- home
- Advanced Search
- Energy Research
- 11. Sustainability
- 2. Zero hunger
- PL
- Chinese Academy of Sciences
- Energy Research
- 11. Sustainability
- 2. Zero hunger
- PL
- Chinese Academy of Sciences
description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:EDP Sciences Authors: Damian Burzyński; Leszek Kasprzyk;This paper presents aspects of modelling and simulation of energy storages based on the example of a lead-acid battery pack for powering an electric vehicle. The most frequently used energy storages, with particular emphasis on the difficulties in their proper selection for mobile equipment, was discussed. The mathematical model of the leadacid battery and the relations describing its respective parameters was also presented. A selected energy storage was subjected to detailed analysis with regards to the electrical and thermal parameters while powering an electric vehicle during an standard driving cycle in an urban area. The simulation was performed in the Matlab Simulink environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20171401041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20171401041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Xin Li; Jian Liu; Jiansong Tian; Zhicheng Pan; Yangwu Chen; Fei Ming; Rui Wang; Lin Wang; Houzhen Zhou; Junjie Li; Zhouliang Tan;pmid: 36774984
Microalgae consortium is a promising technology for achieving low-carbon and resource utilization goals in municipal wastewater treatment. However, little is known about how the consortium affects the treatment performance in the startup stage of co-cultivation. Herein, photobioreactors were constructed with different contents of microalgae and activated sludge (AS) (wt.microalgae: wt.AS ≥ 50 %). The results showed that the concentration of microalgae increased by more than 20 % with AS, and the effluents were close or lower than Chinese discharge standards within HRT 24 h (NH4+-N, TP, and COD ≤ 5.0, 0.5, and 50 mg L-1). Furthermore, the co-occurrence pattern of microbial populations experienced inhibition-reconstruction and reconstruction-inhibition processes, respectively, and the inter-species relationship was directly related to the effluent quality. Microalgal concentration and temperature were the key factors to the microbial community profiling. The potential microorganisms in AS could promote the growth of microalgae, and the bacteria and fungi formed co-metabolism through functional complementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jan 2019 France, GermanyPublisher:Wiley Funded by:NSERC, SNSF | Climate and Environmental..., NSF | CNH: Pluvials, Droughts, ... +1 projectsNSERC ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP) ,NSF| CNH: Pluvials, Droughts, Energetics, and the Mongol Empire ,NSF| Collaborative Research: EaSM2--Wildfires and Regional Climate Variability - Mechanisms, Modeling, and PredictionAuthors: Wilfried Winiwarter; Wilfried Winiwarter; Sebastian Lienert; Sebastian Lienert; +25 AuthorsWilfried Winiwarter; Wilfried Winiwarter; Sebastian Lienert; Sebastian Lienert; Jia Yang; Jia Yang; Jinfeng Chang; Bowen Zhang; Palmira Messina; Philippe Ciais; Rona Thompson; Shufen Pan; Akihiko Ito; Robert B. Jackson; Fortunat Joos; Fortunat Joos; Eri Saikawa; Stefan Olin; Stefan Gerber; Sönke Zaehle; Changhui Peng; Chaoqun Lu; Eric A. Davidson; Almut Arneth; Nicolas Vuichard; Josep G. Canadell; Rongting Xu; Hanqin Tian; Hanqin Tian;pmid: 30414347
AbstractOur understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process‐based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O‐N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O‐N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O‐N/year to 3.3 Tg N2O‐N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O‐N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process‐based simulations.
IIASA DARE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 254 citations 254 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Authors: Solar Energy Technologies, Western Sydney University, Penrith, NSW 2751, Australia ( host institution ); Nowotny, Janusz ( author ); Dodson, John ( author ); Fiechter, Sebastian ( author ); +7 AuthorsSolar Energy Technologies, Western Sydney University, Penrith, NSW 2751, Australia ( host institution ); Nowotny, Janusz ( author ); Dodson, John ( author ); Fiechter, Sebastian ( author ); Gür, Turgut M. ( author ); Kennedy, Brendan ( author ); Macyk, Wojciech ( author ); Bak, Tadeusz ( author ); Sigmund, Wolfgang ( UF author ); Yamawaki, Michio ( author ); Rahman, Kazi A. ( author );handle: 1959.7/uws:41261
Abstract The recent climate change agreement in Paris highlights the imperative to aggressively decarbonize the energy economy and develop new technologies, especially for the generation of electrical energy that are environmentally clean. This challenge can only be addressed by a multi-pronged approach to research and education of the next generation of scientists and engineers as well as informed public discourse. Consequently this requires the introduction of new and comprehensive education programs on sustainable energy technologies for universities and, possibly, high schools. Among others, the new programs should provide in-depth knowledge in the development of new materials for more efficient energy conversion systems and devices. The enhanced level of education is also needed for properly assessing the competing technologies in terms of their economic and social benefits. The increasing recognition of the significance of clean and efficient energy conversion indicates the need for a comprehensive education program to be developed. The purpose of the present work is to consider the structure of both an education program and the related textbook where the energy-related fundamental and applied subjects are presented in a concentrated and uniform manner. Such a textbook could be an education aid for students of energy-related courses as well as the teachers involved in the formulation of the education programs. The textbook, which should be dedicated mainly for students at the undergraduate levels at universities, and possibly high schools, should include in-depth interdisciplinary sections dedicated to energy experts and graduate students. This paper considers the present international efforts in reducing the impact of climate change and the need to develop new technologies for clean energy generation. It is argued that progress in this area requires recognition of hydrogen as the main energy carrier of the future. This work also delineates the goals of the Sustainable Energy Network, SEN, involved in the UN program of Future Earth.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00591756/00001Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.06.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 147 citations 147 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00591756/00001Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.06.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Xueying Mu; Xueying Mu; Xiaoguang Liu; Jiayi Zhu; Tao Tang; Hanqing Jiang; Y. L. Li; Changde Ma; Xuecheng Chen; Ewa Mijowska;Polyethylene terephthalate (PET) plastic has been extensively used in our social life, but its poor biodegradability has led to serious environmental pollution and aroused worldwide concern. Up to now, various strategies have been proposed to address the issue, yet such strategies remain seriously impeded by many obstacles. Herein, waste PET plastic was selectively carbonized into three-dimensional (3D) porous carbon nanosheets (PCS) with high yield of 36.4 wt%, to be further hybridized with MnO2 nanoflakes to form PCS-MnO2 composites. Due to the introduction of an appropriate amount of MnO2 nanoflakes, the resulting PCS-MnO2 composite exhibited a specific capacitance of 210.5 F g−1 as well as a high areal capacitance of 0.33 F m−2. Furthermore, the PCS-MnO2 composite also showed excellent cycle stability (90.1% capacitance retention over 5000 cycles under a current density of 10 A g−1). The present study paved an avenue for the highly efficient recycling of PET waste into high value-added products (PCSs) for electrochemical energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nano10061097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nano10061097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Embargo end date: 08 Apr 2024 FrancePublisher:Springer International Publishing Publicly fundedMohammad Zaman; Kristina Kleineidam; Lars R. Bakken; Jacqueline Berendt; Conor Bracken; Klaus Butterbach‐Bahl; Zucong Cai; Scott X. Chang; Timothy J. Clough; Khadim Dawar; Weixin Ding; Peter Dörsch; M. dos Reis Martins; C. Eckhardt; Sebastian Fiedler; Torsten Frosch; J. P. Goopy; Carolyn-Monika Görres; Apoorv Gupta; S. Henjes; Magdalena E. G. Hofmann; Marcus A. Horn; M. M. R. Jahangir; Anne Jansen-Willems; Katharina Lenhart; Lee Heng; Dominika Lewicka‐Szczebak; G. Lucic; Lutz Merbold; Joachim Mohn; Lars Molstad; Gerald M. Moser; Pat Murphy; Alberto Sanz-Cobeña; Miloslav Šimek; Segundo Urquiaga; Reinhard Well; Nicole Wrage‐Mönnig; Shahriar Zaman; J. Zhang; Christoph Müller;handle: 10568/129536
AbstractThe rapidly changing global climate due to increased emission of anthropogenic greenhouse gases (GHGs) is leading to an increased occurrence of extreme weather events such as droughts, floods, and heatwaves. The three major GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The major natural sources of CO2 include ocean–atmosphere exchange, respiration of animals, soils (microbial respiration) and plants, and volcanic eruption; while the anthropogenic sources include burning of fossil fuel (coal, natural gas, and oil), deforestation, and the cultivation of land that increases the decomposition of soil organic matter and crop and animal residues. Natural sources of CH4 emission include wetlands, termite activities, and oceans. Paddy fields used for rice production, livestock production systems (enteric emission from ruminants), landfills, and the production and use of fossil fuels are the main anthropogenic sources of CH4. Nitrous oxide, in addition to being a major GHG, is also an ozone-depleting gas. N2O is emitted by natural processes from oceans and terrestrial ecosystems. Anthropogenic N2O emissions occur mostly through agricultural and other land-use activities and are associated with the intensification of agricultural and other human activities such as increased use of synthetic fertiliser (119.4 million tonnes of N worldwide in 2019), inefficient use of irrigation water, deposition of animal excreta (urine and dung) from grazing animals, excessive and inefficient application of farm effluents and animal manure to croplands and pastures, and management practices that enhance soil organic N mineralisation and C decomposition. Agriculture could act as a source and a sink of GHGs. Besides direct sources, GHGs also come from various indirect sources, including upstream and downstream emissions in agricultural systems and ammonia (NH3) deposition from fertiliser and animal manure.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129536Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129536Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint , Review 2021 SerbiaPublisher:MDPI AG Funded by:MESTD | Medical costs structure a...MESTD| Medical costs structure and budget impact analysis regarding most prevalent and/or most expensive diseases and cost/effectiveness/utility coefficient determination of common medical interventionsMihajlo Jakovljevic; Arcadio A. Cerda; Yansui Liu; Leidy García; Yuriy Timofeyev; Kristijan Krstic; John Fontanesi;Historical legacy of Eastern European and Balkans’ health systems was mutually interdependent and shaped by local socioeconomic circumstances. Three distinctive systems of risk sharing and health financing to develop since the late XIX century were the Bismarck, Beveridge, and Semashko systems. Modern day healthcare systems in these countries are challenged by population ageing, accelerated innovation in medical technology, growing purchasing power and rising demand for healthcare services. Supply side changes contribute to demand side efficiency bottlenecks in financing, driving the costs of the already expensive medical care up. All of the nations have a large share of citizens experiencing difficulty with affordability and access to medical care, particularly in rural and remote areas. Network of Health technology assessment agencies have mushroomed over the past three decades. Principles of health economics theory and cost-effective resource allocation are slowly gaining ground in governing authorities’ mindset and decision-making process. For many years to come, pharmaceuticals and medical services will remain dependent on out-of-pocket spending. Currently accelerating and spreading 4.0 Industrial Revolution, together with the Belt and Road Initiative, are likely to substantially impact the further economic development of this vast region. Post-Pandemic ‘Green’ Recovery strategies adopted by many of the Eastern European governments shall also make this transition towards sustainable development more difficult and challenging given the large dependency of all these economies upon traditional carbon fuels.
SCIDAR - A Digital A... arrow_drop_down SCIDAR - A Digital Archive of the University of KragujevacReview . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202108.0227.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert SCIDAR - A Digital A... arrow_drop_down SCIDAR - A Digital Archive of the University of KragujevacReview . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202108.0227.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:IOP Publishing Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Early Career Re..., ARC | Discovery Early Career Re... +1 projectsARC| Linkage Projects - Grant ID: LP160100242 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE160100443 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE130101084 ,ARC| Discovery Projects - Grant ID: DP150103286Lisa Benson; Lisa Benson; Tomislav Hengl; Paul E. Carnell; Selena K. Gress; Philine S. E. zu Ermgassen; Philine S. E. zu Ermgassen; Daniel C. Donato; Ebrahem M. Eid; Ebrahem M. Eid; Carolyn J. Ewers Lewis; Mark Spalding; Jonathan Sanderman; Christian J. Sanders; Maria Fernanda Adame; Leah Glass; Sunny L. Jardine; Clare Duncan; Clare Duncan; Greg Fiske; Trevor G. Jones; Trevor G. Jones; Eugéne Ndemem Nsombo; Kylen Solvik; Mizanur Rahman; Peter I. Macreadie; Emily Landis; Miguel Cifuentes-Jara; Jacob J. Bukoski;Avec la reconnaissance croissante du fait qu'une action efficace sur le changement climatique nécessitera une combinaison de réductions d'émissions et de séquestration du carbone, la protection, l'amélioration et la restauration des puits de carbone naturels sont devenues des priorités politiques. Les forêts de mangroves sont considérées comme l'un des écosystèmes les plus riches en carbone au monde, la majeure partie du carbone étant stockée dans le sol. Pour que les forêts de mangrove soient incluses dans les efforts d'atténuation du climat, la connaissance de la répartition spatiale des stocks de carbone du sol de mangrove est essentielle. Les estimations mondiales actuelles ne tiennent pas suffisamment compte de la variabilité d'échelle plus fine qui serait nécessaire pour éclairer les décisions locales sur les projets de protection et de restauration de l'emplacement. Pour combler ce déficit de connaissances, nous avons compilé une grande base de données géoréférencée de mesures du carbone du sol de mangrove et développé un nouveau modèle statistique basé sur l'apprentissage automatique de la distribution de la densité de carbone à l'aide de données spatialement complètes à une résolution de 30 m. Ce modèle, qui comprenait une estimation préalable du carbone du sol à partir du modèle global SoilGrids 250 m, a pu capturer 63 % de la variabilité verticale et horizontale de la densité du carbone organique du sol (RMSE de 10,9 kg m−3). Parmi les variables locales, la charge totale de sédiments en suspension et l'imagerie Landsat étaient la variable la plus importante expliquant la densité de carbone du sol. La projection de ce modèle à travers la distribution mondiale des forêts de mangroves pour l'année 2000 a donné une estimation de 6,4 Pg C pour le mètre supérieur du sol avec une gamme de 86-729 Mg C ha−1 sur tous les pixels. En utilisant des données de changement de couverture forestière de mangrove détectées à distance, la perte de carbone du sol due à la perte d'habitat de mangrove entre 2000 et 2015 était de 30–122 Tg C avec plus de 75% de cette perte attribuable à l'Indonésie, la Malaisie et le Myanmar. Les produits cartographiques résultant de ce travail sont destinés à servir les pays qui cherchent à inclure les habitats de mangrove dans les projets de services écosystémiques payants et dans la conception de stratégies efficaces de conservation de la mangrove. Con el creciente reconocimiento de que una acción efectiva sobre el cambio climático requerirá una combinación de reducciones de emisiones y secuestro de carbono, proteger, mejorar y restaurar los sumideros naturales de carbono se han convertido en prioridades políticas. Los bosques de manglares se consideran algunos de los ecosistemas más densos en carbono del mundo, con la mayor parte del carbono almacenado en el suelo. Para que los bosques de manglares se incluyan en los esfuerzos de mitigación climática, es fundamental conocer la distribución espacial de las reservas de carbono del suelo de los manglares. Las estimaciones globales actuales no capturan lo suficiente de la variabilidad de escala más fina que se requeriría para informar las decisiones locales sobre los proyectos de protección y restauración del emplazamiento. Para cerrar esta brecha de conocimiento, hemos compilado una gran base de datos georreferenciada de mediciones de carbono del suelo de los manglares y hemos desarrollado un nuevo modelo estadístico basado en el aprendizaje automático de la distribución de la densidad de carbono utilizando datos espacialmente completos a una resolución de 30 m. Este modelo, que incluyó una estimación previa de carbono del suelo a partir del modelo global SoilGrids 250 m, fue capaz de capturar el 63% de la variabilidad vertical y horizontal en la densidad de carbono orgánico del suelo (RMSE de 10.9 kg m−3). De las variables locales, la carga total de sedimentos suspendidos y las imágenes Landsat fueron las variables más importantes que explican la densidad de carbono del suelo. La proyección de este modelo en la distribución mundial de los bosques de manglares para el año 2000 arrojó una estimación de 6,4 Pg C para el metro superior del suelo con un rango de 86–729 Mg C ha−1 en todos los píxeles. Al utilizar datos de cambio de cobertura forestal de manglares por teledetección, la pérdida de carbono del suelo debido a la pérdida de hábitat de manglares entre 2000 y 2015 fue de 30–122 Tg C, con >75% de esta pérdida atribuible a Indonesia, Malasia y Myanmar. Los productos Map resultantes de este trabajo están destinados a servir a las naciones que buscan incluir hábitats de manglares en proyectos de pago por servicios ecosistémicos y en el diseño de estrategias efectivas para conservar los manglares. With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m−3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha−1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies. مع الاعتراف المتزايد بأن العمل الفعال بشأن تغير المناخ سيتطلب مزيجًا من خفض الانبعاثات وعزل الكربون، أصبحت حماية مصارف الكربون الطبيعية وتعزيزها واستعادتها أولويات سياسية. تعتبر غابات المنغروف من أكثر النظم الإيكولوجية كثافة بالكربون في العالم مع تخزين معظم الكربون في التربة. من أجل إدراج غابات المانغروف في جهود التخفيف من آثار المناخ، فإن معرفة التوزيع المكاني لمخزونات الكربون في تربة المانغروف أمر بالغ الأهمية. لا تعكس التقديرات العالمية الحالية ما يكفي من التقلبات الدقيقة في الحجم التي ستكون مطلوبة لإبلاغ القرارات المحلية بشأن تحديد مواقع مشاريع الحماية والترميم. لسد هذه الفجوة المعرفية، قمنا بتجميع قاعدة بيانات جغرافية مرجعية كبيرة لقياسات الكربون في تربة المنغروف وطورنا نموذجًا إحصائيًا جديدًا قائمًا على التعلم الآلي لتوزيع كثافة الكربون باستخدام بيانات شاملة مكانيًا بدقة 30 مترًا. كان هذا النموذج، الذي تضمن تقديرًا مسبقًا لكربون التربة من نموذج SoilGrids العالمي 250 m، قادرًا على التقاط 63 ٪ من التباين الرأسي والأفقي في كثافة الكربون العضوي في التربة (RMSE من 10.9 كجم م−3). من بين المتغيرات المحلية، كان إجمالي حمل الرواسب المعلقة وصور لاندسات أهم متغير يفسر كثافة الكربون في التربة. أسفر إسقاط هذا النموذج عبر التوزيع العالمي لغابات المانغروف لعام 2000 عن تقدير قدره 6.4 بيكوغرام من الكربون للمتر العلوي من التربة بنطاق 86–729 ملغ من الكربون في جميع وحدات البكسل. من خلال استخدام بيانات تغير الغطاء الحرجي لغابات المانغروف المستشعرة عن بعد، بلغ فقدان كربون التربة بسبب فقدان الموائل في غابات المانغروف بين عامي 2000 و 2015 ما بين 30-122 تيراغرام مع أكثر من 75 ٪ من هذه الخسارة المنسوبة إلى إندونيسيا وماليزيا وميانمار. وتهدف منتجات الخرائط الناتجة عن هذا العمل إلى خدمة الدول التي تسعى إلى إدراج موائل أشجار المانغروف في مشاريع خدمات الدفع مقابل النظام الإيكولوجي وفي تصميم استراتيجيات فعالة للحفاظ على أشجار المانغروف.
Environmental Resear... arrow_drop_down https://doi.org/10.1088/1748-9...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aabe1c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 257 citations 257 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down https://doi.org/10.1088/1748-9...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aabe1c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Embargo end date: 08 Apr 2024 FrancePublisher:Springer International Publishing Publicly fundedMohammad Zaman; Kristina Kleineidam; Lars R. Bakken; Jacqueline Berendt; Conor Bracken; Klaus Butterbach‐Bahl; Zhaonan Cai; Scott X. Chang; Timothy J. Clough; Khadim Dawar; Weixin Ding; Peter Dörsch; M. dos Reis Martins; C. Eckhardt; Sebastian Fiedler; Torsten Frosch; J. P. Goopy; Carolyn-Monika Görres; Aman Gupta; S. Henjes; Magdalena E. G. Hofmann; Marcus A. Horn; M. M. R. Jahangir; Anne Jansen-Willems; Katharina Lenhart; Lee Heng; Dominika Lewicka‐Szczebak; G. Lucic; Lutz Merbold; Joachim Mohn; Lars Molstad; Gerald M. Moser; Paul Murphy; Alberto Sanz-Cobeña; Miloslav Šimek; Segundo Urquiaga; Reinhard Well; Nicole Wrage‐Mönnig; Shahriar Zaman; J. Zhang; Christoph Müller;handle: 10568/129438
AbstractAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20–40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOCstorage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate‐smart agriculture (CSA). Climate‐smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil Csequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | GRASSMARGINS, UKRI | BBSRC Core Strategic Prog...EC| GRASSMARGINS ,UKRI| BBSRC Core Strategic Programme in Resilient Crops: MiscanthusStanisław Jeżowski; Stephen P. Moose; John A. Juvik; Toshihiko Yamada; Manfred Klaas; Trevor R. Hodkinson; Daniel S. Rokhsar; Susanne Barth; Iain Donnison; Adam M. Session; Adam M. Session; Kankshita Swaminathan; Jessen V. Bredeson; Guohong Albert Wu; Shengqiang Shu; Hongxu Dong; Jose J De Vega; Jessica R Holmes; Ji Hye Yoo; Matthew E. Hudson; Adam Barling; Adebosola Oladeinde; Kerrie Farrar; Bimal Kumar Ghimire; Mohammad B Belaffif; Jeremy Schmutz; Katarzyna Głowacka; Katarzyna Głowacka; Jessica Mattick; Jessica Mattick; Brandon T. James; Jane Grimwood; Won Byoung Chae; Won Byoung Chae; Justin M. Gifford; Laigeng Li; Nicholas H. Putnam; Kweon Heo; Therese Mitros; Therese Mitros; Chang Yeon Yu; Lindsay V. Clark; Siyao Liu; Siyao Liu; Erik J. Sacks; Xiaoli Jin; Kerrie Barry; Junhua Peng;AbstractMiscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-18923-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-18923-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:EDP Sciences Authors: Damian Burzyński; Leszek Kasprzyk;This paper presents aspects of modelling and simulation of energy storages based on the example of a lead-acid battery pack for powering an electric vehicle. The most frequently used energy storages, with particular emphasis on the difficulties in their proper selection for mobile equipment, was discussed. The mathematical model of the leadacid battery and the relations describing its respective parameters was also presented. A selected energy storage was subjected to detailed analysis with regards to the electrical and thermal parameters while powering an electric vehicle during an standard driving cycle in an urban area. The simulation was performed in the Matlab Simulink environment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20171401041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/20171401041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Xin Li; Jian Liu; Jiansong Tian; Zhicheng Pan; Yangwu Chen; Fei Ming; Rui Wang; Lin Wang; Houzhen Zhou; Junjie Li; Zhouliang Tan;pmid: 36774984
Microalgae consortium is a promising technology for achieving low-carbon and resource utilization goals in municipal wastewater treatment. However, little is known about how the consortium affects the treatment performance in the startup stage of co-cultivation. Herein, photobioreactors were constructed with different contents of microalgae and activated sludge (AS) (wt.microalgae: wt.AS ≥ 50 %). The results showed that the concentration of microalgae increased by more than 20 % with AS, and the effluents were close or lower than Chinese discharge standards within HRT 24 h (NH4+-N, TP, and COD ≤ 5.0, 0.5, and 50 mg L-1). Furthermore, the co-occurrence pattern of microbial populations experienced inhibition-reconstruction and reconstruction-inhibition processes, respectively, and the inter-species relationship was directly related to the effluent quality. Microalgal concentration and temperature were the key factors to the microbial community profiling. The potential microorganisms in AS could promote the growth of microalgae, and the bacteria and fungi formed co-metabolism through functional complementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2023.128733&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Embargo end date: 01 Jan 2019 France, GermanyPublisher:Wiley Funded by:NSERC, SNSF | Climate and Environmental..., NSF | CNH: Pluvials, Droughts, ... +1 projectsNSERC ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP) ,NSF| CNH: Pluvials, Droughts, Energetics, and the Mongol Empire ,NSF| Collaborative Research: EaSM2--Wildfires and Regional Climate Variability - Mechanisms, Modeling, and PredictionAuthors: Wilfried Winiwarter; Wilfried Winiwarter; Sebastian Lienert; Sebastian Lienert; +25 AuthorsWilfried Winiwarter; Wilfried Winiwarter; Sebastian Lienert; Sebastian Lienert; Jia Yang; Jia Yang; Jinfeng Chang; Bowen Zhang; Palmira Messina; Philippe Ciais; Rona Thompson; Shufen Pan; Akihiko Ito; Robert B. Jackson; Fortunat Joos; Fortunat Joos; Eri Saikawa; Stefan Olin; Stefan Gerber; Sönke Zaehle; Changhui Peng; Chaoqun Lu; Eric A. Davidson; Almut Arneth; Nicolas Vuichard; Josep G. Canadell; Rongting Xu; Hanqin Tian; Hanqin Tian;pmid: 30414347
AbstractOur understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2 concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process‐based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O‐N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O‐N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O‐N/year to 3.3 Tg N2O‐N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O‐N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2 concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process‐based simulations.
IIASA DARE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 254 citations 254 popularity Top 0.1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14514&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United StatesPublisher:Elsevier BV Authors: Solar Energy Technologies, Western Sydney University, Penrith, NSW 2751, Australia ( host institution ); Nowotny, Janusz ( author ); Dodson, John ( author ); Fiechter, Sebastian ( author ); +7 AuthorsSolar Energy Technologies, Western Sydney University, Penrith, NSW 2751, Australia ( host institution ); Nowotny, Janusz ( author ); Dodson, John ( author ); Fiechter, Sebastian ( author ); Gür, Turgut M. ( author ); Kennedy, Brendan ( author ); Macyk, Wojciech ( author ); Bak, Tadeusz ( author ); Sigmund, Wolfgang ( UF author ); Yamawaki, Michio ( author ); Rahman, Kazi A. ( author );handle: 1959.7/uws:41261
Abstract The recent climate change agreement in Paris highlights the imperative to aggressively decarbonize the energy economy and develop new technologies, especially for the generation of electrical energy that are environmentally clean. This challenge can only be addressed by a multi-pronged approach to research and education of the next generation of scientists and engineers as well as informed public discourse. Consequently this requires the introduction of new and comprehensive education programs on sustainable energy technologies for universities and, possibly, high schools. Among others, the new programs should provide in-depth knowledge in the development of new materials for more efficient energy conversion systems and devices. The enhanced level of education is also needed for properly assessing the competing technologies in terms of their economic and social benefits. The increasing recognition of the significance of clean and efficient energy conversion indicates the need for a comprehensive education program to be developed. The purpose of the present work is to consider the structure of both an education program and the related textbook where the energy-related fundamental and applied subjects are presented in a concentrated and uniform manner. Such a textbook could be an education aid for students of energy-related courses as well as the teachers involved in the formulation of the education programs. The textbook, which should be dedicated mainly for students at the undergraduate levels at universities, and possibly high schools, should include in-depth interdisciplinary sections dedicated to energy experts and graduate students. This paper considers the present international efforts in reducing the impact of climate change and the need to develop new technologies for clean energy generation. It is argued that progress in this area requires recognition of hydrogen as the main energy carrier of the future. This work also delineates the goals of the Sustainable Energy Network, SEN, involved in the UN program of Future Earth.
University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00591756/00001Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.06.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 147 citations 147 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Florid... arrow_drop_down University of Florida: Digital Library CenterArticle . 2017License: CC BY NC NDFull-Text: http://ufdc.ufl.edu/LS00591756/00001Data sources: Bielefeld Academic Search Engine (BASE)Renewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Western Sydney (UWS): Research DirectArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2017.06.060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Xueying Mu; Xueying Mu; Xiaoguang Liu; Jiayi Zhu; Tao Tang; Hanqing Jiang; Y. L. Li; Changde Ma; Xuecheng Chen; Ewa Mijowska;Polyethylene terephthalate (PET) plastic has been extensively used in our social life, but its poor biodegradability has led to serious environmental pollution and aroused worldwide concern. Up to now, various strategies have been proposed to address the issue, yet such strategies remain seriously impeded by many obstacles. Herein, waste PET plastic was selectively carbonized into three-dimensional (3D) porous carbon nanosheets (PCS) with high yield of 36.4 wt%, to be further hybridized with MnO2 nanoflakes to form PCS-MnO2 composites. Due to the introduction of an appropriate amount of MnO2 nanoflakes, the resulting PCS-MnO2 composite exhibited a specific capacitance of 210.5 F g−1 as well as a high areal capacitance of 0.33 F m−2. Furthermore, the PCS-MnO2 composite also showed excellent cycle stability (90.1% capacitance retention over 5000 cycles under a current density of 10 A g−1). The present study paved an avenue for the highly efficient recycling of PET waste into high value-added products (PCSs) for electrochemical energy storage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nano10061097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/nano10061097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Embargo end date: 08 Apr 2024 FrancePublisher:Springer International Publishing Publicly fundedMohammad Zaman; Kristina Kleineidam; Lars R. Bakken; Jacqueline Berendt; Conor Bracken; Klaus Butterbach‐Bahl; Zucong Cai; Scott X. Chang; Timothy J. Clough; Khadim Dawar; Weixin Ding; Peter Dörsch; M. dos Reis Martins; C. Eckhardt; Sebastian Fiedler; Torsten Frosch; J. P. Goopy; Carolyn-Monika Görres; Apoorv Gupta; S. Henjes; Magdalena E. G. Hofmann; Marcus A. Horn; M. M. R. Jahangir; Anne Jansen-Willems; Katharina Lenhart; Lee Heng; Dominika Lewicka‐Szczebak; G. Lucic; Lutz Merbold; Joachim Mohn; Lars Molstad; Gerald M. Moser; Pat Murphy; Alberto Sanz-Cobeña; Miloslav Šimek; Segundo Urquiaga; Reinhard Well; Nicole Wrage‐Mönnig; Shahriar Zaman; J. Zhang; Christoph Müller;handle: 10568/129536
AbstractThe rapidly changing global climate due to increased emission of anthropogenic greenhouse gases (GHGs) is leading to an increased occurrence of extreme weather events such as droughts, floods, and heatwaves. The three major GHGs are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The major natural sources of CO2 include ocean–atmosphere exchange, respiration of animals, soils (microbial respiration) and plants, and volcanic eruption; while the anthropogenic sources include burning of fossil fuel (coal, natural gas, and oil), deforestation, and the cultivation of land that increases the decomposition of soil organic matter and crop and animal residues. Natural sources of CH4 emission include wetlands, termite activities, and oceans. Paddy fields used for rice production, livestock production systems (enteric emission from ruminants), landfills, and the production and use of fossil fuels are the main anthropogenic sources of CH4. Nitrous oxide, in addition to being a major GHG, is also an ozone-depleting gas. N2O is emitted by natural processes from oceans and terrestrial ecosystems. Anthropogenic N2O emissions occur mostly through agricultural and other land-use activities and are associated with the intensification of agricultural and other human activities such as increased use of synthetic fertiliser (119.4 million tonnes of N worldwide in 2019), inefficient use of irrigation water, deposition of animal excreta (urine and dung) from grazing animals, excessive and inefficient application of farm effluents and animal manure to croplands and pastures, and management practices that enhance soil organic N mineralisation and C decomposition. Agriculture could act as a source and a sink of GHGs. Besides direct sources, GHGs also come from various indirect sources, including upstream and downstream emissions in agricultural systems and ammonia (NH3) deposition from fertiliser and animal manure.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129536Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129536Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type , Preprint , Review 2021 SerbiaPublisher:MDPI AG Funded by:MESTD | Medical costs structure a...MESTD| Medical costs structure and budget impact analysis regarding most prevalent and/or most expensive diseases and cost/effectiveness/utility coefficient determination of common medical interventionsMihajlo Jakovljevic; Arcadio A. Cerda; Yansui Liu; Leidy García; Yuriy Timofeyev; Kristijan Krstic; John Fontanesi;Historical legacy of Eastern European and Balkans’ health systems was mutually interdependent and shaped by local socioeconomic circumstances. Three distinctive systems of risk sharing and health financing to develop since the late XIX century were the Bismarck, Beveridge, and Semashko systems. Modern day healthcare systems in these countries are challenged by population ageing, accelerated innovation in medical technology, growing purchasing power and rising demand for healthcare services. Supply side changes contribute to demand side efficiency bottlenecks in financing, driving the costs of the already expensive medical care up. All of the nations have a large share of citizens experiencing difficulty with affordability and access to medical care, particularly in rural and remote areas. Network of Health technology assessment agencies have mushroomed over the past three decades. Principles of health economics theory and cost-effective resource allocation are slowly gaining ground in governing authorities’ mindset and decision-making process. For many years to come, pharmaceuticals and medical services will remain dependent on out-of-pocket spending. Currently accelerating and spreading 4.0 Industrial Revolution, together with the Belt and Road Initiative, are likely to substantially impact the further economic development of this vast region. Post-Pandemic ‘Green’ Recovery strategies adopted by many of the Eastern European governments shall also make this transition towards sustainable development more difficult and challenging given the large dependency of all these economies upon traditional carbon fuels.
SCIDAR - A Digital A... arrow_drop_down SCIDAR - A Digital Archive of the University of KragujevacReview . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202108.0227.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert SCIDAR - A Digital A... arrow_drop_down SCIDAR - A Digital Archive of the University of KragujevacReview . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.20944/prepr...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202108.0227.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NetherlandsPublisher:IOP Publishing Funded by:ARC | Linkage Projects - Grant ..., ARC | Discovery Early Career Re..., ARC | Discovery Early Career Re... +1 projectsARC| Linkage Projects - Grant ID: LP160100242 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE160100443 ,ARC| Discovery Early Career Researcher Award - Grant ID: DE130101084 ,ARC| Discovery Projects - Grant ID: DP150103286Lisa Benson; Lisa Benson; Tomislav Hengl; Paul E. Carnell; Selena K. Gress; Philine S. E. zu Ermgassen; Philine S. E. zu Ermgassen; Daniel C. Donato; Ebrahem M. Eid; Ebrahem M. Eid; Carolyn J. Ewers Lewis; Mark Spalding; Jonathan Sanderman; Christian J. Sanders; Maria Fernanda Adame; Leah Glass; Sunny L. Jardine; Clare Duncan; Clare Duncan; Greg Fiske; Trevor G. Jones; Trevor G. Jones; Eugéne Ndemem Nsombo; Kylen Solvik; Mizanur Rahman; Peter I. Macreadie; Emily Landis; Miguel Cifuentes-Jara; Jacob J. Bukoski;Avec la reconnaissance croissante du fait qu'une action efficace sur le changement climatique nécessitera une combinaison de réductions d'émissions et de séquestration du carbone, la protection, l'amélioration et la restauration des puits de carbone naturels sont devenues des priorités politiques. Les forêts de mangroves sont considérées comme l'un des écosystèmes les plus riches en carbone au monde, la majeure partie du carbone étant stockée dans le sol. Pour que les forêts de mangrove soient incluses dans les efforts d'atténuation du climat, la connaissance de la répartition spatiale des stocks de carbone du sol de mangrove est essentielle. Les estimations mondiales actuelles ne tiennent pas suffisamment compte de la variabilité d'échelle plus fine qui serait nécessaire pour éclairer les décisions locales sur les projets de protection et de restauration de l'emplacement. Pour combler ce déficit de connaissances, nous avons compilé une grande base de données géoréférencée de mesures du carbone du sol de mangrove et développé un nouveau modèle statistique basé sur l'apprentissage automatique de la distribution de la densité de carbone à l'aide de données spatialement complètes à une résolution de 30 m. Ce modèle, qui comprenait une estimation préalable du carbone du sol à partir du modèle global SoilGrids 250 m, a pu capturer 63 % de la variabilité verticale et horizontale de la densité du carbone organique du sol (RMSE de 10,9 kg m−3). Parmi les variables locales, la charge totale de sédiments en suspension et l'imagerie Landsat étaient la variable la plus importante expliquant la densité de carbone du sol. La projection de ce modèle à travers la distribution mondiale des forêts de mangroves pour l'année 2000 a donné une estimation de 6,4 Pg C pour le mètre supérieur du sol avec une gamme de 86-729 Mg C ha−1 sur tous les pixels. En utilisant des données de changement de couverture forestière de mangrove détectées à distance, la perte de carbone du sol due à la perte d'habitat de mangrove entre 2000 et 2015 était de 30–122 Tg C avec plus de 75% de cette perte attribuable à l'Indonésie, la Malaisie et le Myanmar. Les produits cartographiques résultant de ce travail sont destinés à servir les pays qui cherchent à inclure les habitats de mangrove dans les projets de services écosystémiques payants et dans la conception de stratégies efficaces de conservation de la mangrove. Con el creciente reconocimiento de que una acción efectiva sobre el cambio climático requerirá una combinación de reducciones de emisiones y secuestro de carbono, proteger, mejorar y restaurar los sumideros naturales de carbono se han convertido en prioridades políticas. Los bosques de manglares se consideran algunos de los ecosistemas más densos en carbono del mundo, con la mayor parte del carbono almacenado en el suelo. Para que los bosques de manglares se incluyan en los esfuerzos de mitigación climática, es fundamental conocer la distribución espacial de las reservas de carbono del suelo de los manglares. Las estimaciones globales actuales no capturan lo suficiente de la variabilidad de escala más fina que se requeriría para informar las decisiones locales sobre los proyectos de protección y restauración del emplazamiento. Para cerrar esta brecha de conocimiento, hemos compilado una gran base de datos georreferenciada de mediciones de carbono del suelo de los manglares y hemos desarrollado un nuevo modelo estadístico basado en el aprendizaje automático de la distribución de la densidad de carbono utilizando datos espacialmente completos a una resolución de 30 m. Este modelo, que incluyó una estimación previa de carbono del suelo a partir del modelo global SoilGrids 250 m, fue capaz de capturar el 63% de la variabilidad vertical y horizontal en la densidad de carbono orgánico del suelo (RMSE de 10.9 kg m−3). De las variables locales, la carga total de sedimentos suspendidos y las imágenes Landsat fueron las variables más importantes que explican la densidad de carbono del suelo. La proyección de este modelo en la distribución mundial de los bosques de manglares para el año 2000 arrojó una estimación de 6,4 Pg C para el metro superior del suelo con un rango de 86–729 Mg C ha−1 en todos los píxeles. Al utilizar datos de cambio de cobertura forestal de manglares por teledetección, la pérdida de carbono del suelo debido a la pérdida de hábitat de manglares entre 2000 y 2015 fue de 30–122 Tg C, con >75% de esta pérdida atribuible a Indonesia, Malasia y Myanmar. Los productos Map resultantes de este trabajo están destinados a servir a las naciones que buscan incluir hábitats de manglares en proyectos de pago por servicios ecosistémicos y en el diseño de estrategias efectivas para conservar los manglares. With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m−3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha−1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies. مع الاعتراف المتزايد بأن العمل الفعال بشأن تغير المناخ سيتطلب مزيجًا من خفض الانبعاثات وعزل الكربون، أصبحت حماية مصارف الكربون الطبيعية وتعزيزها واستعادتها أولويات سياسية. تعتبر غابات المنغروف من أكثر النظم الإيكولوجية كثافة بالكربون في العالم مع تخزين معظم الكربون في التربة. من أجل إدراج غابات المانغروف في جهود التخفيف من آثار المناخ، فإن معرفة التوزيع المكاني لمخزونات الكربون في تربة المانغروف أمر بالغ الأهمية. لا تعكس التقديرات العالمية الحالية ما يكفي من التقلبات الدقيقة في الحجم التي ستكون مطلوبة لإبلاغ القرارات المحلية بشأن تحديد مواقع مشاريع الحماية والترميم. لسد هذه الفجوة المعرفية، قمنا بتجميع قاعدة بيانات جغرافية مرجعية كبيرة لقياسات الكربون في تربة المنغروف وطورنا نموذجًا إحصائيًا جديدًا قائمًا على التعلم الآلي لتوزيع كثافة الكربون باستخدام بيانات شاملة مكانيًا بدقة 30 مترًا. كان هذا النموذج، الذي تضمن تقديرًا مسبقًا لكربون التربة من نموذج SoilGrids العالمي 250 m، قادرًا على التقاط 63 ٪ من التباين الرأسي والأفقي في كثافة الكربون العضوي في التربة (RMSE من 10.9 كجم م−3). من بين المتغيرات المحلية، كان إجمالي حمل الرواسب المعلقة وصور لاندسات أهم متغير يفسر كثافة الكربون في التربة. أسفر إسقاط هذا النموذج عبر التوزيع العالمي لغابات المانغروف لعام 2000 عن تقدير قدره 6.4 بيكوغرام من الكربون للمتر العلوي من التربة بنطاق 86–729 ملغ من الكربون في جميع وحدات البكسل. من خلال استخدام بيانات تغير الغطاء الحرجي لغابات المانغروف المستشعرة عن بعد، بلغ فقدان كربون التربة بسبب فقدان الموائل في غابات المانغروف بين عامي 2000 و 2015 ما بين 30-122 تيراغرام مع أكثر من 75 ٪ من هذه الخسارة المنسوبة إلى إندونيسيا وماليزيا وميانمار. وتهدف منتجات الخرائط الناتجة عن هذا العمل إلى خدمة الدول التي تسعى إلى إدراج موائل أشجار المانغروف في مشاريع خدمات الدفع مقابل النظام الإيكولوجي وفي تصميم استراتيجيات فعالة للحفاظ على أشجار المانغروف.
Environmental Resear... arrow_drop_down https://doi.org/10.1088/1748-9...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aabe1c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 257 citations 257 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Environmental Resear... arrow_drop_down https://doi.org/10.1088/1748-9...Article . 2018Data sources: DANS (Data Archiving and Networked Services)Wageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aabe1c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Other literature type 2021Embargo end date: 08 Apr 2024 FrancePublisher:Springer International Publishing Publicly fundedMohammad Zaman; Kristina Kleineidam; Lars R. Bakken; Jacqueline Berendt; Conor Bracken; Klaus Butterbach‐Bahl; Zhaonan Cai; Scott X. Chang; Timothy J. Clough; Khadim Dawar; Weixin Ding; Peter Dörsch; M. dos Reis Martins; C. Eckhardt; Sebastian Fiedler; Torsten Frosch; J. P. Goopy; Carolyn-Monika Görres; Aman Gupta; S. Henjes; Magdalena E. G. Hofmann; Marcus A. Horn; M. M. R. Jahangir; Anne Jansen-Willems; Katharina Lenhart; Lee Heng; Dominika Lewicka‐Szczebak; G. Lucic; Lutz Merbold; Joachim Mohn; Lars Molstad; Gerald M. Moser; Paul Murphy; Alberto Sanz-Cobeña; Miloslav Šimek; Segundo Urquiaga; Reinhard Well; Nicole Wrage‐Mönnig; Shahriar Zaman; J. Zhang; Christoph Müller;handle: 10568/129438
AbstractAgricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic global warming effect. Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20–40% of the soil organic carbon (SOC) is lost over time, following cultivation. We thus need to develop management practices that can maintain or even increase SOCstorage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate‐smart agriculture (CSA). Climate‐smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil Csequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129438Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2021 . Peer-reviewedData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallhttps://dx.doi.org/10.15488/16...Part of book or chapter of book . 2021License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-030-55396-8_8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:EC | GRASSMARGINS, UKRI | BBSRC Core Strategic Prog...EC| GRASSMARGINS ,UKRI| BBSRC Core Strategic Programme in Resilient Crops: MiscanthusStanisław Jeżowski; Stephen P. Moose; John A. Juvik; Toshihiko Yamada; Manfred Klaas; Trevor R. Hodkinson; Daniel S. Rokhsar; Susanne Barth; Iain Donnison; Adam M. Session; Adam M. Session; Kankshita Swaminathan; Jessen V. Bredeson; Guohong Albert Wu; Shengqiang Shu; Hongxu Dong; Jose J De Vega; Jessica R Holmes; Ji Hye Yoo; Matthew E. Hudson; Adam Barling; Adebosola Oladeinde; Kerrie Farrar; Bimal Kumar Ghimire; Mohammad B Belaffif; Jeremy Schmutz; Katarzyna Głowacka; Katarzyna Głowacka; Jessica Mattick; Jessica Mattick; Brandon T. James; Jane Grimwood; Won Byoung Chae; Won Byoung Chae; Justin M. Gifford; Laigeng Li; Nicholas H. Putnam; Kweon Heo; Therese Mitros; Therese Mitros; Chang Yeon Yu; Lindsay V. Clark; Siyao Liu; Siyao Liu; Erik J. Sacks; Xiaoli Jin; Kerrie Barry; Junhua Peng;AbstractMiscanthus is a perennial wild grass that is of global importance for paper production, roofing, horticultural plantings, and an emerging highly productive temperate biomass crop. We report a chromosome-scale assembly of the paleotetraploid M. sinensis genome, providing a resource for Miscanthus that links its chromosomes to the related diploid Sorghum and complex polyploid sugarcanes. The asymmetric distribution of transposons across the two homoeologous subgenomes proves Miscanthus paleo-allotetraploidy and identifies several balanced reciprocal homoeologous exchanges. Analysis of M. sinensis and M. sacchariflorus populations demonstrates extensive interspecific admixture and hybridization, and documents the origin of the highly productive triploid bioenergy crop M. × giganteus. Transcriptional profiling of leaves, stem, and rhizomes over growing seasons provides insight into rhizome development and nutrient recycling, processes critical for sustainable biomass accumulation in a perennial temperate grass. The Miscanthus genome expands the power of comparative genomics to understand traits of importance to Andropogoneae grasses.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-18923-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-18923-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu