- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- SE
- PT
- CN
- English
- Energy Research
- Open Access
- Closed Access
- SE
- PT
- CN
- English
Research data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Funded by:EC | REINVENTEC| REINVENTHansen, Teis; Keaney, Monica; Bulkeley, Harriet A.; Cooper, Mark; Mölter, Helena; Nielsen, Hjalti; Pietzner, Katja; Sonesson, Ludwig B.; Stripple, Johannes; S.I. Aan Den Toorn; Tziva, Maria; Tönjes, Annika; Vallentin, Daniel; Van-Veelen, Bregje;This database includes more than 100 decarbonisation innovations in Paper, Plastic, Steel and Meat & Dairy sectors, across their value chains, as well as in Finance. For each innovation there is a description, information about its contribution to decarbonisation, actors and collaborators involved, sources of funding, drivers, (co)benefits and disadvantages. More information on the method for selecting innovations for the database is available here. The database was created as part of REINVENT – a Horizon 2020 research project funded by the European Commission (grant agreement 730053). REINVENT involves five research institutions from four countries: Lund University (Sweden), Durham University (United Kingdom), Wuppertal Institute (Germany), PBL Netherlands Environmental Assessment Agency (the Netherlands) and Utrecht University (the Netherlands). More information can be found on our website: www.reinvent-project.eu.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3529696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3529696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Linnaeus University Authors: Sathre, Roger; Gustavsson, Leif;Heavy trucks contribute significantly to climate change, and in 2020 were responsible for 7% of total Swedish GHG emissions and 5% of total global CO2 emissions. Here we study the full lifecycle of cargo trucks powered by different energy pathways, comparing their biomass feedstock use, primary energy use, net biogenic and fossil CO2 emission, and cumulative radiative forcing. We analyse battery electric trucks with bioelectricity from standalone or combined heat and power (CHP) plants, and pathways where bioelectricity is integrated with wind and solar electricity. We analyse trucks operated on fossil diesel fuel and on dimethyl ether (DME). All energy pathways are analysed with and without carbon capture and storage (CCS). Bioelectricity and DME are produced from forest harvest residues. Forest biomass is a limited resource, so in a scenario analysis we allocate a fixed amount of biomass to power Swedish truck transport. Battery lifespan and chemistry, the technology level of energy supply, and the biomass source and transport distance are all varied to understand how sensitive the results are to these parameters. The scenario spans 100 years into the future. We find that pathways using electricity to power battery electric trucks have much lower climate impacts and primary energy use, compared to diesel and DME based pathways. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling of the earth. The pathways using diesel and DME have significant and very similar climate impact, even with CCS. The robust results show that truck electrification and increased renewable electricity production is a much better strategy to reduce the climate impact of cargo transport and much more primary energy efficient than the adoption of DME trucks. This climate impact analysis includes all fossil and net biogenic CO2 emissions as well as the timing of these emissions. Considering only fossil emissions is incomplete and could be misleading. This dataset contains data on 4 metrics (primary energy use, biomass feedstock use, cumulative CO2 emissions, and cumulative radiative forcing) resulting from scenario modeling of cargo truck use in Sweden powered by different energy pathways. The energy pathways include battery electric trucks powered by bioelectricity, solar photovoltaic electricity and wind electricity, and internal combustion trucks powered by fossil diesel and dimethyl ether. The scenario spans 100 years into the future. The Excel sheet "tables" contains input data for the scenario modeling, with sources listed where applicable. The remaining sheets contains the modeled results and generated figures that are also a published in the associated article Sathre & Gustavsson (2023). Refer to the method description and reference list in the included documentation files for details. Tunga lastbilar bidrar kraftigt till klimatförändringarna och stod 2020 för 7% av de totala svenska växthusgasutsläppen och 5% av de totala globala CO2-utsläppen. Här studerar vi hela livscykeln för lastbilar som drivs av olika energivägar, jämför deras användning av biomassaråvaror, primär energianvändning, biogena och fossila CO2-utsläpp netto och kumulativ strålningstvingning. Vi analyserar batterielektriska lastbilar med bioel från fristående eller kraftvärmeverk och vägar där bioel integreras med vind- och solkraft. Vi analyserar lastbilar som drivs med fossilt dieselbränsle och med dimetyleter (DME). Alla energivägar analyseras med och utan avskiljning och lagring av koldioxid (CCS). Bioelektricitet och DME produceras av skogsavverkningsrester. Skogsbiomassa är en begränsad resurs, så i en scenarioanalys avsätter vi en fast mängd biomassa för att driva svenska lastbilstransporter. Batteriets livslängd och kemi, tekniknivån för energiförsörjning och biomassakällan och transportavståndet varierar alla för att förstå hur känsliga resultaten är för dessa parametrar. Scenariot sträcker sig 100 år in i framtiden. Vi finner att vägar som använder el för att driva batterielektriska lastbilar har mycket lägre klimatpåverkan och primär energianvändning, jämfört med diesel- och DME-baserade vägar. De vägar som använder bioelektricitet med CCS resulterar i negativa utsläpp som leder till global kylning av jorden. Vägarna med diesel och DME har betydande och mycket liknande klimatpåverkan, även med CCS. De robusta resultaten visar att elektrifiering av lastbilar och ökad förnybar elproduktion är en mycket bättre strategi för att minska godstransporternas klimatpåverkan än införandet av DME-lastbilar, och mycket mer primärenergieffektiv. Denna klimatkonsekvensanalys omfattar alla fossila och biogena CO2-utsläpp samt tidpunkten för dessa utsläpp. Att bara ta hänsyn till fossila utsläpp är ofullständigt och kan vara missvisande. Detta dataset innehåller data om 4 mätvärden (primär energianvändning, biomassaråvara, kumulativa CO2-utsläpp och kumulativ strålkraftspåverkan) som härrör från scenariomodellering av lastbilsanvändning i Sverige som drivs av olika energivägar. Energivägarna inkluderar batterielektriska lastbilar som drivs av bioelektricitet, solcellselektricitet och vindkraft samt förbränningsbilar som drivs av fossil diesel och dimetyleter. Scenariot sträcker sig 100 år in i framtiden. På arket "tables" i Excelfilen återfinns den indata som använts i modelleringen med angivna källor där detta är tillämpligt. Övriga ark innehåller resultat samt figurer som också publiceras i den samhörande artikeln Sathre & Gustavsson (2023). Se metodbeskrivning samt referenslista i tillhörande dokumentationsfiler för detaljer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Rong, Xinyao;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Dias de Lima, Tayenne; F. Franco, John; Lezama, Fernando; Soares, Joao; Vale, Zita;Dataset of the paper: Joint optimal Allocation of Electric Vehicle Charging Stations and Renewable Energy Sources including CO2 emissions, Energy Informatics, 2021 (Presented in EIA 2021) Table 1 shows the operational scenarios, while the data for the substations is shown in Table 2. The demand data for each node is shown in Table 3. The parameters related to RES are shown in Table 4 and Table 5. The PV units have a nominal power capacity of 100 kW and are composed by 40 modules with 2.5 kW each. A maximum of 60 generators of this type can be installed in each node. The CO2 factor emission is defined as 𝜁𝑝𝑣=0.0584 ton/MWh. The candidate nodes for the installation of wind turbines, photovoltaic modules, and EV charging stations, are respectively: Ω𝑤𝑡 = {3, 4, 5, 9, 11, 14, 16, 19}, Ω𝑝𝑣 = {3, 4, 6, 8, 10, 13, 14, 15, 19}, and Ω𝑅 = {3, 6, 8,14, 15}. The power factors for PV and WT units are defined as 0.98 and 0.90, respectively. Table 6 presents the data for the two EV chargers alternatives. Finally, Fig.1 shows the initial system topology. R&D center: http://www.gecad.isep.ipp.pt/ and https://www.feis.unesp.br/#!/lapsee Project website: http://www.gecad.isep.ipp.pt/CENERGETIC/ This work has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE2020), under Project POCI-01-0145-FEDER- 028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017(CENERGETIC), CEECIND/02814/2017,and UIDB/000760/2020. The brazillan team (CENERGETIC partners) was supported by the Brazilian institutions Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq (process 313047/2017-0) and São Paulo Research Foundation (FAPESP), grants 2015/21972-6, 2017/02831-8, 2018/23617-7, and 20018/08008-4 (CENERGETIC research project).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4758354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4758354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Science Data Bank Qi, Shu; Qiang, Wang; Zhenya, Song; Gui, Gao; Hailong, Liu; Shizhu, Wang; Yan, He; Rongrong, Pan; Fangli, Qiao;The Arctic is one of Earth’s regions most susceptible to climate change. However, the in-situ long-term observations used for climate research are relatively sparse in the Arctic Ocean, and the simulations from current climate models exhibit remarkable biases in the Arctic. Here we present an Arctic Ocean dynamical downscaling dataset based on a high-resolution ice-ocean coupled model FESOM and a climate model FIO-ESM. The dataset includes 115-year (1900–2014) historical simulations and two 86-year future scenario simulations (2015–2100) under scenarios SSP245 and SSP585. The historical results demonstrate that the root mean square errors of temperature and salinity in the dynamical downscaling dataset are much smaller than those from CMIP6 (the Coupled Model Intercomparison Project phase 6) climate models. The common biases, such as the too deep and too thick Atlantic layer in climate models, are reduced significantly by dynamical downscaling. This dataset serves as a crucial long-term data source for climate change assessments and scientific research in the Arctic Ocean, providing valuable information for the scientific community. The Arctic is one of Earth’s regions most susceptible to climate change. However, the in-situ long-term observations used for climate research are relatively sparse in the Arctic Ocean, and the simulations from current climate models exhibit remarkable biases in the Arctic. Here we present an Arctic Ocean dynamical downscaling dataset based on a high-resolution ice-ocean coupled model FESOM and a climate model FIO-ESM. The dataset includes 115-year (1900–2014) historical simulations and two 86-year future scenario simulations (2015–2100) under scenarios SSP245 and SSP585. The historical results demonstrate that the root mean square errors of temperature and salinity in the dynamical downscaling dataset are much smaller than those from CMIP6 (the Coupled Model Intercomparison Project phase 6) climate models. The common biases, such as the too deep and too thick Atlantic layer in climate models, are reduced significantly by dynamical downscaling. This dataset serves as a crucial long-term data source for climate change assessments and scientific research in the Arctic Ocean, providing valuable information for the scientific community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.16286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.16286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 11 Oct 2023Publisher:Dryad Ding, Fangyu; Ge, Honghan; Ma, Tian; Wang, Qian; Hao, Mengmeng; Li, Hao; Zhang, Xiao-Ai; Maude, Richard James; Wang, Liping; Jiang, Dong; Fang, Li-Qun; Liu, Wei;# Data on: Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China [https://doi.org/10.5061/dryad.vdncjsz1z](https://doi.org/10.5061/dryad.vdncjsz1z) This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. ## Description of the data and file structure The predicted annual incidence of national SFTS cases with or without human population reduction under four RCPs under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The value represents the annual incidence, and the unit is 105/year. The Dataset-1 file includes the predicted annual incidence of national SFTS cases with a fixed future human population under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The Dataset-2 file includes the predicted annual incidence of national SFTS cases in the 2030s, 2050s, and 2080s with human population reduction (SSP2) under four RCPs. ## Sharing/Access information Data was derived from the following sources: * https://doi.org/10.1111/gcb.16969 This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. The SFTS incidence in three time periods (2030-2039, 2050-2059, 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. The projected spatiotemporal dynamics of SFTS will be heterogeneous across provinces. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas. See the Materials and methods section in the original paper. The code used in the statistical analyses are present in the paper and/or the Supplementary Materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 16 Nov 2023Publisher:Dryad Huang, Mengyi; Liu, Hongguang; Tong, Yan; Li, Shuqiang; Hou, Zhonge;Aim: Climate change threatens freshwater faunal diversity. To prioritize areas for conservation, patterns in the distribution of species must be understood. We apply genetic analysis and species distribution models to identify patterns in the distribution of freshwater amphipods around Xinjiang, China, and project the impact of climate change on endemic species. Location: Xinjiang, China. Methods: A time-calibrated tree containing 37 freshwater amphipod molecular samples from Xinjiang is built to calculate phylogenetic diversity, the standardized effect sizes of phylogenetic diversity, weighted endemism, and phylogenetic endemism, in 100 × 100 km grid cells. Niche differentiation among species in an area of high phylogenetic endemism is explored using n-dimensional hypervolumes and principal components analyses. Present-day and projected future suitability of habitat of endemic freshwater amphipod species is described using species distribution models. Results: Areas of high freshwater amphipod diversity occur along the western boundary of Xinjiang; Areas north of Irtysh River, Tian Shan mountains, and the eastern margin of Pamir, have high phylogenetic endemism. Seasonal temperature and average annual water temperature contribute most to niche differentiation between geographically related freshwater species, negatively affect the projected distributions of endemic amphipods, and with continued warming, reduce future range distributions or latitudinal shifts of species. Main Conclusions: High freshwater amphipod phylogenetic endemism occurs in Xinjiang. Environmental factors are responsible for niche differentiation of endemic species. Future climate change will substantially affect the geographic distributions of endemic amphipods. Conservation efforts should be prioritized in areas with highly concentrated phylogenetic endemism. # Diversity of endemic cold-water amphipods threatened by climate warming in northwestern China [https://doi.org/10.5061/dryad.h44j0zpsg](https://doi.org/10.5061/dryad.h44j0zpsg) Datasets for phylogenetic analysis. ## Description of the data and file structure 1.gene\_partition.txt: Used to explain the position of each gene in a tandem sequence. 2.xinjiang\_28S\_COI.fasta: A file of tandem sequence. 3.RAxML\_xinjiang\_tree.tre: A phylogenetic tree from the 52-tip data set. 4.MCMC\_tree.tre: A time-calibrated tree using three calibration points. ##
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h44j0zpsg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h44j0zpsg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Shuai ZHANG;Climate trends during maize growing period and their impacts on spring maize yield in North China was investigated. This dataset contains: 1) information of stations in cultivation region for spring maize in North China; 2) Trend in temperature and its effect on yield in cultivation region for spring maize in North China; 3) Trend in radiation and its effect on yield in cultivation region for spring maize in North China; 4) Trend in precipitation and its effect on yield in cultivation region for spring maize in North China. Climate trends during maize growing period and their impacts on spring maize yield in North China was investigated. This dataset contains: 1) information of stations in cultivation region for spring maize in North China; 2) Trend in temperature and its effect on yield in cultivation region for spring maize in North China; 3) Trend in radiation and its effect on yield in cultivation region for spring maize in North China; 4) Trend in precipitation and its effect on yield in cultivation region for spring maize in North China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2018Publisher:Zenodo Funded by:EC | REINVENTEC| REINVENTHansen, Teis; Keaney, Monica; Bulkeley, Harriet A.; Cooper, Mark; Mölter, Helena; Nielsen, Hjalti; Pietzner, Katja; Sonesson, Ludwig B.; Stripple, Johannes; S.I. Aan Den Toorn; Tziva, Maria; Tönjes, Annika; Vallentin, Daniel; Van-Veelen, Bregje;This database includes more than 100 decarbonisation innovations in Paper, Plastic, Steel and Meat & Dairy sectors, across their value chains, as well as in Finance. For each innovation there is a description, information about its contribution to decarbonisation, actors and collaborators involved, sources of funding, drivers, (co)benefits and disadvantages. More information on the method for selecting innovations for the database is available here. The database was created as part of REINVENT – a Horizon 2020 research project funded by the European Commission (grant agreement 730053). REINVENT involves five research institutions from four countries: Lund University (Sweden), Durham University (United Kingdom), Wuppertal Institute (Germany), PBL Netherlands Environmental Assessment Agency (the Netherlands) and Utrecht University (the Netherlands). More information can be found on our website: www.reinvent-project.eu.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3529696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3529696&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 13 Apr 2022Publisher:Dryad Gao, Guang; Beardall, John; Jin, Peng; Gao, Lin; Xie, Shuyu; Gao, Kunshan;The atmosphere concentration of CO2 is steadily increasing and causing climate change. To achieve the Paris 1.5 or 2 oC target, negative emissions technologies must be deployed in addition to reducing carbon emissions. The ocean is a large carbon sink but the potential of marine primary producers to contribute to carbon neutrality remains unclear. Here we review the alterations to carbon capture and sequestration of marine primary producers (including traditional ‘blue carbon’ plants, microalgae, and macroalgae) in the Anthropocene, and, for the first time, assess and compare the potential of various marine primary producers to carbon neutrality and climate change mitigation via biogeoengineering approaches. The contributions of marine primary producers to carbon sequestration have been decreasing in the Anthropocene due to the decrease in biomass driven by direct anthropogenic activities and climate change. The potential of blue carbon plants (mangroves, saltmarshes, and seagrasses) is limited by the available areas for their revegetation. Microalgae appear to have a large potential due to their ubiquity but how to enhance their carbon sequestration efficiency is very complex and uncertain. On the other hand, macroalgae can play an essential role in mitigating climate change through extensive offshore cultivation due to higher carbon sequestration capacity and substantial available areas. This approach seems both technically and economically feasible due to the development of offshore aquaculture and a well-established market for macroalgal products. Synthesis and applications: This paper provides new insights and suggests promising directions for utilizing marine primary producers to achieve the Paris temperature target. We propose that macroalgae cultivation can play an essential role in attaining carbon neutrality and climate change mitigation, although its ecological impacts need to be assessed further. To calculate the parameters presented in Table 1, the relevant keywords "mangroves, salt marshes, macroalgae, microalgae, global area, net primary productivity, CO2 sequestration" were searched through the ISI Web of Science and Google Scholar in July 2021. Recent data published after 2010 were collected and used since area and productivity of plants change with decade. For data with limited availability, such as net primary productivity (NPP) of seagrasses and global area and NPP of wild macroalgae, data collection was extended back to 1980. Total NPP and CO2 sequestration for mangroves, salt marshes, seagrasses and wild macroalgae were obtained by the multiplication of area and NPP/CO2 sequestration density and subjected to error propagation analysis. Data were expressed as means ± standard error.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 30visibility views 30 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.x95x69pm2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Linnaeus University Authors: Sathre, Roger; Gustavsson, Leif;Heavy trucks contribute significantly to climate change, and in 2020 were responsible for 7% of total Swedish GHG emissions and 5% of total global CO2 emissions. Here we study the full lifecycle of cargo trucks powered by different energy pathways, comparing their biomass feedstock use, primary energy use, net biogenic and fossil CO2 emission, and cumulative radiative forcing. We analyse battery electric trucks with bioelectricity from standalone or combined heat and power (CHP) plants, and pathways where bioelectricity is integrated with wind and solar electricity. We analyse trucks operated on fossil diesel fuel and on dimethyl ether (DME). All energy pathways are analysed with and without carbon capture and storage (CCS). Bioelectricity and DME are produced from forest harvest residues. Forest biomass is a limited resource, so in a scenario analysis we allocate a fixed amount of biomass to power Swedish truck transport. Battery lifespan and chemistry, the technology level of energy supply, and the biomass source and transport distance are all varied to understand how sensitive the results are to these parameters. The scenario spans 100 years into the future. We find that pathways using electricity to power battery electric trucks have much lower climate impacts and primary energy use, compared to diesel and DME based pathways. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling of the earth. The pathways using diesel and DME have significant and very similar climate impact, even with CCS. The robust results show that truck electrification and increased renewable electricity production is a much better strategy to reduce the climate impact of cargo transport and much more primary energy efficient than the adoption of DME trucks. This climate impact analysis includes all fossil and net biogenic CO2 emissions as well as the timing of these emissions. Considering only fossil emissions is incomplete and could be misleading. This dataset contains data on 4 metrics (primary energy use, biomass feedstock use, cumulative CO2 emissions, and cumulative radiative forcing) resulting from scenario modeling of cargo truck use in Sweden powered by different energy pathways. The energy pathways include battery electric trucks powered by bioelectricity, solar photovoltaic electricity and wind electricity, and internal combustion trucks powered by fossil diesel and dimethyl ether. The scenario spans 100 years into the future. The Excel sheet "tables" contains input data for the scenario modeling, with sources listed where applicable. The remaining sheets contains the modeled results and generated figures that are also a published in the associated article Sathre & Gustavsson (2023). Refer to the method description and reference list in the included documentation files for details. Tunga lastbilar bidrar kraftigt till klimatförändringarna och stod 2020 för 7% av de totala svenska växthusgasutsläppen och 5% av de totala globala CO2-utsläppen. Här studerar vi hela livscykeln för lastbilar som drivs av olika energivägar, jämför deras användning av biomassaråvaror, primär energianvändning, biogena och fossila CO2-utsläpp netto och kumulativ strålningstvingning. Vi analyserar batterielektriska lastbilar med bioel från fristående eller kraftvärmeverk och vägar där bioel integreras med vind- och solkraft. Vi analyserar lastbilar som drivs med fossilt dieselbränsle och med dimetyleter (DME). Alla energivägar analyseras med och utan avskiljning och lagring av koldioxid (CCS). Bioelektricitet och DME produceras av skogsavverkningsrester. Skogsbiomassa är en begränsad resurs, så i en scenarioanalys avsätter vi en fast mängd biomassa för att driva svenska lastbilstransporter. Batteriets livslängd och kemi, tekniknivån för energiförsörjning och biomassakällan och transportavståndet varierar alla för att förstå hur känsliga resultaten är för dessa parametrar. Scenariot sträcker sig 100 år in i framtiden. Vi finner att vägar som använder el för att driva batterielektriska lastbilar har mycket lägre klimatpåverkan och primär energianvändning, jämfört med diesel- och DME-baserade vägar. De vägar som använder bioelektricitet med CCS resulterar i negativa utsläpp som leder till global kylning av jorden. Vägarna med diesel och DME har betydande och mycket liknande klimatpåverkan, även med CCS. De robusta resultaten visar att elektrifiering av lastbilar och ökad förnybar elproduktion är en mycket bättre strategi för att minska godstransporternas klimatpåverkan än införandet av DME-lastbilar, och mycket mer primärenergieffektiv. Denna klimatkonsekvensanalys omfattar alla fossila och biogena CO2-utsläpp samt tidpunkten för dessa utsläpp. Att bara ta hänsyn till fossila utsläpp är ofullständigt och kan vara missvisande. Detta dataset innehåller data om 4 mätvärden (primär energianvändning, biomassaråvara, kumulativa CO2-utsläpp och kumulativ strålkraftspåverkan) som härrör från scenariomodellering av lastbilsanvändning i Sverige som drivs av olika energivägar. Energivägarna inkluderar batterielektriska lastbilar som drivs av bioelektricitet, solcellselektricitet och vindkraft samt förbränningsbilar som drivs av fossil diesel och dimetyleter. Scenariot sträcker sig 100 år in i framtiden. På arket "tables" i Excelfilen återfinns den indata som använts i modelleringen med angivna källor där detta är tillämpligt. Övriga ark innehåller resultat samt figurer som också publiceras i den samhörande artikeln Sathre & Gustavsson (2023). Se metodbeskrivning samt referenslista i tillhörande dokumentationsfiler för detaljer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5878/0h1w-e950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: Rong, Xinyao;Project: Coupled Model Intercomparison Project Phase 6 (CMIP6) datasets - These data have been generated as part of the internationally-coordinated Coupled Model Intercomparison Project Phase 6 (CMIP6; see also GMD Special Issue: http://www.geosci-model-dev.net/special_issue590.html). The simulation data provides a basis for climate research designed to answer fundamental science questions and serves as resource for authors of the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR6). CMIP6 is a project coordinated by the Working Group on Coupled Modelling (WGCM) as part of the World Climate Research Programme (WCRP). Phase 6 builds on previous phases executed under the leadership of the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and relies on the Earth System Grid Federation (ESGF) and the Centre for Environmental Data Analysis (CEDA) along with numerous related activities for implementation. The original data is hosted and partially replicated on a federated collection of data nodes, and most of the data relied on by the IPCC is being archived for long-term preservation at the IPCC Data Distribution Centre (IPCC DDC) hosted by the German Climate Computing Center (DKRZ). The project includes simulations from about 120 global climate models and around 45 institutions and organizations worldwide. Summary: These data include the subset used by IPCC AR6 WGI authors of the datasets originally published in ESGF for 'CMIP6.ScenarioMIP.CAMS.CAMS-CSM1-0.ssp119' with the full Data Reference Syntax following the template 'mip_era.activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.version'. The CAMS-CSM 1.0 climate model, released in 2016, includes the following components: atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0. The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/ar6.c6spcamcc0s119&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Dias de Lima, Tayenne; F. Franco, John; Lezama, Fernando; Soares, Joao; Vale, Zita;Dataset of the paper: Joint optimal Allocation of Electric Vehicle Charging Stations and Renewable Energy Sources including CO2 emissions, Energy Informatics, 2021 (Presented in EIA 2021) Table 1 shows the operational scenarios, while the data for the substations is shown in Table 2. The demand data for each node is shown in Table 3. The parameters related to RES are shown in Table 4 and Table 5. The PV units have a nominal power capacity of 100 kW and are composed by 40 modules with 2.5 kW each. A maximum of 60 generators of this type can be installed in each node. The CO2 factor emission is defined as 𝜁𝑝𝑣=0.0584 ton/MWh. The candidate nodes for the installation of wind turbines, photovoltaic modules, and EV charging stations, are respectively: Ω𝑤𝑡 = {3, 4, 5, 9, 11, 14, 16, 19}, Ω𝑝𝑣 = {3, 4, 6, 8, 10, 13, 14, 15, 19}, and Ω𝑅 = {3, 6, 8,14, 15}. The power factors for PV and WT units are defined as 0.98 and 0.90, respectively. Table 6 presents the data for the two EV chargers alternatives. Finally, Fig.1 shows the initial system topology. R&D center: http://www.gecad.isep.ipp.pt/ and https://www.feis.unesp.br/#!/lapsee Project website: http://www.gecad.isep.ipp.pt/CENERGETIC/ This work has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationalization (COMPETE2020), under Project POCI-01-0145-FEDER- 028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017(CENERGETIC), CEECIND/02814/2017,and UIDB/000760/2020. The brazillan team (CENERGETIC partners) was supported by the Brazilian institutions Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, CNPq (process 313047/2017-0) and São Paulo Research Foundation (FAPESP), grants 2015/21972-6, 2017/02831-8, 2018/23617-7, and 20018/08008-4 (CENERGETIC research project).
ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4758354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Smithsonian figshareDataset . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4758354&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Science Data Bank Qi, Shu; Qiang, Wang; Zhenya, Song; Gui, Gao; Hailong, Liu; Shizhu, Wang; Yan, He; Rongrong, Pan; Fangli, Qiao;The Arctic is one of Earth’s regions most susceptible to climate change. However, the in-situ long-term observations used for climate research are relatively sparse in the Arctic Ocean, and the simulations from current climate models exhibit remarkable biases in the Arctic. Here we present an Arctic Ocean dynamical downscaling dataset based on a high-resolution ice-ocean coupled model FESOM and a climate model FIO-ESM. The dataset includes 115-year (1900–2014) historical simulations and two 86-year future scenario simulations (2015–2100) under scenarios SSP245 and SSP585. The historical results demonstrate that the root mean square errors of temperature and salinity in the dynamical downscaling dataset are much smaller than those from CMIP6 (the Coupled Model Intercomparison Project phase 6) climate models. The common biases, such as the too deep and too thick Atlantic layer in climate models, are reduced significantly by dynamical downscaling. This dataset serves as a crucial long-term data source for climate change assessments and scientific research in the Arctic Ocean, providing valuable information for the scientific community. The Arctic is one of Earth’s regions most susceptible to climate change. However, the in-situ long-term observations used for climate research are relatively sparse in the Arctic Ocean, and the simulations from current climate models exhibit remarkable biases in the Arctic. Here we present an Arctic Ocean dynamical downscaling dataset based on a high-resolution ice-ocean coupled model FESOM and a climate model FIO-ESM. The dataset includes 115-year (1900–2014) historical simulations and two 86-year future scenario simulations (2015–2100) under scenarios SSP245 and SSP585. The historical results demonstrate that the root mean square errors of temperature and salinity in the dynamical downscaling dataset are much smaller than those from CMIP6 (the Coupled Model Intercomparison Project phase 6) climate models. The common biases, such as the too deep and too thick Atlantic layer in climate models, are reduced significantly by dynamical downscaling. This dataset serves as a crucial long-term data source for climate change assessments and scientific research in the Arctic Ocean, providing valuable information for the scientific community.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.16286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.16286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 11 Oct 2023Publisher:Dryad Ding, Fangyu; Ge, Honghan; Ma, Tian; Wang, Qian; Hao, Mengmeng; Li, Hao; Zhang, Xiao-Ai; Maude, Richard James; Wang, Liping; Jiang, Dong; Fang, Li-Qun; Liu, Wei;# Data on: Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China [https://doi.org/10.5061/dryad.vdncjsz1z](https://doi.org/10.5061/dryad.vdncjsz1z) This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. ## Description of the data and file structure The predicted annual incidence of national SFTS cases with or without human population reduction under four RCPs under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The value represents the annual incidence, and the unit is 105/year. The Dataset-1 file includes the predicted annual incidence of national SFTS cases with a fixed future human population under different climate change scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in the 2030s, 2050s, and 2080s. The Dataset-2 file includes the predicted annual incidence of national SFTS cases in the 2030s, 2050s, and 2080s with human population reduction (SSP2) under four RCPs. ## Sharing/Access information Data was derived from the following sources: * https://doi.org/10.1111/gcb.16969 This dataset is the data used in the paper of Global change biology entitled "Projecting spatiotemporal dynamics of severe fever with thrombocytopenia syndrome in the mainland of China". We use an integrated multi-model, multi-scenario framework to assess the impact of global climate change on SFTS disease in the mainland of China. The SFTS incidence in three time periods (2030-2039, 2050-2059, 2080-2089) is predicted to be increased as compared to the 2010s in the context of various RCPs. The projected spatiotemporal dynamics of SFTS will be heterogeneous across provinces. Notably, we predict possible outbreaks in Xinjiang and Yunnan in the future, where only sporadic cases have been reported previously. These findings highlight the need for population awareness of SFTS in endemic regions, and enhanced monitoring in potential risk areas. See the Materials and methods section in the original paper. The code used in the statistical analyses are present in the paper and/or the Supplementary Materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.vdncjsz1z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Embargo end date: 16 Nov 2023Publisher:Dryad Huang, Mengyi; Liu, Hongguang; Tong, Yan; Li, Shuqiang; Hou, Zhonge;Aim: Climate change threatens freshwater faunal diversity. To prioritize areas for conservation, patterns in the distribution of species must be understood. We apply genetic analysis and species distribution models to identify patterns in the distribution of freshwater amphipods around Xinjiang, China, and project the impact of climate change on endemic species. Location: Xinjiang, China. Methods: A time-calibrated tree containing 37 freshwater amphipod molecular samples from Xinjiang is built to calculate phylogenetic diversity, the standardized effect sizes of phylogenetic diversity, weighted endemism, and phylogenetic endemism, in 100 × 100 km grid cells. Niche differentiation among species in an area of high phylogenetic endemism is explored using n-dimensional hypervolumes and principal components analyses. Present-day and projected future suitability of habitat of endemic freshwater amphipod species is described using species distribution models. Results: Areas of high freshwater amphipod diversity occur along the western boundary of Xinjiang; Areas north of Irtysh River, Tian Shan mountains, and the eastern margin of Pamir, have high phylogenetic endemism. Seasonal temperature and average annual water temperature contribute most to niche differentiation between geographically related freshwater species, negatively affect the projected distributions of endemic amphipods, and with continued warming, reduce future range distributions or latitudinal shifts of species. Main Conclusions: High freshwater amphipod phylogenetic endemism occurs in Xinjiang. Environmental factors are responsible for niche differentiation of endemic species. Future climate change will substantially affect the geographic distributions of endemic amphipods. Conservation efforts should be prioritized in areas with highly concentrated phylogenetic endemism. # Diversity of endemic cold-water amphipods threatened by climate warming in northwestern China [https://doi.org/10.5061/dryad.h44j0zpsg](https://doi.org/10.5061/dryad.h44j0zpsg) Datasets for phylogenetic analysis. ## Description of the data and file structure 1.gene\_partition.txt: Used to explain the position of each gene in a tandem sequence. 2.xinjiang\_28S\_COI.fasta: A file of tandem sequence. 3.RAxML\_xinjiang\_tree.tre: A phylogenetic tree from the 52-tip data set. 4.MCMC\_tree.tre: A time-calibrated tree using three calibration points. ##
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h44j0zpsg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.h44j0zpsg&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Shuai ZHANG;Climate trends during maize growing period and their impacts on spring maize yield in North China was investigated. This dataset contains: 1) information of stations in cultivation region for spring maize in North China; 2) Trend in temperature and its effect on yield in cultivation region for spring maize in North China; 3) Trend in radiation and its effect on yield in cultivation region for spring maize in North China; 4) Trend in precipitation and its effect on yield in cultivation region for spring maize in North China. Climate trends during maize growing period and their impacts on spring maize yield in North China was investigated. This dataset contains: 1) information of stations in cultivation region for spring maize in North China; 2) Trend in temperature and its effect on yield in cultivation region for spring maize in North China; 3) Trend in radiation and its effect on yield in cultivation region for spring maize in North China; 4) Trend in precipitation and its effect on yield in cultivation region for spring maize in North China.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06747&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Shao, Junjiong; Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Aim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu