Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
3,290 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • DE
  • PL
  • RWTH Aachen University

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw Figgener, Jan;
    Figgener, Jan
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Figgener, Jan in OpenAIRE
    orcid bw Haberschusz, David;
    Haberschusz, David
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Haberschusz, David in OpenAIRE
    orcid bw Wessels, Oliver;
    Wessels, Oliver
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Wessels, Oliver in OpenAIRE
    orcid bw Kairies, Kai-Philipp;
    Kairies, Kai-Philipp
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Kairies, Kai-Philipp in OpenAIRE
    +3 Authors

    The dataset accompanies the Nature Energy publication by Figgener et al. (2024), Multi-year field measurements of home storage systems and their use in capacity estimation, DOI 10.1038/s41560-024-01620-9. In addition, we use the dataset in Figgener et al. (2024), Degradation mode estimation using reconstructed open circuit voltage curves from multi-year home storage field data, DOI 10.48550/arXiv.2411.08025 The ISEA / CARL of RWTH Aachen University measured 21 private home storage systems in Germany over up to eight years from 2015 to 2022. All these storage systems are combined with residential photovoltaic systems to increase self-consumption. The measured quantities published are system-level battery current, voltage, power, battery pack housing temperature, and room temperature. The sample rate is one second. The dataset consists of 106 system years, 14 billion data points, and 1,270 monthly files stored in 21 system folders. Use the data as follows:1. Download the data (Data_ID_01.zip to Data_ID_21.zip) and the belonging repository (Metadata_and_Code.zip) 2. Uncompress the files so that the uncompressed folders have the same name as the .zip files. 3. Copy all data folders in folder "Metadata_and_Code/00_Data/01_Operational_Data". Read and execute the file "StartUp_Read_and_Execute.m" and stay in this folder for any script you execute. In addition, a detailed description of the dataset and how to use it can be found in the supplementary information of the publication.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2024
    License: CC BY
    Data sources: Datacite
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2024
      License: CC BY
      Data sources: Datacite
      addClaim
  • Authors: C. Hille; M. Srisupha;

    SF 6 self blast circuit breakers use the flow back of high pressure gas from the expansion chamber, which is generated by ablation of a PTFE-nozzle and the arc radiation to interrupt the arc. The interruption capability of SF 6 self blast circuit breakers depends on the pressure inside the switching chamber at current zero. During each fault current interruption, the arc radiation induces contact and nozzle ablation. The nozzle widening causes reduction of the pressure build-up and thus results in the reduction of the interruption capability. The objective of this work is to use a non-invasive method to assess the degree of nozzle ablation without opening the interrupter and to estimate the degradation of the interruption capability. In this work, the frequency response analysis is applied to detect the change in capacitance due to the change of the geometry inside the circuit breaker interrupter.

    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rik W. De Doncker; Abderrezak Hammouche; Eckhard Karden;

    This paper reports on laboratory studies into the ac impedance spectra of nickel–metal hydride and nickel–cadmium batteries, aiming at finding out possible correlation between electrical parameters, extracted directly from the high frequency region, and the battery state-of-charge (SoC). Impedance diagrams were recorded immediately after interrupting the dc charge, or discharge, current. The study revealed that the series resonance frequency, at which the dynamic cell behavior switches from an inductive character (Z″>0) to a capacitive one (Z″<0), varied monotonously as a function of state-of-charge. This behavior was reproducible after intermittent charge and discharge. Half-cell measurements were also conducted to associate the cell impedance with either processes occurring at the positive or negative plates.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Power Sources
    Article . 2004 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    74
    citations74
    popularityTop 10%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Power Sou...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Power Sources
      Article . 2004 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Melchior Moos; orcid Dirk Uwe Sauer;
    Dirk Uwe Sauer
    ORCID
    Harvested from ORCID Public Data File

    Dirk Uwe Sauer in OpenAIRE
    Albert Moser; orcid Ricardo Alvarez;
    Ricardo Alvarez
    ORCID
    Harvested from ORCID Public Data File

    Ricardo Alvarez in OpenAIRE
    +6 Authors

    AbstractThe future European energy supply system will have a high share of renewable energy sources (RES) to meet the greenhouse gas emission policy of the European Commission. Such a system is characterized by the need for a strongly interconnected energy transport grid as well as a high demand of energy storage capacities to compensate the time fluctuating characteristic of most RE generation technologies. With the RE generators at the location of high harvest potential, the appropriate dimension of storage and transmission system between different regions, a cost efficient system can be achieved. To find the preferred target system, the optimization tool GENESYS (Genetic Optimization of a European Energy System) was developed. The example calculations under the assumption of 100% self-supply, show a need of about 2,500 GW RES in total, a storage capacity of about 240,000 GWh, corresponding to 6% of the annual energy demand, and a HVDC transmission grid of 375,000 GWkm. The combined cost for generation, storage and transmission excluding distribution, was estimated to be 6.87 ct/kWh.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article . 2014 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    90
    citations90
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article . 2014 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Iakovos T. Michailidis;
    Iakovos T. Michailidis
    ORCID
    Harvested from ORCID Public Data File

    Iakovos T. Michailidis in OpenAIRE
    orcid Thomas Schild;
    Thomas Schild
    ORCID
    Harvested from ORCID Public Data File

    Thomas Schild in OpenAIRE
    Roozbeh Sangi; orcid Panagiotis Michailidis;
    Panagiotis Michailidis
    ORCID
    Harvested from ORCID Public Data File

    Panagiotis Michailidis in OpenAIRE
    +4 Authors

    Abstract A variety of novel, recyclable and reusable, construction materials has already been studied within literature during the past years, aiming at improving the overall energy efficiency ranking of the building envelope. However, several studies show that a delicate control of indoor climating elements can lead to a significant performance improvement by exploiting the building’s savings potential via smart adaptive HVAC regulation to exogenous uncertain disturbances (e.g. weather, occupancy). Building Optimization and Control (BOC) systems can be categorized into two different groups: centralized (requiring high data transmission rates at a central node from every corner of the overall system) and decentralized 1 (assuming an intercommunication among neighboring constituent systems). Moreover, both approaches can be further divided into two subcategories, respectively: model-assisted (usually introducing modeling oversimplifications) and model-free (typically presenting poor stability and very slow convergence rates). This paper presents the application of a novel, decentralized, agent-based , model-free BOC methodology (abbreviated as L4GPCAO) to a modern non-residential building (E.ON. Energy Research Center’s main building), equipped with controllable HVAC systems and renewable energy sources by utilizing the existing Building Management System (BES). The building testbed is located inside the RWTH Aachen University campus in Aachen, Germany. A combined rule criterion composed of the non-renewable energy consumption (NREC) and the thermal comfort index – aligned to international comfort standards – was adopted in all cases presented herein. Besides the limited availability of the specified building testbed, real-life experiments demonstrated operational effectiveness of the proposed approach in BOC applications with complex, emerging dynamics arising from the building’s occupancy and thermal characteristics. L4GPCAO outperformed the control strategy that was designed by the planers and system provider, in a conventional manner, requiring no more than five test days.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    52
    citations52
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kern, Alexander (Prof. Dr.-Ing.); Schelthoff, Christof (Prof. Dr. rer. nat.); Mathieu, Moritz (M.Sc.);

    Planning the air-terminations for a structure to be protected the use of the rolling-sphere method (electro-geometrical model) is the best way from the physics of lightning point-of-view. Therefore, international standards prefer this method. However, using the rolling-sphere method only results in possible point-of-strikes on a structure without giving information about the probability of strikes at the individual points compared to others.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Atmospheric Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Atmospheric Research
    Article . 2012 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://doi.org/10.1109/iclp.2...
    Conference object . 2010 . Peer-reviewed
    Data sources: Crossref
    addClaim
    20
    citations20
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Atmospheric Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Atmospheric Research
      Article . 2012 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      https://doi.org/10.1109/iclp.2...
      Conference object . 2010 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Wolfgang Liebl;
    Wolfgang Liebl
    ORCID
    Harvested from ORCID Public Data File

    Wolfgang Liebl in OpenAIRE
    orcid David Kostner;
    David Kostner
    ORCID
    Harvested from ORCID Public Data File

    David Kostner in OpenAIRE
    orcid Armin Ehrenreich;
    Armin Ehrenreich
    ORCID
    Harvested from ORCID Public Data File

    Armin Ehrenreich in OpenAIRE
    orcid Rolf Daniel;
    Rolf Daniel
    ORCID
    Harvested from ORCID Public Data File

    Rolf Daniel in OpenAIRE
    +4 Authors

    Acetic acid bacteria such as Gluconobacter oxydans are used in several biotechnological processes due to their ability to perform rapid incomplete regio- and stereo-selective oxidations of a great variety of carbohydrates, alcohols, and related compounds by their membrane-bound dehydrogenases. In order to understand the growth physiology of industrial strains such as G. oxydans ATCC 621H that has high substrate oxidation rates but poor growth yields, we compared its genome sequence to the genome sequence of strain DSM 3504 that reaches an almost three times higher optical density. Although the genome sequences are very similar, DSM 3504 has additional copies of genes that are absent from ATCC 621H. Most importantly, strain DSM 3504 contains an additional type II NADH dehydrogenase (ndh) gene and an additional triosephosphate isomerase (tpi) gene. We deleted these additional paralogs from DSM 3504, overexpressed NADH dehydrogenase in ATCC 621H, and monitored biomass and the concentration of the representative cell components as well as O2 and CO2 transfer rates in growth experiments on mannitol. The data revealed a clear competition of membrane-bound dehydrogenases and NADH dehydrogenase for channeling electrons in the electron transport chain of Gluconobacter and an important role of the additional NADH dehydrogenase for increased growth yields. The less active the NADH dehydrogenase is, the more active is the membrane-bound polyol dehydrogenase. These results were confirmed by introducing additional ndh genes via plasmid pAJ78 in strain ATCC 621H, which leads to a marked increase of the growth rate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Microbiology and Biotechnology
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Microbiology and Biotechnology
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim
  • Authors: Thomas Helmschrott; Claas Matrose; Eva Szczechowicz; Armin Schnettler; +1 Authors

    The Grid 4 Vehicles project (G4V) has analyzed the effects of a mass integration of electric and plug-in hybrid electric vehicles (EV and PHEV) into some distribution grids in Europe. A consortium consisting of six European research institutions and six European utilities has developed a methodology to investigate the effects of EV and PHEV in distribution grids and has proposed different options for intelligent and “grid-friendly” EV charging. This paper introduces the algorithms used for grid calculation, describes intelligent charging methodologies and demonstrates the most significant results of these calculations.

    addClaim
    7
    citations7
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jana Gerta Backes;
    Jana Gerta Backes
    ORCID
    Harvested from ORCID Public Data File

    Jana Gerta Backes in OpenAIRE
    orcid Laura Schmidt;
    Laura Schmidt
    ORCID
    Harvested from ORCID Public Data File

    Laura Schmidt in OpenAIRE
    orcid Jan Bielak;
    Jan Bielak
    ORCID
    Harvested from ORCID Public Data File

    Jan Bielak in OpenAIRE
    orcid Pamela Del Rosario;
    Pamela Del Rosario
    ORCID
    Harvested from ORCID Public Data File

    Pamela Del Rosario in OpenAIRE
    +2 Authors

    Due to climate change and current efforts to reduce emissions in the construction sector, this study evaluates and discusses the results of a comparative cradle-to-grave Life Cycle Assessment (LCA), with a main focus on Global Warming Potential for functionally equivalent carbon-reinforced concrete (CRC) and steel-reinforced concrete (SRC) façade panels for the first time. The novelty of this study is the focus on construction waste and, in particular, the worst-case application of non-recycled construction waste. The use of CRC requires a lower concrete thickness than SRC because the carbon fiber reinforcement does not corrode, in contrast to steel reinforcement. Façade panels of the same geometrical dimensions and structural performance were defined as functional units (FU). Assuming an End-of-Life (EoL) scenario of 50% landfill and 50% recycling, the Global Warming Potential (GWP, given in CO2 equivalent (CO2e)) of the CRC façade (411–496 kg CO2e) is shown to perform better than or equal to the SRC façade (492 kg CO2e). Changing the assumption of CRC to a worst-case scenario, going fully to landfill and not being recycled (single life cycle), turns the GWP results in favor of the SRC façade. Assuming a 50-year service life for the SRC façade panel and relativizing the emissions to the years, the more durable CRC façade performs much better. Finally, depending on the system boundary, the assumed EoL and lifetime, CRC can represent a lower-emission alternative to a functionally equivalent component made of SRC. The most important and “novel” result in this study, which also leads to future research opportunities, is that delicate adjustments (especially concerning EoL scenarios and expected service life) can lead to completely different recommendations for decision-makers. Only by combining the knowledge of LCA experts, structural engineers, and builders optimal decisions can be made regarding sustainable materials and building components.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2023
    Data sources: DOAJ
    addClaim
    Access Routes
    Green
    gold
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2023
      Data sources: DOAJ
      addClaim
  • Authors: orcid Dirk Müller;
    Dirk Müller
    ORCID
    Harvested from ORCID Public Data File

    Dirk Müller in OpenAIRE
    Reinhard Madlener; orcid Rita Streblow;
    Rita Streblow
    ORCID
    Harvested from ORCID Public Data File

    Rita Streblow in OpenAIRE
    Gesine Arends; +1 Authors

    This paper describes the methodology developed and the calculation steps used to evaluate the energy efficiency potential of office buildings. The methodology enables a detailed analysis of retrofit options for the building envelope and its energy supply system. Different simplification measures accelerate the data acquisition process for office building stock owners and allow a data handling according to the existing building information, thus enabling office building structures to be prompted to design typical building constructions. We implement solutions enabling both a time-saving accelerated data input for office buildings and the handling of incomplete data. An automated calculation of the most common refurbishment measures allows a comparison of up to 64 combinations of measures, the illustration of energy and CO2 savings, and an economic evaluation. The latter takes into account the time value of money, the uncertainty of future energy prices, and the possibility of delaying an investment. To this end, a net present value analysis and a real options analysis are implemented, enabling a comparison of retrofit alternatives with different initial and future cash flows both for buildings occupied by the investor (owner-occupier perspective) and for rented buildings (tenant perspective). Energy price scenarios as well as a Monte Carlo simulation account for the uncertainty in energy price trends. For a university building used as a test case, the simplified and time-saving data input methods were successfully tested and an automated evaluation of 64 typical retrofit combinations carried out. The results of the energy, ecological and economic efficiency evaluation shows that a generally preferred retrofit option cannot always be identified. Specifically, for the test case, the best-rated economic refurbishment possibility leads to the largest increase in final energy demand amongst all options considered, which points out the necessity of a multi-criteria evaluation.

    addClaim
    15
    citations15
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      addClaim