- home
- Advanced Search
- Energy Research
- 2021-2025
- EU
- PL
- Energy Research
- 2021-2025
- EU
- PL
description Publicationkeyboard_double_arrow_right Other literature type 2021Publisher:HIPERION consortium Funded by:EC | HIPERIONEC| HIPERIONAuthors: André Lopes;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::801b5010aa2de52d328633c2aa69c627&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=r3c4b2081b22::801b5010aa2de52d328633c2aa69c627&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:
Magdalena Zioło; Magdalena Zioło
Magdalena Zioło in OpenAIRE
Iwona Bąk; Iwona Bąk
Iwona Bąk in OpenAIRE
Anna Spoz; Anna Spoz
Anna Spoz in OpenAIREdoi: 10.3390/en17246315
This review organizes the current state of knowledge on the role of financial markets in energy transition. The originality of the study lies in the delimitation of its scope and diagnosis of research trends concerning the role of financing, innovation, and financial development sources. The study sets out to identify the role of the financial market in the energy transition process and present the state-of-the-art and main research focuses. For this purpose, a literature review was carried out based on the search results from the Web of Science database and using VOSViewer software, version 1.6.20. The analysis of 54 papers in the final sample allowed us to pinpoint the key links between financial markets and energy transition. Capital markets support green initiatives, with green bonds as a primary funding source. Blockchain and fintech technologies also significantly contribute to transition by offering innovative solutions. Additionally, a range of papers examine the costs associated with energy transition and the role of financial instruments in managing these. Regulatory challenges are another significant focus. This comprehensive analysis underscores the multifaceted relationship between financial markets and energy transition, providing insights into the current trends and the critical role of finance in fostering a sustainable future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246315&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17246315&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 SpainPublisher:MDPI AG Funded by:EC | CoreSenseEC| CoreSenseAuthors:
Rafael Perez-Segui; Rafael Perez-Segui
Rafael Perez-Segui in OpenAIRE
Pedro Arias-Perez; Pedro Arias-Perez
Pedro Arias-Perez in OpenAIRE
Javier Melero-Deza; Javier Melero-Deza
Javier Melero-Deza in OpenAIRE
Miguel Fernandez-Cortizas; +2 AuthorsMiguel Fernandez-Cortizas
Miguel Fernandez-Cortizas in OpenAIRE
Rafael Perez-Segui; Rafael Perez-Segui
Rafael Perez-Segui in OpenAIRE
Pedro Arias-Perez; Pedro Arias-Perez
Pedro Arias-Perez in OpenAIRE
Javier Melero-Deza; Javier Melero-Deza
Javier Melero-Deza in OpenAIRE
Miguel Fernandez-Cortizas; Miguel Fernandez-Cortizas
Miguel Fernandez-Cortizas in OpenAIRE
David Perez-Saura; David Perez-Saura
David Perez-Saura in OpenAIRE
Pascual Campoy; Pascual Campoy
Pascual Campoy in OpenAIREhandle: 10261/369214
The utilization of autonomous unmanned aerial vehicles (UAVs) has increased rapidly due to their ability to perform a variety of tasks, including industrial inspection. Conducting testing with actual flights within industrial facilities proves to be both expensive and hazardous, posing risks to the system, the facilities, and their personnel. This paper presents an innovative and reliable methodology for developing such applications, ensuring safety and efficiency throughout the process. It involves a staged transition from simulation to reality, wherein various components are validated at each stage. This iterative approach facilitates error identification and resolution, enabling subsequent real flights to be conducted with enhanced safety after validating the remainder of the system. Furthermore, this article showcases two use cases: wind turbine inspection and photovoltaic plant inspection. By implementing the suggested methodology, these applications were successfully developed in an efficient and secure manner.
Aerospace arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/aerospace10090814&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Aerospace arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/aerospace10090814&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 Switzerland, United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Expanding the Environment..., SNSF | Bulk anisotropic optoelec..., UKRI | domino4chem: Semi-biologi... +6 projectsUKRI| Expanding the Environmental Frontiers of Operando Metrology for Advanced Device Materials Development ,SNSF| Bulk anisotropic optoelectronics and surface defects study on single-crystal photoabsorbers towards efficient solar fuels production ,UKRI| domino4chem: Semi-biological Domino Catalysis for Solar Chemical Synthesis ,UKRI| Earth-abundant catalysts and novel layered 2D perovskites for solar water splitting (H2CAT) ,UKRI| Tandem Catalysts Design towards Efficient Selective Catalytic Oxidation of ammonia (TCatSCO) ,EC| HYPERION ,UKRI| Harnessing vibration-induced enhancement of transport in functional materials with soft structural dynamics ,EC| PeTSoC ,EC| MatEnSAPAuthors:
Pan, Linfeng; Pan, Linfeng
Pan, Linfeng in OpenAIRE
Dai, Linjie; Dai, Linjie
Dai, Linjie in OpenAIRE
Burton, Oliver J; Burton, Oliver J
Burton, Oliver J in OpenAIRE
Chen, Lu; +18 AuthorsChen, Lu
Chen, Lu in OpenAIRE
Pan, Linfeng; Pan, Linfeng
Pan, Linfeng in OpenAIRE
Dai, Linjie; Dai, Linjie
Dai, Linjie in OpenAIRE
Burton, Oliver J; Burton, Oliver J
Burton, Oliver J in OpenAIRE
Chen, Lu; Chen, Lu
Chen, Lu in OpenAIRE
Andrei, Virgil; Andrei, Virgil
Andrei, Virgil in OpenAIRE
Zhang, Youcheng; Zhang, Youcheng
Zhang, Youcheng in OpenAIRE
Ren, Dan; Cheng, Jinshui; Wu, Linxiao;Ren, Dan
Ren, Dan in OpenAIRE
Frohna, Kyle; Frohna, Kyle
Frohna, Kyle in OpenAIRE
Abfalterer, Anna; Abfalterer, Anna
Abfalterer, Anna in OpenAIRE
Yang, Terry Chien-Jen; Niu, Wenzhe;Yang, Terry Chien-Jen
Yang, Terry Chien-Jen in OpenAIRE
Xia, Meng; Xia, Meng
Xia, Meng in OpenAIRE
Hofmann, Stephan; Hofmann, Stephan
Hofmann, Stephan in OpenAIRE
Dyson, Paul J; Dyson, Paul J
Dyson, Paul J in OpenAIRE
Reisner, Erwin; Reisner, Erwin
Reisner, Erwin in OpenAIRE
Sirringhaus, Henning; Sirringhaus, Henning
Sirringhaus, Henning in OpenAIRE
Luo, Jingshan; Hagfeldt, Anders;Luo, Jingshan
Luo, Jingshan in OpenAIRE
Grätzel, Michael; Grätzel, Michael
Grätzel, Michael in OpenAIRE
Stranks, Samuel D; Stranks, Samuel D
Stranks, Samuel D in OpenAIREAbstractSolar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3–5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm−2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.
Nature arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07273-8&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Nature arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-07273-8&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2021Publisher:Zenodo Funded by:EC | NanoPyroMatEC| NanoPyroMatAuthors:
Whiffen, Radenka Krsmanovic; De Santis, Giuseppe; Cognini, Francesco; Montone, Amelia;Whiffen, Radenka Krsmanovic
Whiffen, Radenka Krsmanovic in OpenAIREPyroelectric energy harvesting has the ability to transform wasted heat into useful energy and as such has a potential to create “green” energy from freely available sources such as ambient temperature changes, and contribute to the fight against climate change. Current pyroelectrics applications are limited to low-power electronics, portable systems or tasks needing only very low range of power (μW–mW). Developing further this highly promising technology should ultimately lead to the creation of more powerful, autonomous and self-powered electronic devices that could one day use to recycle currently “lost” thermal energy to power electronic devices in both domestic and industrial settings. To the best of our knowledge, hexagonal phase ZnS (wurtzite ZnS) has not been studied as a possible energy harvesting pyroelectric material despite w-ZnS being isostructural to the well-exploited and widely praised hexagonal ZnO [1]. In addition, the Tc temperature (1020 ˚C for bulk material) is high enough for ZnS that it has the ability to operate at higher temperature that are good match with the working temperature of power plants and automobiles, and hence w-ZnS ceramics should have a potential to be used in pyroelectric harvesters of waste heat coming from those activities [2]. Here we report on the pyroelectric output registered for a wurtzite phase ZnS ceramic fabricated as part of our project. To probe the pyroelectric output for a w-ZnS ceramic a simple device (a “pyro-cell”) was created by evaporating gold electrods on both sides of a ceramic sample, which was mounted on a Cu-metalized rectangular insulating base (vetronite) using silver paint. This device is stable from room temperature up to approximately 180°C. Two different heating and cooling testing set-ups were established: Set-up n°1 used an industrial scale laser, providing a source with fast temperature change, and Set-up n°2 had a standard lab hot plate heating element, providing a much slower temperature change. The characterization required an accurate measurement of the currents of the order of 10-9 A. In addition, using the Pyroelectric Test System (PK‐SPIV17T, State College, PA, USA) with a Keithley 6517 B Picoammeter, we were able to measure the pyroelectric coefficient and monitor its change at different frequencies as a function of temperature from 20 °C up to 150° C, with a heating rate of between 2 and 10 °C/min. Figure 1: Pyroelectric current measurements on an ZnS ceramic sample, using testing set-up n°1. The horizontal axis shows the time (seconds). References [1] Y. Yang, W. Guo, K.C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z. Lin Wang, “Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy”, Nano Lett, 12 (6), 2012, 2833–2838 [2] L.A. Chavez, F.O. Zayas Jimenez, B.R. Wilburn, L.C. Delfin, H. Kim, N. Love, Y. Lin, “Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures”, Energy Harvesting and Systems, 5(1-2), 2018, 3–10 This project was also partially supported by the Piano triennale di realizzazione 2019-2021 della ricerca di sistema elettrico nazionale – Progetto 1.3 Materiali di frontiera per usi energetici (C.U.P. code: I34I19005780001).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4743162&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4743162&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG doi: 10.3390/en14196180
Results of tests into the energy-efficiency of belt conveyor transportation systems indicate that the energy consumption of their drive mechanisms can be limited by lowering the main resistances in the conveyor. The main component of these resistances is represented by belt indentation rolling resistance. Limiting its value will allow a reduction in the amount of energy consumed by the drive mechanisms. This article presents a test rig which enables uncomplicated evaluations of such rolling resistances. It also presents the results of comparative tests performed for five steel-cord conveyor belts. The tests involved a standard belt, a refurbished belt and three energy-saving belts. As temperature significantly influences the values of belt indentation rolling resistance, the tests were performed in both positive and negative temperatures. The results indicate that when compared with the standard belt, the refurbished and the energy-efficient belts generate higher and lower indentation rolling resistances, respectively. In order to demonstrate practical advantages resulting from the use of energy-saving belts, this article also includes calculations of the power demand of a conveyor drive mechanism during one calendar year, as measured on a belt conveyor operated in a mine. The replacement of a standard belt with a refurbished belt generates a power demand higher by 4.8%, and with an energy-efficient belt—lower by 15.3%.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196180&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/19/6180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196180&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2024Embargo end date: 20 Sep 2024Publisher:Zenodo Funded by:EC | TRANSLATEEC| TRANSLATEAuthors:
Palanisamy, Rupa Ranjani; Narayanasamy, Padmanathan;Palanisamy, Rupa Ranjani
Palanisamy, Rupa Ranjani in OpenAIRE
Biswas, Subhajit; Biswas, Subhajit
Biswas, Subhajit in OpenAIRE
Holmes, Justin D.; +1 AuthorsHolmes, Justin D.
Holmes, Justin D. in OpenAIRE
Palanisamy, Rupa Ranjani; Narayanasamy, Padmanathan;Palanisamy, Rupa Ranjani
Palanisamy, Rupa Ranjani in OpenAIRE
Biswas, Subhajit; Biswas, Subhajit
Biswas, Subhajit in OpenAIRE
Holmes, Justin D.; Razeeb, Kafil M.;Holmes, Justin D.
Holmes, Justin D. in OpenAIREABSTRACT: Thermo-electrochemical cells (TECs) are a new kind of energy conversion device that can convert thermal energy into electricity. TECs can be integrated with supercapacitors (SCs) to store the generated electricity. TECs consist of two major components namely electrodes and electrolyte. The selection of appropriate electrode materials with rational nanostructured design should improve the thermoelectrochemical performance of the TECs. In this study, bilayer of nickel cobalt selenide nanowires was successfully grown on activated carbon cloth (NCS/ACC) via one step hydrothermal method and its electrochemical performance was evaluated and compared with nickel selenide (NS/ACC) and cobalt selenide on activated carbon cloth (CS/ACC). NCS/ACC exhibited the best electrochemical performance compared to other electrodes, leading to its further investigation in an asymmetric supercapacitor (ASC) configuration with activated carbon (AC) as the cathode. The NCS/ACC ASC demonstrated superior rate capability with 85% capacitive retention after 10,000 cycles, along with a high specific energy (28 Wh kg-1) and specific power (646 W kg-1). Subsequently, the NCS/ACC electrode was employed in a thermo-electrochemical cell (TEC) for heat to electricity conversion, revealing a Seebeck coefficient of -2 mV/K with high reversibility. Thereby, NCS/ACC electrode can be a suitable candidate for bi-functional applications, showcasing its efficacy in both supercapacitors and heat to electricity conversion technologies. KEYWORDS: Heat to electricity conversion; Supercapacitors; Electrodes; Metal selenide; Thermo-Electrochemical Cell. TRANSLATE is a €3.4 million EU-funded research project that aims to develop a new nanofluidic platform technology to effectively convert waste heat to electricity. This technology has the potential to improve the energy efficiency of many devices and systems, and provide a radically new zero-emission power source. The TRANSLATE project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 964251, for the action of 'The Recycling of waste heat through the Application of Nanofluidic ChannelS: Advances in the Conversion of Thermal to Electrical energy'. More information can be be found on the TRANSLATE project website: https://translate-energy.eu/
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13887322&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.13887322&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Daria Krasota;
Przemysław Błasiak; Przemysław Błasiak
Przemysław Błasiak in OpenAIRE
Piotr Kolasiński; Piotr Kolasiński
Piotr Kolasiński in OpenAIREdoi: 10.3390/en16072945
The topic of frost formation on the heat exchanger surface has been gaining interest since the late 1940s. Scientists and industrial engineers from many scientific and R&D units around the world have been trying to understand the nature of frosting and implement solutions to prevent such an unwanted phenomenon from having a significant impact on the performance of heat exchangers (such as a decrease in heat transfer efficiency, mechanical damage, and condensation risk). The aim of this article is to summarize the present state of knowledge dedicated to frost formation types and morphology, review, and discuss the most recent studies relevant to the challenge of frost formation, focusing on the evaporator of the domestic refrigerator. The different types of domestic refrigerators are summarized, as are the different types of evaporators inside them. Common methods of testing frost formation phenomena on the evaporator are revisited in this article, and the analysis of the most recent mathematical models is presented as well. The input and output parameters of these models are grouped, and a similar analysis is conducted for the CFD models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16072945&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16072945&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Funded by:EC | Open ENTRANCEEC| Open ENTRANCEAuthors:
Zwickl-Bernhard, Sebastian; Golab, Antonia; Perger, Theresia; Auer, Hans;Zwickl-Bernhard, Sebastian
Zwickl-Bernhard, Sebastian in OpenAIREThe primary goal of this paper is to investigate the most cost-effective decommissioning and refurbishment investment decision for existing gas networks. An optimization model is developed and tested on a real test bed in an Austrian federal state. The analysis is performed from the network operator’s perspective and depicts different network decommissioning or refurbishment options under the decision of supplying or not supplying available gas demands. Whether or not there is ensured supply, we find that smaller gas networks (in terms of pipeline capacity and network length) are needed in the future. Analyzed shadow prices indicate that a balance/trade-off between the cost-optimal gas network design with and without ensured supply could lead to a robust and economically competitive future for downsized gas networks. The results demonstrate that it is necessary to socialize network operators’ costs among the remaining consumers connected to the network in the future. This adds a cost component to consumers, which needs to be considered when determining the profitability of sustainable alternatives to natural gas.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2023.101138&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2023.101138&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors:
Andrzej Kubik; Andrzej Kubik
Andrzej Kubik in OpenAIRE
Katarzyna Turoń; Katarzyna Turoń
Katarzyna Turoń in OpenAIRE
Piotr Folęga; Piotr Folęga
Piotr Folęga in OpenAIRE
Feng Chen; Feng Chen
Feng Chen in OpenAIREdoi: 10.3390/en16052185
Car-sharing services are developing at an ever-increasing pace. Taking into account the reduction of carbon dioxide emissions and pursuit of the sustainable development of transport, implementing electric cars in car-sharing fleets is being proposed. On the one hand, these types of vehicles are referred to as emission-free, but on the other hand, their environmental friendliness is questionable due to the emission of carbon dioxide during the production of energy to power them. Although many scientific papers are devoted to the issue of reducing emissions through car sharing, there is a research gap concerning the real production of carbon dioxide by car-sharing vehicles during car-sharing trips. To fill this research gap, the objective of the article was to analyze the actual level of carbon dioxide emissions from combustion and electric vehicles from car-sharing systems produced when renting rides. The test results showed that the electric car turned out to be significantly less emitting. The use of electric vehicles in car-sharing fleets can reduce carbon dioxide emissions from 14% to 65% compared to using cars with internal combustion engines. However, the key role during car-sharing trips is played by the driving style of the drivers, which has been omitted from the literature to date. This should be properly regulated by service providers and focus on the proper use of energy from electric vehicle batteries, especially at low temperatures. The article provides support for operators planning to modernize their fleet of vehicles and fills the research gap concerning car-sharing emissions.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2185/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052185&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/5/2185/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052185&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
