- home
- Advanced Search
- Energy Research
- 7. Clean energy
- GB
- PL
- UA
- English
- Energy Research
- 7. Clean energy
- GB
- PL
- UA
- English
description Publicationkeyboard_double_arrow_right Doctoral thesis 2023 United KingdomAuthors: Cesaro, Z;Green ammonia is gaining momentum as a globally significant technology for deep decarbonisation. In this thesis, several models are developed across chemical, techno-economic, and energy system modelling disciplines to explore the future role of green ammonia. First, standalone models of production (i.e., power-to-ammonia) and re-electrification (i.e., ammonia-to-power) are developed and compared to competing technologies. Second, these models are integrated into a planning and dispatch energy system model (ESM) of India to 2050. The ESM has several novel additions including the sector coupling of hydrogen and ammonia, multiple years of granular weather data, and learning-curve-based technology cost forecasts. India is chosen as an ideal case study given its globally unmatched demand growth in all three relevant sectors: electricity, green hydrogen, and green ammonia. The projected electricity demands for green hydrogen and ammonia production account for 25% of the total Indian electricity demand in 2050, underscoring the transformational potential that green hydrogen and ammonia sector coupling can have on the Indian energy system. The results of the state-of-the-art ESM highlight synergistic effects of hydrogen and ammonia sector coupling with the power system. The least-cost system employs seasonal green ammonia production paired with up to 40 million tonnes (i.e., 200 TWh) of ammonia storage, as well as some re-electrification via gas turbines. Sector coupling reduces system curtailment, addresses challenges of long-duration storage, and improves system resilience to interannual weather variations. While India is a crucial case study from a global decarbonisation perspective, the methodology and findings are generally applicable, and it is the aim of this work to motivate and accelerate the wider research community into considering the potential impacts of green ammonia sector coupling on electricity grid design. Finally, this work highlights strategic technology development direction for ammonia producers and gas turbine manufacturers, as well as implications for policymakers.
Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 11 Sep 2023Publisher:University of Essex Library Services Authors: Stefan Joseph Lygdopoulos;doi: 10.5526/esj.248
The 2022 World Cup organised by the International Association Football Federation (International Olympic Committee, 2021) and hosted by Qatar was billed to be the tournament that would completely revolutionise football, both on and off the field. It garnered acclaim in being the first World Cup held outside its customary months of June-July as well as in pioneering net zero carbon emissions in the sport - an assertion that ultimately proved largely unfounded(Ralston, 2022) with high reputational consequences for the country and the game. Non-governmental organisations (NGOs), like the Carbon Market Watch that works with the European Union amongst others, claimed that “carbon emissions created by the new stadiums could be as much as eight times higher than the figures contained in Qatar’s analysis” (MacInnes, 2022). Against the backdrop of mounting sustainability concerns expressed by policymakers and enthusiasts alike, this essay examines the environmental hazards associated with major sporting events, like the 2022 FIFA World Cup whilst delving into adaptations that organisers could make for future sporting bonanzas that would give their green aspirations wings that could fly without getting burned like the fabled Icarus whose own pride and arrogance led him to ignore the rising temperatures and ultimately cause his demise. Essex Student Journal Volume 14 Issue S1 2023
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:Telecommunications Society, Academic Mind Authors: S. Williams; M. Zhu; V. Marsic;This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI) that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Iordache, Klaus Lieutenant; Ana Vassileva Borissova; Mohamad Mustafa; Nick McCarthy; Ioan;The authors compare the energy consumption and CO2 emissions from vehicles using internal combustion engines (ICE), battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and two types of hybrid vehicles, BEV-ICE hybrid and BEV-FCEV hybrid. This paper considers several scenarios for four countries’ electricity production from primary energy sources to estimate total CO2 release. Energy consumption of the vehicle per 100 km, emissions during manufacturing, battery production, and lifecycle of the vehicle are considered in the total amount evaluation of CO2 released. The results show that with current technologies for battery manufacturing, and a significant proportion of national grid electricity delivered by fossil fuels, BEV is the best choice to reduce carbon emissions for shorter driving ranges. In the case of electricity generation mainly by low-carbon sources, FCEV and BEV-FCEV hybrid vehicles end up with lower carbon dioxide emissions. In contrast, with electricity mainly generated from fossil fuels, electric vehicles do not reduce CO2 emissions compared to combustion cars.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017Publisher:Research Centre of Industrial Problems of Development of NAS of Ukraine Authors: Kalinichenko Oleksandr V.;The article defines the characteristics of energy consumption in crop production. The process of production in the aspect of energy conversion in terms of renewable and non-renewable sources has been considered. The basic prerequisites for achieving energy efficiency in crop production were analyzed. A classification of characteristics of energy consumption in crop production, which determine the level of use of means and objects of work, as well as the ultimate efficiency of production, has been proposed. The indicated characteristics have been studied in detail in terms of the groups of factors (relative to bio-climatic conditions, technological level of production development, degree of technical support, organizational and economic variables of production development). The appropriate reasons for the uneven rates of growth of energy consumption in crop production and the production output volumes have been identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::497a02ec7b011362784d5582e4b7faad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::497a02ec7b011362784d5582e4b7faad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 UkrainePublisher:Інститут відновлюваної енергетики НАН України Authors: Kuznietsov, M.;Research program of the NAS of Ukraine named "Development of scientific principles of the hydrogen, storage and use of hydrogen in autonomous energy supply systems” was performed at 2019-2021. The latest advances in the use of renewable energy sources (solar and wind), chemical processes, biomaterials for the efficient production of hydrogen, its storage and use in the fuel cells powered energy supply systems are obtained by participants in this program.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2635::5175a4f8abcb951d1ee8d3f086a541a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2635::5175a4f8abcb951d1ee8d3f086a541a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Other literature type 2016Embargo end date: 16 Feb 2017 United KingdomPublisher:Faculty of Economics Authors: Chan, G.; Anadon, L-D.;doi: 10.17863/cam.7842
Effective decision making to allocate public funds for energy technology research, development, and demonstration (R&D) requires considering alternative investment opportunities that can have large but highly uncertain returns and a multitude of positive or negative interactions. This paper proposes and implements a method to support R&D decisions that propagates uncertainty through an economic model to estimate the benefits of an R&D portfolio, accounting for innovation spillovers and technology substitution and complementarity. The proposed method improves on the existing literature by: (a) using estimates of the impact of R&D investments from one of the most comprehensive sets of expert elicitations on this topic to date; (b) using a detailed energy-economic model to estimate evaluation metrics relevant to an energy R&D portfolio: e.g., system benefits, technology diffusion, and uncertainty around outcomes; and (c) using a novel sampling and optimization strategy to calculate optimal R&D portfolios. This design is used to estimate an optimal energy R&D portfolio that maximizes the net economic benefits under an R&D budget constraint. Results parameterized based on expert elicitations conducted in 2009-2011 in the United States provide indicative results that show: (1) an expert-recommended portfolio in 2030, relative to the BAU portfolio, can reduce carbon dioxide emissions by 46 million tonnes, increase economic surplus by $29 billion, and increase renewable energy generation by 39 TWh; (2) uncertainty around the estimates of R&D benefits is large and overall uncertainty increases with greater investment levels; (3) a 10-fold expansion from 2012 levels in the annual R&D budget for utility-scale energy storage, bioenergy, advanced vehicles, fossil energy, nuclear energy, and solar photovoltaic technologies can be justified by returns to economic surplus; (4) the greatest returns to public R&D investment are in energy storage and solar photovoltaics; and (5) the current allocation of energy R&D funds is very different from optimal portfolios. Taken together, these results demonstrate the utility of applying new methods to improve the cost-effectiveness and environmental performance in a deliberative approach to energy R&D portfolio decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Other literature type , Preprint 2005Embargo end date: 14 Mar 2006 United KingdomPublisher:Faculty of Economics Authors: Neuhoff, K.; Grubb, M.; Keats, K.;doi: 10.17863/cam.5037
Successful cap and trade programs for SO2 and NOx in the US allocate allowances to large emitters based on a historic base line for a period of up to thirty years. National Allocation Plans in Europe allocate CO2 allowances in an iterative approach first for a three then for a five-year period. The potential updating of the base line creates perverse incentives for operation and investment. Some allowances are also reserved for new entrants further distorting the scheme. We use analytic models and numeric simulations for the UK power sector to illustrate and quantify how these effects contribute to an inflation of the allowance price while reducing utilisation and investment in efficient technologies. The inflated allowance prices are likely to increase the European allowance budget and emissions, e.g. through the Linking Directive. As a result opportunity costs of emitting CO2 are reduced relative to an efficient cap and trade program.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.5037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.5037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2015 United KingdomAuthors: Espina Silva, Giannina;It is widely known that fossil fuels are limited; consequently, the generation of new sources of energy in a clean and environmentally friendly manner is a research priority. Bioethanol appears to be one potential solution, especially second-generation production from renewable biomass.In order to use lignocellulosic feedstock to produce bioethanol, its polysaccharide components, cellulose and hemicellulose, must be hydrolysed into soluble sugars, which can then be converted into ethanol by fermentative microorganisms such as Geobacillus thermoglucosidasius TM242 used by the company ReBio Technologies Ltd.To date, the cost of commercial enzymes used during the hydrolysis process remains a major economic consideration in the production of second-generation bioethanol as an alternative fuel. The research project presented in this thesis aims to improve this rate-limiting step of microbial bioethanol production through an investigation of the different enzymes associated with hemicellulose hydrolysis. Firstly, the TM242 genome sequence revealed a number of genes encoding glycoside-hydrolases. Six of these genes were cloned and expressed in E. coli and the recombinant enzymes characterised; three of them, two β-xylosidases and an α arabinofuranosidase, are relevant to xylan hydrolysis, and were found to be highly active and thermostable. Crystallisation of one of the β-xylosidases permitted the determination of a high-resolution (1.7 Å) structure of the apo-enzyme along with a lower resolution (2.6 Å) structure of the enzyme-substrate complex, resulting in the first reported structure of a GH52 family member (Espina et al., 2014).Secondly, as the TM242 microorganism lacks xylanase enzymes, four genes encoding xylanases from closely-related Geobacillus strains were cloned and expressed in E. coli, with one of them being also successfully cloned and expressed in G. thermoglucosidasius TM242. This heterologous xylanase was secreted in active form representing an enhanced biomass utilisation by TM242.In conclusion, it is felt that the findings presented here have the potential to make a valuable contribution towards second-generation bioethanol production.
University of Bath's... arrow_drop_down University of Bath's research portalDoctoral thesis . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1378::d21af30ced35f6ffdc532ba0bfd05fdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Bath's... arrow_drop_down University of Bath's research portalDoctoral thesis . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1378::d21af30ced35f6ffdc532ba0bfd05fdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Doctoral thesis 2023 United KingdomAuthors: Cesaro, Z;Green ammonia is gaining momentum as a globally significant technology for deep decarbonisation. In this thesis, several models are developed across chemical, techno-economic, and energy system modelling disciplines to explore the future role of green ammonia. First, standalone models of production (i.e., power-to-ammonia) and re-electrification (i.e., ammonia-to-power) are developed and compared to competing technologies. Second, these models are integrated into a planning and dispatch energy system model (ESM) of India to 2050. The ESM has several novel additions including the sector coupling of hydrogen and ammonia, multiple years of granular weather data, and learning-curve-based technology cost forecasts. India is chosen as an ideal case study given its globally unmatched demand growth in all three relevant sectors: electricity, green hydrogen, and green ammonia. The projected electricity demands for green hydrogen and ammonia production account for 25% of the total Indian electricity demand in 2050, underscoring the transformational potential that green hydrogen and ammonia sector coupling can have on the Indian energy system. The results of the state-of-the-art ESM highlight synergistic effects of hydrogen and ammonia sector coupling with the power system. The least-cost system employs seasonal green ammonia production paired with up to 40 million tonnes (i.e., 200 TWh) of ammonia storage, as well as some re-electrification via gas turbines. Sector coupling reduces system curtailment, addresses challenges of long-duration storage, and improves system resilience to interannual weather variations. While India is a crucial case study from a global decarbonisation perspective, the methodology and findings are generally applicable, and it is the aim of this work to motivate and accelerate the wider research community into considering the potential impacts of green ammonia sector coupling on electricity grid design. Finally, this work highlights strategic technology development direction for ammonia producers and gas turbine manufacturers, as well as implications for policymakers.
Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Oxford University Research ArchiveDoctoral thesis . 2023Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1064::385c86ce48c66090a8983a3041770e9a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Embargo end date: 11 Sep 2023Publisher:University of Essex Library Services Authors: Stefan Joseph Lygdopoulos;doi: 10.5526/esj.248
The 2022 World Cup organised by the International Association Football Federation (International Olympic Committee, 2021) and hosted by Qatar was billed to be the tournament that would completely revolutionise football, both on and off the field. It garnered acclaim in being the first World Cup held outside its customary months of June-July as well as in pioneering net zero carbon emissions in the sport - an assertion that ultimately proved largely unfounded(Ralston, 2022) with high reputational consequences for the country and the game. Non-governmental organisations (NGOs), like the Carbon Market Watch that works with the European Union amongst others, claimed that “carbon emissions created by the new stadiums could be as much as eight times higher than the figures contained in Qatar’s analysis” (MacInnes, 2022). Against the backdrop of mounting sustainability concerns expressed by policymakers and enthusiasts alike, this essay examines the environmental hazards associated with major sporting events, like the 2022 FIFA World Cup whilst delving into adaptations that organisers could make for future sporting bonanzas that would give their green aspirations wings that could fly without getting burned like the fabled Icarus whose own pride and arrogance led him to ignore the rising temperatures and ultimately cause his demise. Essex Student Journal Volume 14 Issue S1 2023
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5526/esj.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2012Publisher:Telecommunications Society, Academic Mind Authors: S. Williams; M. Zhu; V. Marsic;This paper reports on the design and implementation of a wireless sensor communication system with a low power consumption that allows it to be integrated with the energy harvesting technology. The system design and implementation focus on reducing the power consumption at three levels: hardware, software and data transmission. The reduction in power consumption, at hardware level in particular, is mainly achieved through the introduction of an energy-aware interface (EAI) that ensures a smart inter-correlated management of the energy flow. The resulted system satisfies the requirements of a wireless sensor structure that possesses the energy autonomous capability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::9903ebb83e2fb411c207801a5a389f24&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:Multidisciplinary Digital Publishing Institute Authors: Iordache, Klaus Lieutenant; Ana Vassileva Borissova; Mohamad Mustafa; Nick McCarthy; Ioan;The authors compare the energy consumption and CO2 emissions from vehicles using internal combustion engines (ICE), battery electric vehicles (BEV), fuel cell electric vehicles (FCEV), and two types of hybrid vehicles, BEV-ICE hybrid and BEV-FCEV hybrid. This paper considers several scenarios for four countries’ electricity production from primary energy sources to estimate total CO2 release. Energy consumption of the vehicle per 100 km, emissions during manufacturing, battery production, and lifecycle of the vehicle are considered in the total amount evaluation of CO2 released. The results show that with current technologies for battery manufacturing, and a significant proportion of national grid electricity delivered by fossil fuels, BEV is the best choice to reduce carbon emissions for shorter driving ranges. In the case of electricity generation mainly by low-carbon sources, FCEV and BEV-FCEV hybrid vehicles end up with lower carbon dioxide emissions. In contrast, with electricity mainly generated from fossil fuels, electric vehicles do not reduce CO2 emissions compared to combustion cars.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/21/7988/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=multidiscipl::2f98cd4668c3b6d0f03cdef26fa0afcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2017Publisher:Research Centre of Industrial Problems of Development of NAS of Ukraine Authors: Kalinichenko Oleksandr V.;The article defines the characteristics of energy consumption in crop production. The process of production in the aspect of energy conversion in terms of renewable and non-renewable sources has been considered. The basic prerequisites for achieving energy efficiency in crop production were analyzed. A classification of characteristics of energy consumption in crop production, which determine the level of use of means and objects of work, as well as the ultimate efficiency of production, has been proposed. The indicated characteristics have been studied in detail in terms of the groups of factors (relative to bio-climatic conditions, technological level of production development, degree of technical support, organizational and economic variables of production development). The appropriate reasons for the uneven rates of growth of energy consumption in crop production and the production output volumes have been identified.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::497a02ec7b011362784d5582e4b7faad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::497a02ec7b011362784d5582e4b7faad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 UkrainePublisher:Інститут відновлюваної енергетики НАН України Authors: Kuznietsov, M.;Research program of the NAS of Ukraine named "Development of scientific principles of the hydrogen, storage and use of hydrogen in autonomous energy supply systems” was performed at 2019-2021. The latest advances in the use of renewable energy sources (solar and wind), chemical processes, biomaterials for the efficient production of hydrogen, its storage and use in the fuel cells powered energy supply systems are obtained by participants in this program.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2635::5175a4f8abcb951d1ee8d3f086a541a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2635::5175a4f8abcb951d1ee8d3f086a541a3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Other literature type 2016Embargo end date: 16 Feb 2017 United KingdomPublisher:Faculty of Economics Authors: Chan, G.; Anadon, L-D.;doi: 10.17863/cam.7842
Effective decision making to allocate public funds for energy technology research, development, and demonstration (R&D) requires considering alternative investment opportunities that can have large but highly uncertain returns and a multitude of positive or negative interactions. This paper proposes and implements a method to support R&D decisions that propagates uncertainty through an economic model to estimate the benefits of an R&D portfolio, accounting for innovation spillovers and technology substitution and complementarity. The proposed method improves on the existing literature by: (a) using estimates of the impact of R&D investments from one of the most comprehensive sets of expert elicitations on this topic to date; (b) using a detailed energy-economic model to estimate evaluation metrics relevant to an energy R&D portfolio: e.g., system benefits, technology diffusion, and uncertainty around outcomes; and (c) using a novel sampling and optimization strategy to calculate optimal R&D portfolios. This design is used to estimate an optimal energy R&D portfolio that maximizes the net economic benefits under an R&D budget constraint. Results parameterized based on expert elicitations conducted in 2009-2011 in the United States provide indicative results that show: (1) an expert-recommended portfolio in 2030, relative to the BAU portfolio, can reduce carbon dioxide emissions by 46 million tonnes, increase economic surplus by $29 billion, and increase renewable energy generation by 39 TWh; (2) uncertainty around the estimates of R&D benefits is large and overall uncertainty increases with greater investment levels; (3) a 10-fold expansion from 2012 levels in the annual R&D budget for utility-scale energy storage, bioenergy, advanced vehicles, fossil energy, nuclear energy, and solar photovoltaic technologies can be justified by returns to economic surplus; (4) the greatest returns to public R&D investment are in energy storage and solar photovoltaics; and (5) the current allocation of energy R&D funds is very different from optimal portfolios. Taken together, these results demonstrate the utility of applying new methods to improve the cost-effectiveness and environmental performance in a deliberative approach to energy R&D portfolio decision making.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.7842&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Article , Other literature type , Preprint , Journal 2017Embargo end date: 01 Jan 2017 Italy, United Kingdom, Turkey, Italy, Italy, Italy, Germany, Turkey, Australia, Spain, Italy, Italy, United Kingdom, Italy, South Africa, United States, Italy, United Kingdom, United Kingdom, Switzerland, United States, United States, France, South Africa, United Kingdom, GermanyPublisher:Deutsches Elektronen-Synchrotron, DESY, Hamburg Funded by:GSRIGSRIAaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Abidi, SH; AbouZeid, OS; Abraham, NL; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, BS; Adachi, S; Adamczyk, L; Adelman, J; Adersberger, M; Adye, T; Affolder, AA; Agatonovic-Jovin, T; Agheorghiesei, C; Aguilar-Saavedra, JA; Ahlen, SP; Ahmadov, F; Aielli, G; Akatsuka, S; Akerstedt, H; Akesson, TPA; Akimov, AV; Alberghi, GL; Albert, J; Albicocco, P; Verzini, MJ Alconada; Aleksa, M; Aleksandrov, IN; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, SP; Allbrooke, BMM; Allen, BW; Allport, PP; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, AA; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Alvarez; Alviggi, MG; Amadio, BT; Coutinho, Y Amaral; Amelung, C; Amidei, D; Dos Santos, SP Amor; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, LS; Andari, N; Andeen, T; Anders, CF; Anders, JK; Anderson, KJ; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anisenkov, AV; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, DJ; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, JP; Ferraz, V Araujo; Arce, ATH; Ardell, RE; Arduh, FA; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, AJ; Armitage, LJ; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, NB; Augsten, K; Avolio, G; Axen, B; Ayoub, MK; Azuelos, G; Baas, AE; Baca, MJ; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagnaia, P; Bahrasemani, H; Baines, JT; Bajic, M; Baker, OK; Baldin, EM; Balek, P; Balli, F; Balunas, WK; Banas, E; Banerjee, Sw; Bannoura, AAE; Barak, L; Barberio, EL; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, SL; Barnett, BM; Barnett, RM; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, AJ; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimaraes; Bartoldus, R; Barton, AE; Bartos, P; Basalaev, A; Bassalat, A; Bates, RL; Batista, SJ; Batley, JR; Battaglia, M; Bauce, M; Bauer, F; Bawa, HS; Beacham, JB; Beattie, MD; Beau, T; Beauchemin, PH; Bechtle, P; Beckh, HP; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, AJ; Beddall, A; Bednyakov, VA; Bedognetti, M; Bee, CP; Beermann, TA; Begalli, M; Begel, M; Behr, JK; Bell, AS; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, NL; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y;pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
pmid: 29081711
pmc: PMC5638380
handle: 20.500.11770/268316 , 2108/189444 , 11590/329739 , 11367/65815 , 11567/933394 , 11568/893022 , 11568/1163541 , 11585/621984 , 11343/273260 , 1808/27196 , 10210/257251
With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of high-energy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb$^{-1}$ of data collected by the ATLAS experiment and simulation of proton-proton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of charged-particle separations and multiplicities on the track reconstruction performance is discussed. The efficiency in the cores of jets with transverse momenta between 200 GeV and 1600 GeV is quantified using a novel, data-driven, method. The method uses the energy loss, dE/dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, the measured fraction that fail to be reconstructed is $0.061 \pm 0.006 \textrm{(stat.)} \pm 0.014 \textrm{(syst.)}$ and $0.093 \pm 0.017 \textrm{(stat.)}\pm 0.021 \textrm{(syst.)}$ for jet transverse momenta of 200-400 GeV and 1400-1600 GeV, respectively. The European physical journal / C 77(10), 673 (2017). doi:10.1140/epjc/s10052-017-5225-7 Published by Springer, Berlin
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 68 citations 68 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/150126/1/150126.pdfData sources: CORE (RIOXX-UK Aggregator)Archivio della Ricerca - Università di PisaArticle . 2017License: CC BYData sources: Archivio della Ricerca - Università di PisaThe University of Melbourne: Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/11343/273260Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KU ScholarWorksArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/1808/27196Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2017License: CC BYData sources: Diposit Digital de Documents de la UABThe University of Manchester - Institutional RepositoryArticle . 2017Data sources: The University of Manchester - Institutional RepositoryINRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverUniversité Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2017Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2017Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: DataciteHarvard University: DASH - Digital Access to Scholarship at HarvardArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3204/pubdb-2017-13337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Research , Other literature type , Preprint 2005Embargo end date: 14 Mar 2006 United KingdomPublisher:Faculty of Economics Authors: Neuhoff, K.; Grubb, M.; Keats, K.;doi: 10.17863/cam.5037
Successful cap and trade programs for SO2 and NOx in the US allocate allowances to large emitters based on a historic base line for a period of up to thirty years. National Allocation Plans in Europe allocate CO2 allowances in an iterative approach first for a three then for a five-year period. The potential updating of the base line creates perverse incentives for operation and investment. Some allowances are also reserved for new entrants further distorting the scheme. We use analytic models and numeric simulations for the UK power sector to illustrate and quantify how these effects contribute to an inflation of the allowance price while reducing utilisation and investment in efficient technologies. The inflated allowance prices are likely to increase the European allowance budget and emissions, e.g. through the Linking Directive. As a result opportunity costs of emitting CO2 are reduced relative to an efficient cap and trade program.
Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.5037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research Papers in E... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.5037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis 2015 United KingdomAuthors: Espina Silva, Giannina;It is widely known that fossil fuels are limited; consequently, the generation of new sources of energy in a clean and environmentally friendly manner is a research priority. Bioethanol appears to be one potential solution, especially second-generation production from renewable biomass.In order to use lignocellulosic feedstock to produce bioethanol, its polysaccharide components, cellulose and hemicellulose, must be hydrolysed into soluble sugars, which can then be converted into ethanol by fermentative microorganisms such as Geobacillus thermoglucosidasius TM242 used by the company ReBio Technologies Ltd.To date, the cost of commercial enzymes used during the hydrolysis process remains a major economic consideration in the production of second-generation bioethanol as an alternative fuel. The research project presented in this thesis aims to improve this rate-limiting step of microbial bioethanol production through an investigation of the different enzymes associated with hemicellulose hydrolysis. Firstly, the TM242 genome sequence revealed a number of genes encoding glycoside-hydrolases. Six of these genes were cloned and expressed in E. coli and the recombinant enzymes characterised; three of them, two β-xylosidases and an α arabinofuranosidase, are relevant to xylan hydrolysis, and were found to be highly active and thermostable. Crystallisation of one of the β-xylosidases permitted the determination of a high-resolution (1.7 Å) structure of the apo-enzyme along with a lower resolution (2.6 Å) structure of the enzyme-substrate complex, resulting in the first reported structure of a GH52 family member (Espina et al., 2014).Secondly, as the TM242 microorganism lacks xylanase enzymes, four genes encoding xylanases from closely-related Geobacillus strains were cloned and expressed in E. coli, with one of them being also successfully cloned and expressed in G. thermoglucosidasius TM242. This heterologous xylanase was secreted in active form representing an enhanced biomass utilisation by TM242.In conclusion, it is felt that the findings presented here have the potential to make a valuable contribution towards second-generation bioethanol production.
University of Bath's... arrow_drop_down University of Bath's research portalDoctoral thesis . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1378::d21af30ced35f6ffdc532ba0bfd05fdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Bath's... arrow_drop_down University of Bath's research portalDoctoral thesis . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______1378::d21af30ced35f6ffdc532ba0bfd05fdc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu