- home
- Advanced Search
- Energy Research
- PL
- US
- CZ
- Energies
- Energy Research
- PL
- US
- CZ
- Energies
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Joanna Irena Odzijewicz; Elżbieta Wołejko; Urszula Wydro; Mariola Wasil; Agata Jabłońska-Trypuć;doi: 10.3390/en15249653
Biomass is one of the most important sources of renewable energy in the energy industry. It is assumed that by 2050 the global energy deposit could be covered in 33–50% of biomass combustion. As with conventional fuels, the combustion of biomass produces combustion by-products, such as fly ash. Therefore, along with the growing interest in the use of biomass as a source of energy, the production of ash as a combustion by-product increases every year. It is estimated that approximately 476 million tons of ashes per year can be produced from biomass combustion. For example, the calorific value of dry wood mass tends to be between 18.5 MJ × kg−1 and 19.5 MJ × kg−1, while the ash content resulting from thermal treatment of wood is from 0.4 to 3.9% of dry fuel mass. However, biomass ash is a waste that is particularly difficult to characterize due to the large variability of the chemical composition depending on the biomass and combustion technology. In addition, this waste is, on the one hand, a valuable fertilizer component, as it contains significant amounts of nutrients, e.g., calcium (Ca), potassium (K) and microelements, but on the other hand, it may contain toxic compounds harmful to the environment, including heavy metals and substances formed as a result of combustion, such as polycyclic aromatic hydrocarbons (PAHs) or volatile organic compounds (VOCs). PAHs and VOCs are formed mainly in the processes of incomplete combustion of coal and wood in low-power boilers, with unstable operating conditions. However, it is important to remember that before the fly ash is used in various industries (e.g., zeolite synthesis, recovery of rare earth metals or plastic production) as an additive to building materials or fertilizers for cultivation, a number of analyses are to be conducted so that the by-products of combustion could be used to allow the by-product of combustion to be used. It is important to conduct tests for the content of heavy metals, chlorides, sulphates, microelements and macroelements, grain and phase composition and organic compounds. If such ash is characterized by low pollution levels, it should be used in agriculture and reclamation of degraded land and not directed to landfills where it loses its valuable properties. The purpose of this review is to present the properties of ashes generated as a result of biomass combustion in Poland and the world, to discuss factors influencing changes in its composition and to present the possibilities of their reuse in the environment and in various branches of industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Łukasz Knypiński; Karol Pawełoszek; Yvonnick Le Menach;doi: 10.3390/en13051186
The paper presents the optimization method and computer software for the design of a low-power line-start permanent magnet synchronous motor (LSPMSM). The in-house-developed computer software was created with two independent modules: (a) the optimization procedure and (b) the numerical model of the motor. The optimization procedure used was a metaheuristic optimization method based on the gray wolf algorithm. Four design variables linked to the rotor structure were selected. The optimization process was performed from the rotor of a low-power induction motor (IM). The prototype of the motor (LSPMSM) was then built. The experimental measurements were performed for base the IM and optimized LSPMSM. The results of the measurements were compared for both motors. The experimental results confirmed the better performance of the designed motor in comparison to the induction motor.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:MDPI AG Authors: Anna Ostrowska; Tomasz Sikorski; Alessandro Burgio; Michał Jasiński;doi: 10.3390/en16010469
Due to the prospect of climate change and the challenges posed by the European Union to the modern power grid, a decentralized system based on distributed energy sources is being created from a centralized system based on utility power. It also involves new ideas on the operation and management of power grids, especially at the level of low-voltage distribution networks, where prosumers play a special role. In addition to the transformation of sources to renewables, the aim is to increase the flexibility of power grids by exploiting the regulatory potential of flexible grid components. The issue of grid flexibility assumes particular importance in the case of microgrids and local grids covered by the energy communities. Many posts describe the realization of the task of flexibility through energy storage, e.g., storing storage resources in electric vehicles or the use of energy transformation through conversion to heat, air compression air, or process cooling. However, there seems to be a lack of exploration of the topic, where the photovoltaic inverter could provide a flexible energy source while maintaining the rigor of power quality. This article presents current developments in low-voltage grids and the prospect of using prosumer installations to provide grid flexibility and stability.
Energies arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2023 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2023 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Toshiyuki Sueyoshi; Youngbok Ryu;doi: 10.3390/en14041180
This study aims to overview the U.S. sustainable development by measuring the environmental performance of 50 states over the period of 2009–2018. To attain the objective, we employ data envelopment analysis for environmental assessment where we prioritize the minimization of CO2 emissions first and the maximization of gross state product later under the concept of managerial disposability (i.e., an environment-based performance measure). Then, we examine how the state-level environmental performance measures are associated with their political and spatial contexts. For the purpose, we conduct the Kruskal-Wallis rank sum test across groups of states characterized by their political transitions in the presidential and gubernatorial elections and defined by the regions of the U.S. Economic Development Administration and Environmental Protection Agency. Based on our empirical results, we find that (a) overall environmental performance has gradually enhanced over time, (b) there are statistically significant differences in the environmental performance measures along with the political transitions, and (c) states on both coasts have outperformed those of the middle in the measurement.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010Publisher:MDPI AG Authors: James G. Mutitu; Shouyuan Shi; Allen Barnett; Dennis W. Prather;doi: 10.3390/en3121914
In this paper, we present the design and fabrication of hybrid dielectric-metallic back surface reflectors, for applications in thin film amorphous silicon solar cells. Standard multilayer distributed Bragg reflectors, require a large number of layers in order to achieve high reflectance characteristics. As it turns out, the addition of a metallic layer, to the base of such a multilayer mirror, enables a reduction in the number of dielectric layers needed to attain high reflectance performance. This paper explores the design, experimental realization and opportunities, in thin film amorphous silicon solar cells, afforded by such hybrid dielectric-metallic back surface reflectors.
Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/12/1914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3121914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/12/1914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3121914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Weronika Urbańska; Magdalena Osial;doi: 10.3390/en13246732
Lithium-ion batteries are currently one of the most important mobile energy storage units for portable electronics such as laptops, tablets, smartphones, etc. Their widespread application leads to the generation of large amounts of waste, so their recycling plays an important role in environmental policy. In this work, the process of leaching with sulfuric acid for the recovery of metals from spent Li-ion batteries in the presence of glutaric acid and hydrogen peroxide as reducing agents is presented. Experimental results indicate that glutaric-acid application improves the leaching performance compared to the use of just hydrogen peroxide under the same conditions. Obtained samples of leaching residues after mixed inorganic-organic leaching were characterized with Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and X-ray diffraction.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/24/6732/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/24/6732/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jarosław Kulpa; Michał Kopacz; Kinga Stecuła; Piotr Olczak;doi: 10.3390/en17081830
The increase in the share of renewable energy sources (RES) leads to a growing need for sources or systems/actions to stabilize the national energy grid. Such stabilizing actions include market tools, such as prices and demand-side response (DSR) tools, as well as flexible energy sources (e.g., gas). In addition, energy storage, where pumped storage hydroelectricity (PSH) accounts for 90% of global storage capacity, plays an important role. Therefore, the authors presented a detailed analysis of PSH in the context of the dynamic growth of installed capacity in renewable energy sources. They analyzed the economic viability of this type of power plant, with a particular emphasis on operational costs, energy production, and revenue. The Młoty case study and market data, including historical data on various PSH, were presented and analyzed. This study uses copulas, simulation, and statistical analysis. The authors proved that market prices and arbitrage actions alone are not sufficient to achieve profitability of the investment; however, additional benefits, such as fees for available power, enable the achievement of economic profitability. The reason for this is the fact that one of the main goals of PSH is to serve as a power reserve. In addition, this paper presents the analysis of the utilization of existing PSH in the form of full pumping and energy generation cycles (charging and discharging storage).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Nadir Yilmaz; Alpaslan Atmanli; Francisco M. Vigil; Burl Donaldson;doi: 10.3390/en15228523
Higher carbon alcohols such as n-propanol, n-butanol, and n-pentanol that can be produced from biomass can be used as alternative fuels in diesel engines. These alcohols can mix with both diesel fuel and biodiesel without any phase separation. Currently, unregulated emissions such as toxicity and total polycyclic aromatic hydrocarbon (PAH) from the use of these alcohols are not monitored. Investigating the effects of increasing the alternative fuel concentration for use in a diesel engine on PAH emissions will contribute to the protection of the environment and extend the engine’s operating life. In this study, the effects of adding 35% (by volume) n-propanol, n-butanol and n-pentanol to diesel and biodiesel on unregulated emissions in a diesel engine were compared. In the total PAH emission of biodiesel, the mixture containing n-pentanol stood out compared to other mixtures with a decrease of 39.17%. In higher alcohol-diesel mixtures, the highest reduction was observed in the n-butanol mixture as 80.98%. With respect to toxic emissions, very close values were obtained in biodiesel blends up to 94.15%, although n-butanol showed a maximum reduction of 84.33% in diesel blends. All these reductions also prevented the formation of high-cycle PAHs. The results obtained showed that the use of high carbon alcohols in a high mixing ratio contributed to the improvement of the fuel properties of biodiesel and to an increase in the alternative fuel mixing ratio with the reduction of PAH emissions from diesel fuel.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Wojciech Jerzak; Esther Acha; Bin Li;doi: 10.3390/en17205082
Pyrolysis is an environmentally friendly and efficient method for converting biomass into a wide range of products, including fuels, chemicals, fertilizers, catalysts, and sorption materials. This review confirms that scientific research on biomass pyrolysis has remained strong over the past 10 years. The authors examine the operating conditions of different types of pyrolysis, including slow, intermediate, fast, and flash, highlighting the distinct heating rates for each. Furthermore, biomass pyrolysis reactors are categorized into four groups, pneumatic bed reactors, gravity reactors, stationary bed reactors, and mechanical reactors, with a discussion on each type. The review then focuses on recent advancements in pyrolysis technologies that have improved efficiency, yield, and product quality, which, in turn, support sustainable energy production and effective waste management. The composition and yields of products from the different types of pyrolysis have been also reviewed. Finally, a techno-economic analysis has been conducted for both the pyrolysis of biomass alone and the co-pyrolysis of biomass with other raw materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17205082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17205082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Mateusz Płoszaj-Mazurek; Elżbieta Ryńska; Magdalena Grochulska-Salak;doi: 10.3390/en13205289
The analyzed research issue provides a model for Carbon Footprint estimation at an early design stage. In the context of climate neutrality, it is important to introduce regenerative design practices in the architect’s design process, especially in early design phases when the possibility of modifying the design is usually high. The research method was based on separate consecutive research works–partial tasks: Developing regenerative design guidelines for simulation purposes and for parametric modeling; generating a training set and a testing set of building designs with calculated total Carbon Footprint; using the pre-generated set to train a Machine Learning Model; applying the Machine Learning Model to predict optimal building features; prototyping an application for a quick estimation of the Total Carbon Footprint in the case of other projects in early design phases; updating the prototyped application with additional features; urban layout analysis; preparing a new approach based on Convolutional Neural Networks and training the new algorithm; and developing the final version of the application that can predict the Total Carbon Footprint of a building design based on basic building features and on the urban layout. The results of multi-criteria analyses showed relationships between the parameters of buildings and the possibility of introducing Carbon Footprint estimation and implementing building optimization at the initial design stage.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Joanna Irena Odzijewicz; Elżbieta Wołejko; Urszula Wydro; Mariola Wasil; Agata Jabłońska-Trypuć;doi: 10.3390/en15249653
Biomass is one of the most important sources of renewable energy in the energy industry. It is assumed that by 2050 the global energy deposit could be covered in 33–50% of biomass combustion. As with conventional fuels, the combustion of biomass produces combustion by-products, such as fly ash. Therefore, along with the growing interest in the use of biomass as a source of energy, the production of ash as a combustion by-product increases every year. It is estimated that approximately 476 million tons of ashes per year can be produced from biomass combustion. For example, the calorific value of dry wood mass tends to be between 18.5 MJ × kg−1 and 19.5 MJ × kg−1, while the ash content resulting from thermal treatment of wood is from 0.4 to 3.9% of dry fuel mass. However, biomass ash is a waste that is particularly difficult to characterize due to the large variability of the chemical composition depending on the biomass and combustion technology. In addition, this waste is, on the one hand, a valuable fertilizer component, as it contains significant amounts of nutrients, e.g., calcium (Ca), potassium (K) and microelements, but on the other hand, it may contain toxic compounds harmful to the environment, including heavy metals and substances formed as a result of combustion, such as polycyclic aromatic hydrocarbons (PAHs) or volatile organic compounds (VOCs). PAHs and VOCs are formed mainly in the processes of incomplete combustion of coal and wood in low-power boilers, with unstable operating conditions. However, it is important to remember that before the fly ash is used in various industries (e.g., zeolite synthesis, recovery of rare earth metals or plastic production) as an additive to building materials or fertilizers for cultivation, a number of analyses are to be conducted so that the by-products of combustion could be used to allow the by-product of combustion to be used. It is important to conduct tests for the content of heavy metals, chlorides, sulphates, microelements and macroelements, grain and phase composition and organic compounds. If such ash is characterized by low pollution levels, it should be used in agriculture and reclamation of degraded land and not directed to landfills where it loses its valuable properties. The purpose of this review is to present the properties of ashes generated as a result of biomass combustion in Poland and the world, to discuss factors influencing changes in its composition and to present the possibilities of their reuse in the environment and in various branches of industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Łukasz Knypiński; Karol Pawełoszek; Yvonnick Le Menach;doi: 10.3390/en13051186
The paper presents the optimization method and computer software for the design of a low-power line-start permanent magnet synchronous motor (LSPMSM). The in-house-developed computer software was created with two independent modules: (a) the optimization procedure and (b) the numerical model of the motor. The optimization procedure used was a metaheuristic optimization method based on the gray wolf algorithm. Four design variables linked to the rotor structure were selected. The optimization process was performed from the rotor of a low-power induction motor (IM). The prototype of the motor (LSPMSM) was then built. The experimental measurements were performed for base the IM and optimized LSPMSM. The results of the measurements were compared for both motors. The experimental results confirmed the better performance of the designed motor in comparison to the induction motor.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/5/1186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13051186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Czech RepublicPublisher:MDPI AG Authors: Anna Ostrowska; Tomasz Sikorski; Alessandro Burgio; Michał Jasiński;doi: 10.3390/en16010469
Due to the prospect of climate change and the challenges posed by the European Union to the modern power grid, a decentralized system based on distributed energy sources is being created from a centralized system based on utility power. It also involves new ideas on the operation and management of power grids, especially at the level of low-voltage distribution networks, where prosumers play a special role. In addition to the transformation of sources to renewables, the aim is to increase the flexibility of power grids by exploiting the regulatory potential of flexible grid components. The issue of grid flexibility assumes particular importance in the case of microgrids and local grids covered by the energy communities. Many posts describe the realization of the task of flexibility through energy storage, e.g., storing storage resources in electric vehicles or the use of energy transformation through conversion to heat, air compression air, or process cooling. However, there seems to be a lack of exploration of the topic, where the photovoltaic inverter could provide a flexible energy source while maintaining the rigor of power quality. This article presents current developments in low-voltage grids and the prospect of using prosumer installations to provide grid flexibility and stability.
Energies arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2023 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down DSpace at VSB Technical University of OstravaArticle . 2023 . Peer-reviewedLicense: CC BYData sources: DSpace at VSB Technical University of Ostravaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16010469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Toshiyuki Sueyoshi; Youngbok Ryu;doi: 10.3390/en14041180
This study aims to overview the U.S. sustainable development by measuring the environmental performance of 50 states over the period of 2009–2018. To attain the objective, we employ data envelopment analysis for environmental assessment where we prioritize the minimization of CO2 emissions first and the maximization of gross state product later under the concept of managerial disposability (i.e., an environment-based performance measure). Then, we examine how the state-level environmental performance measures are associated with their political and spatial contexts. For the purpose, we conduct the Kruskal-Wallis rank sum test across groups of states characterized by their political transitions in the presidential and gubernatorial elections and defined by the regions of the U.S. Economic Development Administration and Environmental Protection Agency. Based on our empirical results, we find that (a) overall environmental performance has gradually enhanced over time, (b) there are statistically significant differences in the environmental performance measures along with the political transitions, and (c) states on both coasts have outperformed those of the middle in the measurement.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/4/1180/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14041180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2010Publisher:MDPI AG Authors: James G. Mutitu; Shouyuan Shi; Allen Barnett; Dennis W. Prather;doi: 10.3390/en3121914
In this paper, we present the design and fabrication of hybrid dielectric-metallic back surface reflectors, for applications in thin film amorphous silicon solar cells. Standard multilayer distributed Bragg reflectors, require a large number of layers in order to achieve high reflectance characteristics. As it turns out, the addition of a metallic layer, to the base of such a multilayer mirror, enables a reduction in the number of dielectric layers needed to attain high reflectance performance. This paper explores the design, experimental realization and opportunities, in thin film amorphous silicon solar cells, afforded by such hybrid dielectric-metallic back surface reflectors.
Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/12/1914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3121914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2010License: CC BYFull-Text: http://www.mdpi.com/1996-1073/3/12/1914/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en3121914&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Weronika Urbańska; Magdalena Osial;doi: 10.3390/en13246732
Lithium-ion batteries are currently one of the most important mobile energy storage units for portable electronics such as laptops, tablets, smartphones, etc. Their widespread application leads to the generation of large amounts of waste, so their recycling plays an important role in environmental policy. In this work, the process of leaching with sulfuric acid for the recovery of metals from spent Li-ion batteries in the presence of glutaric acid and hydrogen peroxide as reducing agents is presented. Experimental results indicate that glutaric-acid application improves the leaching performance compared to the use of just hydrogen peroxide under the same conditions. Obtained samples of leaching residues after mixed inorganic-organic leaching were characterized with Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and X-ray diffraction.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/24/6732/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/24/6732/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13246732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Jarosław Kulpa; Michał Kopacz; Kinga Stecuła; Piotr Olczak;doi: 10.3390/en17081830
The increase in the share of renewable energy sources (RES) leads to a growing need for sources or systems/actions to stabilize the national energy grid. Such stabilizing actions include market tools, such as prices and demand-side response (DSR) tools, as well as flexible energy sources (e.g., gas). In addition, energy storage, where pumped storage hydroelectricity (PSH) accounts for 90% of global storage capacity, plays an important role. Therefore, the authors presented a detailed analysis of PSH in the context of the dynamic growth of installed capacity in renewable energy sources. They analyzed the economic viability of this type of power plant, with a particular emphasis on operational costs, energy production, and revenue. The Młoty case study and market data, including historical data on various PSH, were presented and analyzed. This study uses copulas, simulation, and statistical analysis. The authors proved that market prices and arbitrage actions alone are not sufficient to achieve profitability of the investment; however, additional benefits, such as fees for available power, enable the achievement of economic profitability. The reason for this is the fact that one of the main goals of PSH is to serve as a power reserve. In addition, this paper presents the analysis of the utilization of existing PSH in the form of full pumping and energy generation cycles (charging and discharging storage).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17081830&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Nadir Yilmaz; Alpaslan Atmanli; Francisco M. Vigil; Burl Donaldson;doi: 10.3390/en15228523
Higher carbon alcohols such as n-propanol, n-butanol, and n-pentanol that can be produced from biomass can be used as alternative fuels in diesel engines. These alcohols can mix with both diesel fuel and biodiesel without any phase separation. Currently, unregulated emissions such as toxicity and total polycyclic aromatic hydrocarbon (PAH) from the use of these alcohols are not monitored. Investigating the effects of increasing the alternative fuel concentration for use in a diesel engine on PAH emissions will contribute to the protection of the environment and extend the engine’s operating life. In this study, the effects of adding 35% (by volume) n-propanol, n-butanol and n-pentanol to diesel and biodiesel on unregulated emissions in a diesel engine were compared. In the total PAH emission of biodiesel, the mixture containing n-pentanol stood out compared to other mixtures with a decrease of 39.17%. In higher alcohol-diesel mixtures, the highest reduction was observed in the n-butanol mixture as 80.98%. With respect to toxic emissions, very close values were obtained in biodiesel blends up to 94.15%, although n-butanol showed a maximum reduction of 84.33% in diesel blends. All these reductions also prevented the formation of high-cycle PAHs. The results obtained showed that the use of high carbon alcohols in a high mixing ratio contributed to the improvement of the fuel properties of biodiesel and to an increase in the alternative fuel mixing ratio with the reduction of PAH emissions from diesel fuel.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/22/8523/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors: Wojciech Jerzak; Esther Acha; Bin Li;doi: 10.3390/en17205082
Pyrolysis is an environmentally friendly and efficient method for converting biomass into a wide range of products, including fuels, chemicals, fertilizers, catalysts, and sorption materials. This review confirms that scientific research on biomass pyrolysis has remained strong over the past 10 years. The authors examine the operating conditions of different types of pyrolysis, including slow, intermediate, fast, and flash, highlighting the distinct heating rates for each. Furthermore, biomass pyrolysis reactors are categorized into four groups, pneumatic bed reactors, gravity reactors, stationary bed reactors, and mechanical reactors, with a discussion on each type. The review then focuses on recent advancements in pyrolysis technologies that have improved efficiency, yield, and product quality, which, in turn, support sustainable energy production and effective waste management. The composition and yields of products from the different types of pyrolysis have been also reviewed. Finally, a techno-economic analysis has been conducted for both the pyrolysis of biomass alone and the co-pyrolysis of biomass with other raw materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17205082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17205082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Mateusz Płoszaj-Mazurek; Elżbieta Ryńska; Magdalena Grochulska-Salak;doi: 10.3390/en13205289
The analyzed research issue provides a model for Carbon Footprint estimation at an early design stage. In the context of climate neutrality, it is important to introduce regenerative design practices in the architect’s design process, especially in early design phases when the possibility of modifying the design is usually high. The research method was based on separate consecutive research works–partial tasks: Developing regenerative design guidelines for simulation purposes and for parametric modeling; generating a training set and a testing set of building designs with calculated total Carbon Footprint; using the pre-generated set to train a Machine Learning Model; applying the Machine Learning Model to predict optimal building features; prototyping an application for a quick estimation of the Total Carbon Footprint in the case of other projects in early design phases; updating the prototyped application with additional features; urban layout analysis; preparing a new approach based on Convolutional Neural Networks and training the new algorithm; and developing the final version of the application that can predict the Total Carbon Footprint of a building design based on basic building features and on the urban layout. The results of multi-criteria analyses showed relationships between the parameters of buildings and the possibility of introducing Carbon Footprint estimation and implementing building optimization at the initial design stage.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu