surveys that demonstrate the required mobility range to be provided to occupants of the building under consideration. In the next step, an energy balance was performed for a novel near-zero energy building equipped with a 199.8 kWp photovoltaic installation, the energy from which can be used to charge an electric vehicle. The analysis considered the variation in vehicle energy consumption by season (winter/summer), the actual charging profile of the vehicle, and the parking periods required to achieve the target range for the user.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu