- home
- Advanced Search
- Energy Research
- 2016-2025
- Open Access
- IT
- PL
- AT
- Energy Research
- 2016-2025
- Open Access
- IT
- PL
- AT
Research data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | EdgeStressEC| EdgeStressThyrring, Jakob; Wegeberg, Susse; Blicher, Martin E.; Krause-Jensen, Dorte; Høgslund, Signe; Olesen, Birgit; Wiktor Jr, Jozef; Mouritsen, Kim N.; Peck, Lloyd S.; Sejr, Mikael K.;The data contains three supporting datasets: 1. Mid-intertidal data 2. Vertical transect data 3. GPS coordinates for all sites
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Samorzewski, Adam;Overview The following dataset presents the energy cycle characteristics for 5G/6G mobile systems supported by Renewable Energy Sources (RES) and/or Unmanned Aerial Vehicles (UAVs) and Reconfigurable Intelligent Surfaces (RISs). In addition, within the dataset, the energy gain related to the engagement of RES within the Radio Access Network (RAN) has also been distinguished. Scenario The considered network scenario includes 8 three- (_results_gcas.csv) or one-cell (_results_scas.csv & _results_kras.csv) base stations (BSs) placed within the Poznan city (surroundings of the old market) and supported by Renewable Energy Sources — photovoltaic panels (PVs) and/or wind turbines (WTs). The aforementioned base stations can be treated as stationary towers or mobile access points (e.g., drones/UAVs). Those latter have been additionally equipped with RIS devices, which are able to reflect and manipulate a radio signal to influence occurrences such as interferences, coverage, or human exposure. However, the use of RISs has been taken into account only to evaluate the impact of the engagement of such devices on the energy side of the mobile system, omitting the changes in radio characteristics. The network traffic has been assumed to be fixed (64 mobile users (UEs) with 100 Mbps downlink — DL, and 25 Mbps uplink — UL, per each), however, its density in specific parts of the city is modeled randomly for each simulation run. The simulation runs have been performed for 4 dates (vernal equinox, summer solstice, autumn equinox, winter solstice), each one from a different season of the year. The aim of such an approach was to highlight the impact of the time of the day and the year on the energy gain obtained thanks to enabling RES generators. The weather conditions assumed within the simulation are typical for the climate in Poland. Methodology The energy-cycle calculations (system's power consumption, renewable energy production, and excessive energy storage) have been based on the mathematical formulas from the scientific literature and performed within the digital simulation runs by using the Green Radio Access Network Design (GRAND) tool (developed by teams from the Ghent University & Poznan University of Technology). The UE-BS association process within the mobile system has been done by doing multi-objective optimization using the Gurobi software, which has taken into account parameters like path loss, predicted power consumption of BSs, and guaranteed DL & UL bit rates for UEs. Simulation setup The setup of the input parameters for used mathematical models (power consumption, energy generation, energy storage) has been done in accordance with the values attached within the delivered literature positions (cited within the publications included in the Related works section of the following dataset) and adjusted to the considered study. Furthermore, the data used to model the network environment (building distribution, coverage area, base stations' locations) as well as to predict weather conditions are the real data (for the year 2022) collected by the city hall of Poznan, one of the Polish mobile operators, and weather stations placed in Poznan, respectively. The number of simulation runs performed has been equal to 10 (each run has included energy-cycle calculations for 4 seasons of the year), with the time step of a single run set to 1 hour of the day. Results The results of the aforementioned investigations have been included in the attached files, which can be described as follows: File _results_gcas.csv The first column denotes the date (season of the year), for which the values have been obtained. The columns from second to fifth present observed values of the State of Charge (SoC) of a battery system (in %) for a single network cell on average in a time step. Those columns are the obtained values for the RAN, in which no RES, only PVs, only WTs, and both types of RES generators have been enabled, respectively. Files _results_scas.csv & _results_kras.csv The first column denotes the date (season of the year), for which the values have been obtained. The second and third columns denote the number of drone base station (DBS) exchanges within the wireless system on average in a particular time step, where no RES and only PVs are enabled, respectively. The fourth and fifth columns present the conventional (fossil-fuels-based) energy consumption (in kWh) for the whole system in a specific time step, in which no RES and only PVs are engaged for all the access nodes. The sixth column is the energy savings (in kWh) related to the use of RES generators within the mobile network. Furthermore, the seventh and eighth columns represent the amount of renewable energy harvested from the solar radiation in total and the peak value of this amount observed during the entire day, respectively. Acknowledgment More details about the conducted studies have been described within the attached papers (Related works section). The data has been collected within the COST CA10210 INTERACT. M. Deruyck is a Post-Doctoral Fellow of the FWO-V (Research Foundation – Flanders, ref: 12Z5621N). The work (including the following dataset preparation) by A. Samorzewski and A. Kliks was realized within project no. 2021/43/B/ST7/01365 funded by the National Science Center in Poland.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10815397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10815397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 31 Jul 2020Publisher:Harvard Dataverse Hoffmann, Roman; Dimitrova, Anna; Muttarak, Raya; Crespo Cuaresma, Jesus; Peisker, Jonas;doi: 10.7910/dvn/hyrxvv
Complete replication data and code for article "A Meta-Analysis of Country Level Studies on Environmental Change and Migration". The rdata file contains both the meta and country level data. The data is also saved separately as xlsx files.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/hyrxvv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/hyrxvv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Clinical Trial 2016 Austria, Belgium, Israel, Japan, Sweden, SwitzerlandPublisher:nct Authors: Prof. Claude Pichard;Background and Aims: This study aims at evaluating the ease of use of the new calorimeter for the measurement of energy expenditure (EE) in intensive care unit (ICU) patients. EE in ICU patients is highly variable depending on the severity of the disease and treatments. Clinicians need to measure EE by indirect calorimetry (IC) to optimize nutritional support for the better clinical outcome. However, indirect calorimeters available on the market have insufficient accuracy for clinical and research use. Difficulties of handling and interpretation of results often limit IC in ICU patients. An accurate, easy-to-use calorimeter has been developed to meet these needs. The Study Device: The new calorimeter (Quark RMR 2.0, COSMED) is capable of IC measurements in mechanically ventilated patients without warm-up and limited calibration. The disposable in-line pneumotach flow meter and direct sampling of respiratory gas from the ventilator circuit enables the accurate measurement of oxygen consumption volume (VO2) and CO2 production volume (VCO2) to derive the energy expenditure. The software interface to manage the device and the collected data provides easy-to-use, user-friendly interface. This calorimeter bears an European Commission (EC) Conformity Mark, and will be used in the way it is intended to be used as described in the instruction manual. Currently used indirect calorimeters at each study center will be used as the comparator. This study will evaluate the ease of use of the new calorimeter (Quark RMR 2.0 (COSMED, Italy)) in intensive care unit (ICU) patients compared to currently used calorimeters (i.e. Quark RMR 1.0(COSMED, Italy) or Deltatrac Metabolic Monitor (Datex, Finland)), as well as the stability and the feasibility of the measurements in various clinically relevant situations. Time needed to prepare and start indirect calorimetry (IC) measurement will be compared as the measure of the ease of use of the calorimeter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f43bcc083d4074a48153914dcd474f1f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f43bcc083d4074a48153914dcd474f1f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Matteo, Nigro; Michele, Barsanti; Roberto, Giannecchini;The version 1.0 contains the supporting data for the work (still under submission) "Last century changes in annual precipitation in a Mediterranean area and their spatial variability. Insights from northern Tuscany (Italy)". The following files are here available (all file are georeferenced in EPSG: 3003): - AVG_Rainfall_1990-2019.tif -> Raster map of the mean annual precipitation for the northern Tuscany, Italy. It encompasses the portion of the Tuscany region northern of the cities of Livorno - Florence. The interpolation was validated via a leave one out cross-validation procedure. - D3-1_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1921 to 1950 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - D3-2_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1951 to 1980 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - DeltaSHP_Points_AVG_Annual_Rainfall.zip -> Shape file of the raingauges locations with the mean annual precipitation values of the period 1990 to 2019. - RaingaugesSHP_Points_AVG_Annual_Rainfall_1990-2019.zip -> Shape file of the raingauges locations with the following information: differences in the mean annual precipitation values between the two 3-decades periods 1951 to 1980 and 1990 to 2019 (named D3-2); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1951 to 1980 and 1990 to 2019; difference in the mean annual precipitation values between the two 3-decades periods 1921 to 1950 and 1990 to 2019 (named D3-1); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1921 to 1950 and 1990 to 2019.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Idiano D'Adamo; Gastaldi, Massimo; Ioppolo, Giuseppe; Morone, Piergiuseppe;The aggregation of data concerned 103 Italian cities and for each city 45 indicators were considered
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Antonini, Enrico; Virgüez, Edgar; Ashfaq, Sara; Duan, Lei; Ruggles, Tyler; Caldeira, Ken;This repository contains postprocessed results that are part of the paper "Identification of reliable locations for wind power generation through a global analysis of wind droughts" published in Communications Earth & Environment. The results are provided on a latitude-longitude grid, except where specified, and include: mean wind speed, annual mean wind speed, mean wind power density, annual mean wind power density, minumum annual mean wind power density, energy deficits for seasonal variability, energy deficits for weather variability, energy deficits for wind droughts, wind speed time series at Lat 53.00 Lon 3.00. Code and instructions required to reproduce these results are available in the GitHub repository at https://github.com/eantonini/Global_wind_droughts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10082462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10082462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2020Publisher:Zenodo Funded by:EC | EdgeStressEC| EdgeStressThyrring, Jakob; Wegeberg, Susse; Blicher, Martin E.; Krause-Jensen, Dorte; Høgslund, Signe; Olesen, Birgit; Wiktor Jr, Jozef; Mouritsen, Kim N.; Peck, Lloyd S.; Sejr, Mikael K.;The data contains three supporting datasets: 1. Mid-intertidal data 2. Vertical transect data 3. GPS coordinates for all sites
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3920534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Authors: Samorzewski, Adam;Overview The following dataset presents the energy cycle characteristics for 5G/6G mobile systems supported by Renewable Energy Sources (RES) and/or Unmanned Aerial Vehicles (UAVs) and Reconfigurable Intelligent Surfaces (RISs). In addition, within the dataset, the energy gain related to the engagement of RES within the Radio Access Network (RAN) has also been distinguished. Scenario The considered network scenario includes 8 three- (_results_gcas.csv) or one-cell (_results_scas.csv & _results_kras.csv) base stations (BSs) placed within the Poznan city (surroundings of the old market) and supported by Renewable Energy Sources — photovoltaic panels (PVs) and/or wind turbines (WTs). The aforementioned base stations can be treated as stationary towers or mobile access points (e.g., drones/UAVs). Those latter have been additionally equipped with RIS devices, which are able to reflect and manipulate a radio signal to influence occurrences such as interferences, coverage, or human exposure. However, the use of RISs has been taken into account only to evaluate the impact of the engagement of such devices on the energy side of the mobile system, omitting the changes in radio characteristics. The network traffic has been assumed to be fixed (64 mobile users (UEs) with 100 Mbps downlink — DL, and 25 Mbps uplink — UL, per each), however, its density in specific parts of the city is modeled randomly for each simulation run. The simulation runs have been performed for 4 dates (vernal equinox, summer solstice, autumn equinox, winter solstice), each one from a different season of the year. The aim of such an approach was to highlight the impact of the time of the day and the year on the energy gain obtained thanks to enabling RES generators. The weather conditions assumed within the simulation are typical for the climate in Poland. Methodology The energy-cycle calculations (system's power consumption, renewable energy production, and excessive energy storage) have been based on the mathematical formulas from the scientific literature and performed within the digital simulation runs by using the Green Radio Access Network Design (GRAND) tool (developed by teams from the Ghent University & Poznan University of Technology). The UE-BS association process within the mobile system has been done by doing multi-objective optimization using the Gurobi software, which has taken into account parameters like path loss, predicted power consumption of BSs, and guaranteed DL & UL bit rates for UEs. Simulation setup The setup of the input parameters for used mathematical models (power consumption, energy generation, energy storage) has been done in accordance with the values attached within the delivered literature positions (cited within the publications included in the Related works section of the following dataset) and adjusted to the considered study. Furthermore, the data used to model the network environment (building distribution, coverage area, base stations' locations) as well as to predict weather conditions are the real data (for the year 2022) collected by the city hall of Poznan, one of the Polish mobile operators, and weather stations placed in Poznan, respectively. The number of simulation runs performed has been equal to 10 (each run has included energy-cycle calculations for 4 seasons of the year), with the time step of a single run set to 1 hour of the day. Results The results of the aforementioned investigations have been included in the attached files, which can be described as follows: File _results_gcas.csv The first column denotes the date (season of the year), for which the values have been obtained. The columns from second to fifth present observed values of the State of Charge (SoC) of a battery system (in %) for a single network cell on average in a time step. Those columns are the obtained values for the RAN, in which no RES, only PVs, only WTs, and both types of RES generators have been enabled, respectively. Files _results_scas.csv & _results_kras.csv The first column denotes the date (season of the year), for which the values have been obtained. The second and third columns denote the number of drone base station (DBS) exchanges within the wireless system on average in a particular time step, where no RES and only PVs are enabled, respectively. The fourth and fifth columns present the conventional (fossil-fuels-based) energy consumption (in kWh) for the whole system in a specific time step, in which no RES and only PVs are engaged for all the access nodes. The sixth column is the energy savings (in kWh) related to the use of RES generators within the mobile network. Furthermore, the seventh and eighth columns represent the amount of renewable energy harvested from the solar radiation in total and the peak value of this amount observed during the entire day, respectively. Acknowledgment More details about the conducted studies have been described within the attached papers (Related works section). The data has been collected within the COST CA10210 INTERACT. M. Deruyck is a Post-Doctoral Fellow of the FWO-V (Research Foundation – Flanders, ref: 12Z5621N). The work (including the following dataset preparation) by A. Samorzewski and A. Kliks was realized within project no. 2021/43/B/ST7/01365 funded by the National Science Center in Poland.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10815397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10815397&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Funded by:EC | REINFORCEEC| REINFORCEAuthors: Mina, Marco;Input files for the ForClim model (version 4.0.1) used in the associated paper. They can be used to to reproduce results of the simulation study. The ForClim model, including the source code, executable and documentation, is freely available under an Open Access license from the website of the original developers at https://ites-fe.ethz.ch/openaccess/. The original climatic dataset used to generate the ForClim input climate files at each site in South Tyrol is freely available at https://doi.pangaea.de/10.1594/PANGAEA.924502 while the CHELSA climate data for future scenarios are available at https://www.chelsa-climate.org. If interested in using this dataset for a research study or a project, please contact Marco Mina ----------------------------------------------------------------------- Hillebrand L, Marzini S, Crespi A, Hiltner U & Mina M (2023) Contrasting impacts of climate change on protection forests of the Italian Alps. Frontiers in Forests and Global Change, 6, 2023 https://doi.org/10.3389/ffgc.2023.1240235 ABSTRACT. Protection forests play a key role in protecting settlements, people, and infrastructures from gravitational hazards such as rockfalls and avalanches in mountain areas. Rapid climate change is challenging the role of protection forests by altering their dynamics, structure, and composition. Information on local- and regional-scale impacts of climate change on protection forests is critical for planning adaptations in forest management. We used a model of forest dynamics (ForClim) to assess the succession of mountain forests in the Eastern Alps and their protective effects under future climate change scenarios. We investigated eleven representative forest sites along an elevational gradient across multiple locations within an administrative region, covering wide differences in tree species structure, composition, altitude, and exposition. We evaluated protective performance against rockfall and avalanches using numerical indices (i.e., linker functions) quantifying the degree of protection from metrics of simulated forest structure and composition. Our findings reveal that climate warming has a contrasting impact on protective effects in mountain forests of the Eastern Alps. Climate change is likely to not affect negatively all protection forest stands but its impact depends on site and stand conditions. Impacts were highly contingent to the magnitude of climate warming, with increasing criticality under the most severe climate projections. Forests in lower-montane elevations and those located in dry continental valleys showed drastic changes in forest structure and composition due to drought-induced mortality while subalpine forests mostly profited from rising temperatures and a longer vegetation period. Overall, avalanche protection will likely be negatively affected by climate change, while the ability of forests to maintain rockfall protection depends on the severity of expected climate change and their vulnerability due to elevation and topography, with most subalpine forests less prone to loosing protective effects. Proactive measures in management should be taken in the near future to avoid losses of protective effects in the case of severe climate change in the Alps. Given the heterogeneous impact of climate warming, such adaptations can be aided by model-based projections and high local resolution studies to identify forest stand types that might require management priority for maintaining protective effects in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.8131674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Embargo end date: 31 Jul 2020Publisher:Harvard Dataverse Hoffmann, Roman; Dimitrova, Anna; Muttarak, Raya; Crespo Cuaresma, Jesus; Peisker, Jonas;doi: 10.7910/dvn/hyrxvv
Complete replication data and code for article "A Meta-Analysis of Country Level Studies on Environmental Change and Migration". The rdata file contains both the meta and country level data. The data is also saved separately as xlsx files.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/hyrxvv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7910/dvn/hyrxvv&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Clinical Trial 2016 Austria, Belgium, Israel, Japan, Sweden, SwitzerlandPublisher:nct Authors: Prof. Claude Pichard;Background and Aims: This study aims at evaluating the ease of use of the new calorimeter for the measurement of energy expenditure (EE) in intensive care unit (ICU) patients. EE in ICU patients is highly variable depending on the severity of the disease and treatments. Clinicians need to measure EE by indirect calorimetry (IC) to optimize nutritional support for the better clinical outcome. However, indirect calorimeters available on the market have insufficient accuracy for clinical and research use. Difficulties of handling and interpretation of results often limit IC in ICU patients. An accurate, easy-to-use calorimeter has been developed to meet these needs. The Study Device: The new calorimeter (Quark RMR 2.0, COSMED) is capable of IC measurements in mechanically ventilated patients without warm-up and limited calibration. The disposable in-line pneumotach flow meter and direct sampling of respiratory gas from the ventilator circuit enables the accurate measurement of oxygen consumption volume (VO2) and CO2 production volume (VCO2) to derive the energy expenditure. The software interface to manage the device and the collected data provides easy-to-use, user-friendly interface. This calorimeter bears an European Commission (EC) Conformity Mark, and will be used in the way it is intended to be used as described in the instruction manual. Currently used indirect calorimeters at each study center will be used as the comparator. This study will evaluate the ease of use of the new calorimeter (Quark RMR 2.0 (COSMED, Italy)) in intensive care unit (ICU) patients compared to currently used calorimeters (i.e. Quark RMR 1.0(COSMED, Italy) or Deltatrac Metabolic Monitor (Datex, Finland)), as well as the stability and the feasibility of the measurements in various clinically relevant situations. Time needed to prepare and start indirect calorimetry (IC) measurement will be compared as the measure of the ease of use of the calorimeter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f43bcc083d4074a48153914dcd474f1f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::f43bcc083d4074a48153914dcd474f1f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Matteo, Nigro; Michele, Barsanti; Roberto, Giannecchini;The version 1.0 contains the supporting data for the work (still under submission) "Last century changes in annual precipitation in a Mediterranean area and their spatial variability. Insights from northern Tuscany (Italy)". The following files are here available (all file are georeferenced in EPSG: 3003): - AVG_Rainfall_1990-2019.tif -> Raster map of the mean annual precipitation for the northern Tuscany, Italy. It encompasses the portion of the Tuscany region northern of the cities of Livorno - Florence. The interpolation was validated via a leave one out cross-validation procedure. - D3-1_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1921 to 1950 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - D3-2_Area2_ApuanAlps.tif -> Raster map of the differences in mean annual precipitation between the two 3-decades periods 1951 to 1980 and 1990 to 2019 for the Apuan Alps mountain ridge (Tuscany, Italy). - DeltaSHP_Points_AVG_Annual_Rainfall.zip -> Shape file of the raingauges locations with the mean annual precipitation values of the period 1990 to 2019. - RaingaugesSHP_Points_AVG_Annual_Rainfall_1990-2019.zip -> Shape file of the raingauges locations with the following information: differences in the mean annual precipitation values between the two 3-decades periods 1951 to 1980 and 1990 to 2019 (named D3-2); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1951 to 1980 and 1990 to 2019; difference in the mean annual precipitation values between the two 3-decades periods 1921 to 1950 and 1990 to 2019 (named D3-1); p values of the t-test for significance of the differences between the mean annual precipitation ofthe two 3-decades periods 1921 to 1950 and 1990 to 2019.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7822115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Authors: Idiano D'Adamo; Gastaldi, Massimo; Ioppolo, Giuseppe; Morone, Piergiuseppe;The aggregation of data concerned 103 Italian cities and for each city 45 indicators were considered
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5557211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Zenodo Antonini, Enrico; Virgüez, Edgar; Ashfaq, Sara; Duan, Lei; Ruggles, Tyler; Caldeira, Ken;This repository contains postprocessed results that are part of the paper "Identification of reliable locations for wind power generation through a global analysis of wind droughts" published in Communications Earth & Environment. The results are provided on a latitude-longitude grid, except where specified, and include: mean wind speed, annual mean wind speed, mean wind power density, annual mean wind power density, minumum annual mean wind power density, energy deficits for seasonal variability, energy deficits for weather variability, energy deficits for wind droughts, wind speed time series at Lat 53.00 Lon 3.00. Code and instructions required to reproduce these results are available in the GitHub repository at https://github.com/eantonini/Global_wind_droughts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10082462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.10082462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | HELIXEC| HELIXThiery, Wim; Lange, Stefan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Gudmundsson, Lukas; Seneviratne, Sonia I.; Andrijevic, Marina; Frieler, Katja; Emanuel, Kerry; Geiger, Tobias; Bresch, David N.; Zhao, Fang; Willner, Sven N.; Büchner, Matthias; Volkholz, Jan; Bauer, Nico; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; François, Louis; Grillakis, Manolis; Gosling, Simon N.; Hanasaki, Naota; Hickler, Thomas; Huber, Veronika; Ito, Akihiko; Jägermeyr, Jonas; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Lutz, Wolfgang; Mengel, Matthias; Müller, Christoph; Ostberg, Sebastian; Reyer, Christopher P. O.; Stacke, Tobias; Wada, Yoshihide;This data set contains the essential files used as input for the analysis, intermediate files produced during the analysis, and the key output fields. The code of the analysis is available here: https://github.com/VUB-HYDR/2021_Thiery_etal_Science Input fields: - isimip.zip: Postprocessed ISIMIP2b simulation output. This data set is very similar to the data presented in Lange et al. (2020 Earth's Future) but includes selected additional impact models and scenarios (notably RCP8.5). This data set also includes the gridded population data. - GMT_50pc_manualoutput_4pathways.xlsx: Global mean temperature anomaly trajectories from the IPCC SR15 - wcde_data.xlsx: postprocessed cohort size data originally obtained from the Wittgenstein Centre Human Capital Data Explorer. - WPP2019_MORT_F16_1_LIFE_EXPECTANCY_BY_AGE_BOTH_SEXES.xlsx: Postprocessed life expectancy data originally obtained from the UNited Nations World Population Programme Intermediate files *only use if you're interested in reproducing the results*: - workspaces.zip: Postprocessed ISIMIP2b simulation output. These matlab workspaces contain data on land area annually exposed to extreme events which is stored in a format designed to speed up the analysis. - mw_isimip.mat: ISIMIP2 simulations metadata (e.g. model, gcm and rcp name per simulation) - mw_countries.mat: information on the countries used in the analysis (e.g. border polygon coordinates) - mw_exposure.mat: age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic.mat: pre-industrial control age-dependent exposure computed from the ISIMIP and population data - mw_exposure_pic_coldwaves.mat: pre-industrial control age-dependent exposure to coldwaves computed from the ISIMIP and population data Output of the analysis: - mw_output.mat: Matlab workspace containing all variables produced during the analysis presented in thepaper. Use this file if you wish to look up certain numbers or want to use the study results for further analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 317visibility views 317 download downloads 197 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5497632&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu