- home
- Advanced Search
- Energy Research
- Open Access
- Embargo
- 7. Clean energy
- 6. Clean water
- PL
- UA
- Energy Research
- Open Access
- Embargo
- 7. Clean energy
- 6. Clean water
- PL
- UA
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, NetherlandsPublisher:Elsevier BV Funded by:EC | VEEPEC| VEEPAuthors:Abraham T. Gebremariam;
Abraham T. Gebremariam
Abraham T. Gebremariam in OpenAIREAli Vahidi;
Francesco Di Maio;Ali Vahidi
Ali Vahidi in OpenAIREJ. Moreno-Juez;
+4 AuthorsJ. Moreno-Juez
J. Moreno-Juez in OpenAIREAbraham T. Gebremariam;
Abraham T. Gebremariam
Abraham T. Gebremariam in OpenAIREAli Vahidi;
Francesco Di Maio;Ali Vahidi
Ali Vahidi in OpenAIREJ. Moreno-Juez;
I. Vegas-Ramiro;J. Moreno-Juez
J. Moreno-Juez in OpenAIREArtur Łagosz;
Artur Łagosz
Artur Łagosz in OpenAIRERadosław Mróz;
Peter Rem;Radosław Mróz
Radosław Mróz in OpenAIREThis study focuses on formulating the most sustainable concrete by incorporating recycled concrete aggregates and other products retrieved from construction and demolition (C&D) activities. Both recycled coarse aggregates (RCA) and recycled fine aggregates (RFA) are firstly used to fully replace the natural coarse and fine aggregates in the concrete mix design. Later, the cement rich ultrafine particles, recycled glass powder and mineral fibres recovered from construction and demolition wastes (CDW) are further incorporated at a smaller rate either as cement substituent or as supplementary additives. Remarkable properties are noticed when the RCA (4–12 mm) and RFA (0.25–4 mm) are fully used to replace the natural aggregates in a new concrete mix. The addition of recycled cement rich ultrafines (RCU), Recycled glass ultrafines (RGU) and recycled mineral fibres (RMF) into recycled concrete improves the modulus of elasticity. The final concrete, which comprises more than 75% (wt.) of recycled components/materials, is believed to be the most sustainable and green concrete mix. Mechanical properties and durability of this concrete have been studied and found to be within acceptable limits, indicating the potential of recycled aggregates and other CDW components in shaping sustainable and circular construction practices. The authors wish to acknowledge the financial support from EU Horizon 2020 Project VEEP ‘‘Cost-Effective Recycling of C&DW in High Added Value Energy Efficient Prefabricated Concrete Compo-nents for Massive Retrofitting of our Built Environment” (No.723582).
Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 46 citations 46 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 77visibility views 77 download downloads 74 Powered bymore_vert Construction and Bui... arrow_drop_down Construction and Building MaterialsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTADelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.conbuildmat.2020.121697&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Funded by:EC | METLAKE, EC | VERIFY, EC | IMBALANCE-P +4 projectsEC| METLAKE ,EC| VERIFY ,EC| IMBALANCE-P ,EC| CHE ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,EC| VISUALMEDIA ,AKA| Novel soil management practices - key for sustainable bioeconomy and climate change mitigation -SOMPA / Consortium: SOMPAAuthors:Ana Maria Roxana Petrescu;
Ana Maria Roxana Petrescu
Ana Maria Roxana Petrescu in OpenAIREChunjing Qiu;
Philippe Ciais;Chunjing Qiu
Chunjing Qiu in OpenAIRERona L. Thompson;
+35 AuthorsRona L. Thompson
Rona L. Thompson in OpenAIREAna Maria Roxana Petrescu;
Ana Maria Roxana Petrescu
Ana Maria Roxana Petrescu in OpenAIREChunjing Qiu;
Philippe Ciais;Chunjing Qiu
Chunjing Qiu in OpenAIRERona L. Thompson;
Philippe Peylin;Rona L. Thompson
Rona L. Thompson in OpenAIREMatthew J. McGrath;
Matthew J. McGrath
Matthew J. McGrath in OpenAIREEfisio Solazzo;
Greet Janssens‐Maenhout;Efisio Solazzo
Efisio Solazzo in OpenAIREFrancesco N. Tubiello;
Francesco N. Tubiello
Francesco N. Tubiello in OpenAIREP. Bergamaschi;
D. Brunner; Glen P. Peters; L. Höglund-Isaksson;P. Bergamaschi
P. Bergamaschi in OpenAIREPierre Regnier;
Pierre Regnier
Pierre Regnier in OpenAIRERonny Lauerwald;
Ronny Lauerwald
Ronny Lauerwald in OpenAIREDavid Bastviken;
David Bastviken
David Bastviken in OpenAIREAki Tsuruta;
Aki Tsuruta
Aki Tsuruta in OpenAIREWilfried Winiwarter;
Wilfried Winiwarter
Wilfried Winiwarter in OpenAIREPrabir K. Patra;
Prabir K. Patra
Prabir K. Patra in OpenAIREMatthias Kuhnert;
Gabriel D. Orregioni;Matthias Kuhnert
Matthias Kuhnert in OpenAIREMonica Crippa;
Monica Crippa
Monica Crippa in OpenAIREMarielle Saunois;
Lucia Perugini;Marielle Saunois
Marielle Saunois in OpenAIRETiina Markkanen;
Tiina Markkanen
Tiina Markkanen in OpenAIRETuula Aalto;
Tuula Aalto
Tuula Aalto in OpenAIREChristine Groot Zwaaftink;
Christine Groot Zwaaftink
Christine Groot Zwaaftink in OpenAIREYuanzhi Yao;
Yuanzhi Yao
Yuanzhi Yao in OpenAIREChris Wilson;
Chris Wilson
Chris Wilson in OpenAIREGiulia Conchedda;
Dirk Günther;Giulia Conchedda
Giulia Conchedda in OpenAIREAdrian Leip;
Adrian Leip
Adrian Leip in OpenAIREPete Smith;
Jean‐Matthieu Haussaire;Pete Smith
Pete Smith in OpenAIREAntti Leppänen;
Alistair J. Manning;Antti Leppänen
Antti Leppänen in OpenAIREJoe McNorton;
Patrick Brockmann; A.J. Dolman;Joe McNorton
Joe McNorton in OpenAIREAbstract. Reliable quantification of the sources and sinks of greenhouse gases, together with trends and uncertainties, is essential to monitoring the progress in mitigating anthropogenic emissions under the Paris Agreement. This study provides a consolidated synthesis of CH4 and N2O emissions with consistently derived state-of-the-art bottom-up (BU) and top-down (TD) data sources for the European Union and UK (EU27+UK). We integrate recent emission inventory data, ecosystem process-based model results, and inverse modelling estimates over the period 1990–2018. BU and TD products are compared with European National GHG Inventories (NGHGI) reported to the UN climate convention secretariat UNFCCC in 2019. For uncertainties, we used for NGHGI the standard deviation obtained by varying parameters of inventory calculations, reported by the Member States following the IPCC guidelines recommendations. For atmospheric inversion models (TD) or other inventory datasets (BU), we defined uncertainties from the spread between different model estimates or model specific uncertainties when reported. In comparing NGHGI with other approaches, a key source of bias is the activities included, e.g. anthropogenic versus anthropogenic plus natural fluxes. In inversions, the separation between anthropogenic and natural emissions is sensitive to the geospatial prior distribution of emissions. Over the 2011–2015 period, which is the common denominator of data availability between all sources, the anthropogenic BU approaches are directly comparable, reporting mean emissions of 20.8 Tg CH4 yr−1 (EDGAR v5.0) and 19.0 Tg CH4 yr−1 (GAINS), consistent with the NGHGI estimates of 18.9 ± 1.7 Tg CH4 yr−1. TD total inversions estimates give higher emission estimates, as they also include natural emissions. Over the same period regional TD inversions with higher resolution atmospheric transport models give a mean emission of 28.8 Tg CH4 yr−1. Coarser resolution global TD inversions are consistent with regional TD inversions, for global inversions with GOSAT satellite data (23.3 Tg CH4yr−1) and surface network (24.4 Tg CH4 yr−1). The magnitude of natural peatland emissions from the JSBACH-HIMMELI model, natural rivers and lakes emissions and geological sources together account for the gap between NGHGI and inversions and account for 5.2 Tg CH4 yr−1. For N2O emissions, over the 2011–2015 period, both BU approaches (EDGAR v5.0 and GAINS) give a mean value of anthropogenic emissions of 0.8 and 0.9 Tg N2O yr−1 respectively, agreeing with the NGHGI data (0.9 ± 0.6 Tg N2O yr−1). Over the same period, the average of the three total TD global and regional inversions was 1.3 ± 0.4 and 1.3 ± 0.1 Tg N2O yr−1 respectively, compared to 0.9 Tg N2O yr−1 from the BU data. The TU and BU comparison method defined in this study can be operationalized for future yearly updates for the calculation of CH4 and N2O budgets both at EU+UK scale and at national scale. The referenced datasets related to figures are visualized at https://doi.org/10.5281/zenodo.4288969 (Petrescu et al., 2020).
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Andrzej Kubik;
Andrzej Kubik
Andrzej Kubik in OpenAIREKatarzyna Turoń;
Katarzyna Turoń
Katarzyna Turoń in OpenAIREPiotr Folęga;
Piotr Folęga
Piotr Folęga in OpenAIREFeng Chen;
Feng Chen
Feng Chen in OpenAIREdoi: 10.3390/en16052185
Car-sharing services are developing at an ever-increasing pace. Taking into account the reduction of carbon dioxide emissions and pursuit of the sustainable development of transport, implementing electric cars in car-sharing fleets is being proposed. On the one hand, these types of vehicles are referred to as emission-free, but on the other hand, their environmental friendliness is questionable due to the emission of carbon dioxide during the production of energy to power them. Although many scientific papers are devoted to the issue of reducing emissions through car sharing, there is a research gap concerning the real production of carbon dioxide by car-sharing vehicles during car-sharing trips. To fill this research gap, the objective of the article was to analyze the actual level of carbon dioxide emissions from combustion and electric vehicles from car-sharing systems produced when renting rides. The test results showed that the electric car turned out to be significantly less emitting. The use of electric vehicles in car-sharing fleets can reduce carbon dioxide emissions from 14% to 65% compared to using cars with internal combustion engines. However, the key role during car-sharing trips is played by the driving style of the drivers, which has been omitted from the literature to date. This should be properly regulated by service providers and focus on the proper use of energy from electric vehicle batteries, especially at low temperatures. The article provides support for operators planning to modernize their fleet of vehicles and fills the research gap concerning car-sharing emissions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16052185&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 ItalyPublisher:MDPI AG Authors:Artur Kraszkiewicz;
Artur Kraszkiewicz
Artur Kraszkiewicz in OpenAIREArtur Przywara;
Artur Przywara
Artur Przywara in OpenAIREAlexandros Sotirios Anifantis;
Alexandros Sotirios Anifantis
Alexandros Sotirios Anifantis in OpenAIREdoi: 10.3390/en13102664
handle: 11586/300569
Nowadays, heating using wood, briquettes, or pellets is a curious replacement to fossil fuels such as coal, oil, or gas. Unfortunately, the combustion of biofuels, especially in low-power boilers with unstable operating conditions, releases a lot of gas pollutants (e.g., carbon monoxide (CO), nitric oxide (NO), and various organic compounds) that are usually generated due to the incomplete product combustion. The combustion of biofuel in grate boilers with top-down ignition is a new approach, popular in society (mainly used for coal fuels), which improves the combustion process and reduces the amount of pollutants emitted. This study evaluated the impact of ignition techniques on the emission level of gas pollutants during the combustion of wood logs, briquettes, and pellets of pine in grate-based charging boilers. The combination of top ignition mode with pinewood logs allowed us to achieve a reduction of 6% in CO and sulfur dioxide (SO2) emission into the atmosphere. However, the combination of top-down ignition mode with pellets and briquettes produced, in fully operational conditions, 1- to 18-fold higher levels of CO and SO2 respectively, than bottom-up ignition, after an initial period of low level CO and SO2 emissions. During the tests (mainly with ignition from top), substantial emissions of NO were observed of up to 400 mg·m−3 at 10% O2. Therefore, further research is required to decrease emission related to the content of nitrogen in biomass. In this respect, research of impact on the combustion temperature of such emissions is needed.
Energies arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13102664&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Walter de Gruyter GmbH Authors: Jerzy Baron; Gabriela Berkowicz; Witold Żukowski;Abstract The paper presents results of a study of oxidative decomposition of methanol in a fluidized bed of silver catalyst. The process of methanol oxidation was carried out on Ag-coated cenospheres core-shell catalyst. The catalyst was obtained by precipitation of silver from methanolic solution of silver nitrate on cenospheres. Cenospheres are lightweight, inert, hollow spheres, which can be easily introduced into a fluidized bed. Application of the catalyst in a form of fluidized bed should ensure good temperature equalization which is very important at low temperatures due to the possibility of generation of formaldehyde. It turned out that local hot points occur in that kind of a catalyst (in the form of a fluidized bed but with very low density), thus use of additional acoustic wave is necessary to ensure good control over the temperature of the process. The products of the process of methanol oxidation were monitored on-line by Fourier transform infrared spectroscopy (FTIR). The catalyst has proven to be highly active in the oxidative decomposition of methanol. Full of methanol conversion in reaction of complete oxidation was achieved at 350°C.
Polish Journal of Ch... arrow_drop_down Polish Journal of Chemical TechnologyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/pjct-2016-0073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Polish Journal of Ch... arrow_drop_down Polish Journal of Chemical TechnologyArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/pjct-2016-0073&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Franco Magurno;
Franco Magurno
Franco Magurno in OpenAIREDamian Chmura;
Damian Chmura
Damian Chmura in OpenAIREZofia Piotrowska-Seget;
Zofia Piotrowska-Seget
Zofia Piotrowska-Seget in OpenAIREMonika Malicka;
Monika Malicka
Monika Malicka in OpenAIREpmid: 32058165
Arbuscular mycorrhizal fungi (AMF) are ubiquitous, obligatory plant symbionts that have a beneficial influence on plants in contaminated environments. This study focused on evaluating the biomass and biodiversity of the AMF and microbial communities associated with Poa trivialis and Phragmites australis plants sampled at an aged site contaminated with phenol and polynuclear aromatic hydrocarbons (PAHs) and an uncontaminated control site. We analyzed the soil phospholipid fatty acid profile to describe the general structure of microbial communities. PCR-denaturing gradient gel electrophoresis with primers targeting the 18S ribosomal RNA gene was used to characterize the biodiversity of the AMF communities and identify dominant AMF species associated with the host plants in the polluted and control environments. The root mycorrhizal colonization and AMF biomass in the soil were negatively affected by the presence of PAHs and phenol, with no significant differences between the studied plant species, whereas the biodiversity of the AMF communities were influenced by the soil contamination and plant species. Soil contamination was more detrimental to the biodiversity of AMF communities associated with Ph. australis, compared to P. trivialis. Both species favored the development of different AMF species, which might be related to the specific features of their different root systems and soil microbial communities. The contaminated site was dominated by AMF generalists like Funneliformis and Rhizophagus, whereas in the control site Dominikia, Archaeospora, Claroideoglomus, Glomus, and Diversispora were also detected.
Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2020.110299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Ecotoxicology and En... arrow_drop_down Ecotoxicology and Environmental SafetyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecoenv.2020.110299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Piotr Arabas;
Piotr Arabas
Piotr Arabas in OpenAIRETomasz Jóźwik;
Tomasz Jóźwik
Tomasz Jóźwik in OpenAIREEwa Niewiadomska-Szynkiewicz;
Ewa Niewiadomska-Szynkiewicz
Ewa Niewiadomska-Szynkiewicz in OpenAIREdoi: 10.3390/en16104136
This paper addresses the energy conservation problem in computing systems. The focus is on energy-efficient routing protocols. We formulated and solved a network-wide optimization problem for calculating energy-aware routing for the recommended network configuration. Considering the complexity of the mathematical models of data center networks and the limitations of calculating routing by solving large-scale optimization problems, and methods described in the literature, we propose an alternative solution. We designed and developed several efficient heuristics for equal-cost multipath (ECMP) and Valiant routing that reduce the energy consumption in the computer network interconnecting computing servers. Implementing these heuristics enables the selection of routing paths and relay nodes based on current and predicted internal network load. The utility and efficiency of our methods were verified by simulation. The test cases were carried out on several synthetic network topologies, giving encouraging results. Similar results of using our efficient heuristic algorithm and solving the optimization task confirmed the usability and effectiveness of our solution. Thus, we produced well-justified recommendations for energy-aware computing system design to conclude the paper.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG doi: 10.3390/en12132506
Aerodynamics of the Darrieus wind turbine is an extremely complex issue requiring the use of very advanced numerical methods. Additional structural components of this device, such as, for example, a rotating shaft disturb the flow through the rotor significantly impairing its aerodynamic characteristics. The main purpose of the presented research is to validate the commonly-used unsteady Reynolds averaged Navier–Stokes (URANS) approach with the shear stress transport (SST) k-ω turbulence model based on the particle image velocimetry (PIV) studies of a two-bladed rotor operating at the moderate tip speed ratio of 4.5. In the present numerical studies, a two-dimensional turbine rotor with a diameter of 1 m was considered. The following parameters were evaluated: instantaneous velocity fields; velocity profiles in the rotor shadow and aerodynamic blade loads. The obtained numerical results are comparable with the reference experimental results taken from the literature. The second purpose of this work was to examine the influence of the rotating rotor shaft/tower on the wind turbine performance. It has been proven that the cylindrical shaft reduces the power of the device by 2.5% in comparison with the non-shaft configuration.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12132506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:ASME International Authors:Mathias Pein;
Mathias Pein; Martin Roeb; Stefania Tescari; +3 AuthorsMathias Pein
Mathias Pein in OpenAIREMathias Pein;
Mathias Pein; Martin Roeb; Stefania Tescari;Mathias Pein
Mathias Pein in OpenAIREDimitra Giasafaki;
Christos Agrafiotis;Dimitra Giasafaki
Dimitra Giasafaki in OpenAIREChristian Sattler;
Christian Sattler
Christian Sattler in OpenAIREdoi: 10.1115/1.4042226
Ca-Mn-based perovskites doped in their A- and B-site were synthesized and comparatively tested versus the Co3O4/CoO and (Mn,Fe)2O3/(Mn,Fe)3O4 redox pairs with respect to thermochemical storage and oxygen pumping capability, as a function of the kind and extent of dopant. The perovskites' induced heat effects measured via differential scanning calorimetry are substantially lower: the highest reaction enthalpy recorded by the CaMnO3–δ composition was only 14.84 kJ/kg compared to 461.1 kJ/kg for Co3O4/CoO and 161.0 kJ/kg for (Mn,Fe)2O3/(Mn,Fe)3O4. Doping of Ca with increasing content of Sr decreased these heat effects; more than 20 at % Sr eventually eliminated them. Perovskites with Sr instead of Ca in the A-site exhibited also negligible heat effects, irrespective of the kind of B site cation. On the contrary, perovskite compositions characterized by high oxygen release/uptake can operate as thermochemical oxygen pumps enhancing the performance of water/carbon dioxide splitting materials. Oxygen pumping via Ca0.9Sr0.1MnO3–δ and SrFeO3–δ doubled and tripled, respectively, the total oxygen absorbed by ceria during its re-oxidation versus that absorbed without their presence. Such effective pumping compositions exhibited practically no shrinkage during one heat-up/cool-down cycle. However, they demonstrated an increase of the coefficient of linear expansion due to the superposition of “chemical expansion” to thermal-only one, the effect of which on the long-term dimensional stability has to be further quantified through extended cyclic operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4042226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4042226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors:Rostyslav Bun;
Rostyslav Bun
Rostyslav Bun in OpenAIREMatthias Jonas;
Gregg Marland; Olha Danylo; +3 AuthorsMatthias Jonas
Matthias Jonas in OpenAIRERostyslav Bun;
Rostyslav Bun
Rostyslav Bun in OpenAIREMatthias Jonas;
Gregg Marland; Olha Danylo; Zbigniew Nahorski;Matthias Jonas
Matthias Jonas in OpenAIREMykola Gusti;
Mykola Gusti;Mykola Gusti
Mykola Gusti in OpenAIREThe assessment of greenhouse gases (GHGs) and air pollutants emitted to and removed from the atmosphere ranks high on international political and scientific agendas. Growing international concern and cooperation regarding the climate change problem have increased the need to consider the uncertainty in inventories of GHG emissions. The approaches to address uncertainty discussed in this special issue reflect attempts to improve national inventories, not only for their own sake but also from a wider, system analytic perspective. They seek to strengthen the usefulness of national emission inventories under a compliance and/or global monitoring and reporting framework. The papers in this special issue demonstrate the benefits of including inventory uncertainty in policy analyses. The issues raised by the authors and featured in their papers, along with the role that uncertainty analysis plays in many of their arguments, highlight the challenges and the importance of dealing with uncertainty. While the Intergovernmental Panel on Climate Change (IPCC) clearly stresses the value of conducting uncertainty analyses and offers guidance on executing them, the arguments made here in favor of performing these studies go well beyond any suggestions made by the IPCC to date. Improving and conducting uncertainty analyses are needed to develop a clear understanding and informed policy. Uncertainty matters and is key to many issues related to inventorying and reducing emissions. Considering uncertainty helps to avoid situations that can create a false sense of certainty or lead to invalid views of subsystems. Dealing proactively with uncertainty allows for the generation of useful knowledge that the international community should have to hand while strengthening the 2015 Paris Agreement, which had been agreed at the 21st Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC). However, considering uncertainty does not come free. Proper treatment of uncertainty is demanding because it forces us to take the step from “simple to complex” and to grasp a holistic system view. Only, thereafter, can we consider potential simplifications. That is, comprehensive treatment of uncertainty does not necessarily offer quick or easy solutions for policymakers. This special issue brings together 13 papers that resulted from the 2015 (4th) International Workshop on Uncertainty in Atmospheric Emissions, in Cracow, Poland. While they deal with many different aspects of the uncertainty in emission estimates, they are guided by the same principal question: “What GHGs shall be verified at what spatio-temporal scale to support conducive legislation at local and national scales, while ensuring effective governance at the global scale?” This question is at the heart of mitigation and adaptation. It requires an understanding of the entire system of GHG sources and sinks, their spatial characteristics and the temporal scales at which they react and interact, the uncertainty (accuracy and/or precision) with which fluxes can be measured, and last but not least, the consequences that follow from all of the aforementioned aspects, for policy actors to frame compliance and/or global monitoring and reporting agreements. This bigger system context serves as a reference for the papers in the special issue, irrespective of their spatio-temporal focus, and is used as a guide for the reader.
Mitigation and Adapt... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticleLicense: CC BYData sources: UnpayWallMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-019-09867-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mitigation and Adapt... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeArticleLicense: CC BYData sources: UnpayWallMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-019-09867-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu