- home
- Advanced Search
- Energy Research
- Closed Access
- Open Source
- PL
- Energy and Buildings
- Energy Research
- Closed Access
- Open Source
- PL
- Energy and Buildings
description Publicationkeyboard_double_arrow_right Article , Journal 2002Publisher:Elsevier BV This paper is focused on the energy performance of buildings containing massive exterior building envelope components. The effect of mass and insulation location on heating and cooling loads is analyzed for six characteristic wall configurations. Correlations between structural and dynamic thermal characteristics of walls are discussed. A simple one-room model of a building exposed to periodic temperature changes is analyzed to illustrate the effect of material configuration on the ability of a wall to dampen interior temperature swings. Whole-building dynamic modeling using DOE-2.1E is employed for the energy analysis of a one-story residential building with various exterior wall configurations for six different US climates. The best thermal performance is obtained when massive material layers are located at the inner side and directly exposed to the interior space.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(01)00121-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 171 citations 171 popularity Top 1% influence Top 1% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-7788(01)00121-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Jianhui Hu;
Bing Zhao; Wujun Chen;Jianhui Hu
Jianhui Hu in OpenAIREYu Liu;
Binbin Ge; Deqing Yang;Abstract ETFE (ethylene tetrafluoroethylene) cushion integrated flexible photovoltaics (PV) is an extension of building integrated photovoltaics into membrane structures, which could be near zero-energy, sustainable and environmental-friendly buildings. This paper focused on a two-layer ETFE cushion integrated flexible photovoltaics with experimental study and theoretical analysis. Field experiments on a prototype were carried out to investigate temperature distribution and characteristics. It is found that temperature distribution was the result of solar irradiance, incident angle and surface curvature of ETFE cushion and that solar irradiance had an essential effect on temperature distribution. The theoretical thermal model was developed based on energy balance equation and the corresponding differential equation was solved by the Runge-Kutta method. Maximum temperature difference of 3.3 K between experimental and numerical results demonstrated that this thermal model could predict PV temperature appropriately. Furthermore, a modified equation to determine heat transfer coefficients was proposed and average heat transfer coefficients of PV and ETFE foil were 4.89 W/(m 2 K) and 4.39 W/(m 2 K). In general, this study could provide basic values and observations for investigating thermal performance of ETFE cushion integrated flexible photovoltaics.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Maria Hurnik; Zbigniew Popiolek;Aleksandra Specjał;
Aleksandra Specjał
Aleksandra Specjał in OpenAIREAbstract There are approx. 5.5 million residential buildings in Poland including 5 million single-family houses, 90% of which were built before 2002. Most of the existing single-family houses are not energy-efficient and a large amount of energy is wasted. It is therefore essential to develop, experimentally validate and then disseminate strategies for thermal modernization of the existing single-family houses, including strategies for ventilation systems renovation. In two-storey single-family houses with sloping roofs it is possible to locate a ventilation heat recovery (VHR) unit and ventilation ducts in the unheated roof space. The paper presents the results of tests of combined ventilation systems: mechanical ventilation with heat recovery in rooms on the second floor and stack ventilation in the rooms on the first floor. On-site measurement of the efficiency of ventilation heat recovery was performed, the airtightness of the house was measured twice before and after its improvement. The results of the experimental tests of the hybrid system were used to estimate the ventilation airflow in the house and the energy demand for ventilation. The ventilation airflow was calculated using the software CONTAM. The estimated heat demand for the tested ventilation system was 37.4 kWh/m2/season; though it seems possible to reduce it below 20 kWh/m2/season.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2017.05.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Edyta Dudkiewicz; Egidijus Juodis; E. Jaraminiene;Abstract The paper concerns thermal energy consumption in residential buildings. Heat consumption data of 2280 buildings are compared. Special attention is given to compare heat consumption in identical buildings. Heat consumption variability analysis enables to evaluate inherent heat consumption for space heating dissipation which exists even if design and construction requirements are met. The attempt is made to find the numeral value of heat consumption dissipation caused by design and construction allowances. The analysis of multiflat panel sister-buildings annual heat consumption reveals that minimal value of maximal and minimal heat consumption ratio in identical panel buildings reaches 1.22 (95% confidence level). Data scatter testify erratic quality of construction works, in other words, maximal and minimal heat consumption ratio trend reflects quality of construction works as a whole. On the other hand awareness of inherent unavoidable heat consumption difference in similar houses may strengthen residents’ and policy makers’ confidence in energy saving tools and enhance thermal renovation of residential buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2009.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2009.06.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Anna Lewandowska; Grzegorz Pajchrowski; Andrzej Noskowiak;Abstract This article presents the results of the research project financed by the Polish Ministry of Science and Higher Education (N N309 078138) and coordinated by the Wood Technology Institute in Poznan. A key point of this project was LCA study performed for four detached single-family dwellings with a particular emphasis on the use stage. The life-cycle assessment involved various types of activity made within a hundred years of use and related to: operation (energy and water consumption), replacements and repairs, renovations and maintenance, land occupation, waste transport and waste management. Two of the four analyzed buildings met passive house standards and their energy demands in the use stage were several times lower than those of their conventional counterparts. The aim of the studies was to demonstrate whether lower nominal energy consumption is sufficient to get the best results of the environmental impact of passive buildings, or whether a type of energy used to cover the demand also plays an important role.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Abstract The hourly dynamic calculation method given in EN ISO 13790 uses a lumped-capacity 5R1C thermal network model of a building. This model enables the use of hourly occupancy patterns. But introduction of hourly ventilation schedules is not recommended because in some equations of the calculation procedure division by zero appears when the infiltration and ventilation airflows are zero. This paper presents a modified 4R1C version of the 5R1C model. The existing ventilation heat transfer was replaced by the new heat flux modelling the time varying airflow due to infiltration and ventilation. The calculation method to obtain heating and cooling power required to maintain internal set point temperatures was presented in details. The new model was validated against EN 15265 with the error up to 6.7% and 5.4% for heating and cooling, respectively. Only in the test 10 for heating the error was 31.6%. BESTEST tests were passed successfully, except for the minimum annual temperature of −19.3 °C which didn't fall within the reference range in the test 600FF. In simulations of the single family building the coefficient of determination of the calculated internal operative temperature and thermal power against reference EnergyPlus results was R2 > 0.844 and R2 > 0.811, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.109337&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors:Diego Menegon;
Alice Vittoriosi;Diego Menegon
Diego Menegon in OpenAIRERoberto Fedrizzi;
Roberto Fedrizzi
Roberto Fedrizzi in OpenAIREAbstract The need for energy labelling procedures applied to thermal systems requires new methods to assess their seasonal performance. Their typical dynamic operation and the interaction among components and control system restrict the possible use of stationary, component-oriented tests. New dynamic test methods addressing the system as a whole are now available in the open literature. Discussion is undergoing with respect to key issues such as test sequence definition and post-processing of the test results. A new dynamic procedure was developed to address these points, based on the statistical selection of the test boundary conditions. The paper describes the procedure and its first validation at component level. The results of the dynamic test were compared with the values obtained for the entire season operation, showing a good agreement both in terms of seasonal performance figures and of instantaneous distributions of the performance indicators. The promising results obtained so far to motivate the application of the procedure to other components and a future adaption to test whole systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.07.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Tomasz Cholewa;
Tomasz Cholewa
Tomasz Cholewa in OpenAIREAlicja Siuta-Olcha;
Alicja Siuta-Olcha
Alicja Siuta-Olcha in OpenAIREAbstract The education of energy users is one of many possibilities to reduce the energy consumption in existing multifamily buildings. Unfortunately, to the best authors’ knowledge, there is no long term experimental evaluation of energy savings, which may be achieved in flats where heat cost allocators were installed. This article presents the results of experimental research conducted during 17 heating seasons (from 1997/1998 to 2013/2014) in a multifamily building located in Poland. The heat cost allocators were installed in the right part of the building (part R) in 1996 and in the left part of the building of the same size (part L) in 2011. In the summer 2005, thermal renovation of external walls of the analysed building was made. The energy consumption in part R of the building was on average 26.6% and 30.5% lower than in part L for the period before and after thermal renovation of external walls of the building, respectively. After the installation of the heat cost allocators in part L of the building, the amount of heat used for heating was also analysed. The comparison of saved energy to the cost of installing, reading, and maintaining the heat cost allocators was made.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.06.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.06.083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors:Joanna Ferdyn-Grygierek;
A. Baranowski;Joanna Ferdyn-Grygierek
Joanna Ferdyn-Grygierek in OpenAIREAbstract The paper presents the results of the analysis of the impact of various ventilation systems on the energy consumption performed for one Polish museum building that was built in 1929–1930. Simulations were carried out with the use of two computer codes: CONTAM and ESP-r. Multi-zone models including the exhibition rooms and the staircase were prepared. The simulations were made of synthetic weather data for one of the Polish towns for two months of the heating season. Twenty-four hour variability of internal heat gains was taken into account. The results show clearly that the natural ventilation system (which is currently used in the building) enables the air exchange with fresh air on the first floor only. The air infiltration on the upper levels is close to zero. Rebuilding the ventilation system generates changes in the energy demand of the building. It is presented how the heat demand increases with the increase of the ventilation air flow and what is the impact of the air infiltration on the heat demand for different variants of ventilation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.01.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2015.01.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Abstract The economic considerations force the building body optimization during its design, as well as during the modernization of existing facilities. The thermal modernization effects are calculated according to the national rules and standards. The theoretical savings from the reduction of heat losses by transmission and ventilation in a secondary school located in Poland were calculated (59–71%) and compared with the real savings (33%), calculated on the base of data from the measurements conducted in several heating seasons before and after modernization. The achieved ecological effect (33%) was also lower that theoretical one (69%). The results of this work are worth taking into account in further schools modernizations and a city planning. The simple model for energy use estimation was proposed. The bigger sample of schools will be analyzed to propose changes in the calculation procedure after the end of the whole study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2014.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu