- home
- Advanced Search
- Energy Research
- 13. Climate action
- QA
- Qatar Foundation
- Energy Research
- 13. Climate action
- QA
- Qatar Foundation
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Athar Kamal; Sami G. Al-Ghamdi; Muammer Koç;doi: 10.3390/en14144348
Water and electricity have a unique relationship in the modern world as one requires the other in a complex system of networks to supply the utility to the customers. This energy–water interaction is especially peculiar in the Gulf Cooperation Council, where there are limited water resources, but extremely high use rates. Qatar provides a unique case in terms of extreme water scarcity and excessive water use. To understand the intricate network, this paper establishes an updated and comprehensive qualitative model of the water system in the country with the help of a water balance and system dynamics (causal loop diagram) methodology. Regression estimates are then used to estimate future water and energy consumption in addition to carbon dioxide emissions until the year 2050. Finally, system dynamics (stock and flow diagram) is used to determine the supply impacts of efficiency policies including limiting of groundwater abstraction to only 50 million m3, reduction of water consumption in the household, commercial and industrial sector by 10%, and gradual increase in the share of reverse osmosis (RO)-produced desalinated water to 50% in order to assess the supply volume, electricity consumption and CO2 emissions. The efficient use of water in different sectors of the economy results in a combined saving of 1222 GWh (8.1%) or 594,000 tons CO2. Furthermore, by moving to membrane-based desalination technology energy consumption and carbon dioxide emissions can be reduced by 3672 GWh (24.3%) and 1.8 million tons CO2, respectively. Further results suggest that while replacing groundwater with desalinated water can increase the energy consumption significantly, reuse of treated wastewater has almost the same footprint as groundwater, but can increase the resilience of the system considerably as groundwater abstraction levels are lowered to their renewal rates.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4348/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4348/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Publisher:Elsevier BV Authors: Osama Massarweh; Ahmad S. Abushaikha;Currently, there is a widespread interest in the different methods of chemical enhanced oil recovery (EOR) as a result of the continuous decline in the conventional oil reserves and the accelerated increase in the global energy demand. Surfactant flooding is a well-established method of chemical EOR. This method has proven successful as it increases oil recovery through a combination of mechanisms. These include interfacial tension (IFT) reduction, wettability alteration, foam generation and emulsification. Despite its popularity, surfactant flooding is still challenged by issues including instability under harsh (or normal) reservoir conditions and excessive adsorption. These issues affect the expected oil recovery and thereby reduce the economic returns of EOR projects. Nevertheless, surfactants can be properly selected according to reservoir conditions and rock type. This is usually carried out using surfactant screening methods, which impose limits related to the IFT, surfactant adsorption and other factors under given temperature and salinity conditions. This paper reviews surfactant characterization and phase behavior, the role of surfactants in oil recovery, surfactant adsorption onto reservoir rock, and the application of surfactants in EOR on both laboratory and field scales. Finally, the review presents current research trends and future prospects based on recently published studies in the area of surfactant flooding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 359 citations 359 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of)Publisher:Elsevier BV Kit Ying Yeung; Jiaxin Guo; Huaimin Wang; Pejman Hadi; Gordon McKay; Gordon McKay;pmid: 26775155
This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2016.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2016.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Rachit Srivastava; Mohammad Amir; Furkan Ahmad; Sushil Kumar Agrawal; Anurag Dwivedi; Arun Kumar Yadav;Besides being limited in quantity, conventional energy sources also emit toxic gases. The Photovoltaic (PV) Solar System is one of the most energizing green energy sources. Around the globe, solar panels are being installed on barren land as well as on the roofs of buildings to generate electricity. An education institute in northern India recently took a step in this direction by installing a grid-tied 100 kWp solar power plant. The installed PV panels are tilted at an angle of 30° and mounted on the roof of the building. The actual PV plant system’s performance differs from the performance under laboratory conditions. Hence, performance evaluation of real outdoor plants becomes essential, especially when the plant is commissioned in different situations, such as roof-mounted systems. Many softwares can estimate the plant’s performance evaluation, but their reliability is not yet proven. This paper examines the performance evaluation of grid-tied PV plants between January 2019 and December 2019 in accordance with the IEC 61724 standard. Moreover, the results of the actual plant have also been compared with the results from the PV*Syst software that simulates the real-time behavior of the plant. Further, in order to evaluate the power plant’s performance, this paper analyzes the various parameters of the PV plant, including reference yield, final yield, and performance ratio of the PV plant. An evaluation of the module’s performance indicates that it has produced 101.57 MWh of energy over 1 year, with a performance ratio of 0.60. It is evident from the comparative analysis that rooftop solar panels are an economically viable and technologically feasible means of providing electricity in the northern parts of India. By taking such measures, the institutes or offices can protect the environment and save money by becoming microgrids. The proposed project provides a roadmap for installing rooftop photovoltaic plants in populated cities without occupying additional land.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1044651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1044651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Muhammad Ayoub; Chaouki Ghenai; Muhammad Shahbaz; Zakir Khan; Abrar Inayat; Mohsin Raza; Muhammad Aslam;AbstractHydrogen production from biomass steam gasification is systematically reviewed. Equilibrium modeling and simulation studies using various techniques for effective hydrogen production are presented. Heat integration, economic analysis of the hydrogen production, and systematic design algorithms research publications are overviewed and discussed for energy‐efficient and economic hydrogen production from various biomass feedstocks. Comparison and analysis of the results strongly suggest the viable potential of biomass steam gasification for hydrogen production from small to large scales with applications for thermal heat, power generation, and many other industrial fields.
Chemical Engineering... arrow_drop_down Chemical Engineering & TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ceat.201900490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering & TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ceat.201900490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Authors: Islam Safak Bayram; Ioannis Papapanagiotou;Electric vehicles (EVs) are becoming a more attractive transportation option, as they offer great cost savings, decrease foreign oil dependency, and reduce carbon emissions. However, varying temporal and spatial demand patterns of EVs threatens power grid operations and its physical components. Thus, the ability of the power grid to handle the potential extra load has become a major factor in the mainstream success. In order for this integration to occur seamlessly, the power grid and the consumers need to be coordinated in harmony. In this paper, we address the critical challenges introduced by the penetration of EVs, systematically categorize the proposed frameworks for demand management, and the role of information and communication technologies in the solution process. We provide a comprehensive survey on the communication requirements, the standards and the candidate technologies towards the Internet of electric vehicles (IoEV). This survey summarizes the current state of research efforts in electric vehicle demand management and aims to shed light on the continued studies.
EURASIP Journal on W... arrow_drop_down EURASIP Journal on Wireless Communications and NetworkingArticle . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: UnpayWallEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)EURASIP Journal on Wireless Communications and NetworkingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1687-1499-2014-223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert EURASIP Journal on W... arrow_drop_down EURASIP Journal on Wireless Communications and NetworkingArticle . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: UnpayWallEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)EURASIP Journal on Wireless Communications and NetworkingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1687-1499-2014-223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Mohammad Alherbawi; Gordon McKay; Hamish R. Mackey; Tareq Al-Ansari;Abstract Carbon emissions from the aviation sector are expected to double during the coming three decades as the sector expands rapidly. Besides, the fluctuation of conventional fuel prices continues to obstruct the establishment of stable commercial strategies for the airlines. Meanwhile, Jet Biofuel (JBF) has been identified as a reliable alternative to conventional Jet-A fuel. Amongst the tested promising feedstocks for JBF production, Jatropha oil has gained growing attention and is believed to play a key role in the JBF industry. Though, no in-depth reviews on Jatropha JBF are found in literature, it is believed that there is a need to evaluate Jatropha as feedstock for JBF production after over 10 years of intensive research. Therefore, this article presents a comprehensive state-of-the-art review of Jatropha JBF production. The article offers a thorough review of the hydroprocessing of Jatropha by investigating its optimum operating conditions, recent catalyst application developments, the feasibility of JBF, its performance and environmental impact. This study concludes that Jatropha JBF production by hydroprocessing can achieve up to a 75% reduction in greenhouse gas emissions relative to Jet-A. While Jatropha JBF can be produced with a levelised cost as low as $0.6/kg. The main challenges facing Jatropha JBF industry has been identified to be the availability of feedstock and achieving a competitively priced JBF. As such, alternative routes to utilise the remaining parts of the Jatropha fruit into JBF production are proposed to reduce the land footprint, enhance JBF yield and minimise its selling price. The proposed pathways are expected to achieve a significant fuel yield increment of 24–89% as compared to utilising Jatropha oil alone, which remain to be evaluated in terms of technical and economic aspects.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Ahmed AlNouss; Gordon McKay; Tareq Al-Ansari;Abstract Economically, fossil fuels remain the main source of energy despite their high emissions of greenhouse gases. However, biomass, a renewable fuel with CO2 neutrality, has experienced widespread attention as a potential contributor to sustainable development of the energy sector. Gasification is an important thermochemical process that converts biomass feedstock into H2-rich combustible gases, which are favoured by wide downstream applications. The use of pure steam or oxygen as a gasifying agent is preferred to increase the yield of combustible gases. Consequently, hydrogen is utilised as an important intermediary in the generation of value-added products such as urea, fuels and power. This study compares the biomass gasification using oxygen-only and steam-only gasifying agents. Moreover, the study examines a poly-generation system that consumes biomass feedstock of multiple sources to produce high grade Fisher-Tropsch liquids, methanol, urea, and power. To achieve this aim, four Aspen Plus simulation flowsheets are developed considering both gasifiying agents and compared utilising the built-in economic and environmental capabilities. The results obtained from the economic and environmental evaluation demonstrate the excellence of steam-only biomass gasification in providing profitable and cleaner products. The methanol production using steam gasification is the most economical solution with a net profit per input of $0.12 per kg of biomass input and the lowest emissions pathway with 0.68 kg of CO2-e per biomass input. The relative nature of the results can offer diverse perspectives depending on the market situation of the products. Consequently, analysing the results relative to production capacity, power generation using steam gasification achieves a net profit approximated at $0.80 per kg of product, whilst methanol production using steam gasification remains the lowest environmental impact solution with 2.32 kg of CO2-e per output product.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Christos Fountoukis; Luis Martín-Pomares; Daniel Perez-Astudillo; Dunia Bachour; +1 AuthorsChristos Fountoukis; Luis Martín-Pomares; Daniel Perez-Astudillo; Dunia Bachour; Ivan Gladich;Abstract Global horizontal irradiance (GHI) is simulated using a three-dimensional atmospheric meteorology-chemistry model and a triple-nesting configuration over the Middle East with a focus on the hot desert climate of Qatar. The model performance was assessed with measurement data of solar radiation from a ground monitoring station in Doha (Qatar) collected over a three-month period, of representative and distinct meteorological regimes. We have examined the ability of the model to reproduce GHI values under two different shortwave downward radiation parameterizations, and assessed the sensitivity of our results to the presence of aerosols. The introduction of an advanced treatment of aerosols greatly improves the model performance in predicting GHI. Explicitly including aerosol processes and its emissions in the model significantly reduces the relative root mean square error for GHI from 25% to 13% in May and from 20% to 12% in August. A significant improvement of the systematic bias was achieved (from up to 30% to approximately 2%) when aerosols are fully considered during all three seasons. The RRTM (Rapid Radiative Transfer Model) shortwave radiation scheme performs somewhat better than the Goddard scheme both with and without aerosols. This work suggests that GHI predictions in regions that experience high aerosol loadings can benefit significantly from a detailed and explicit treatment of aerosols and their physicochemical processes. This offers a novel approach to better manage the fluctuating nature of solar radiation originating from variable weather and air pollution conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Furqan Tahir; Sami G. Al-Ghamdi;The Persian Gulf hosts densely located desalination plants that represent 50% of the global seawater desalination. The salinity levels in this gulf, especially in Qatar, are very high because of constant brine discharge and the shallow seawater (∼35 m depth). With the growing population, more desalination plants need to be installed to meet freshwater demands. The rising salinity levels and the ambient and sweater temperature will raise the specific energy consumption to produce a unit distillate because of climate change. Furthermore, the brine discharge affects the marine ecosystem and deteriorates the soil and groundwater quality. Thus, it is imperative to design and innovate a low or zero liquid discharge (LLD or ZLD) desalination system to mitigate climate change impacts and guarantee a safe marine environment. One such ZLD system is proposed and assessed in this study. The multi-effect desalination (MED) with higher top brine temperature (75 °C) is integrated with humidification dehumidification (HDH) system for brine concentration. In the final stage, the salts are removed via an evaporative crystallizer using thermal energy. The performance ratio (PR) with top brine temperature and temperature difference across each evaporator is evaluated and discussed. Finally, the specific energy consumption of the ZLD system is analyzed for different operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Athar Kamal; Sami G. Al-Ghamdi; Muammer Koç;doi: 10.3390/en14144348
Water and electricity have a unique relationship in the modern world as one requires the other in a complex system of networks to supply the utility to the customers. This energy–water interaction is especially peculiar in the Gulf Cooperation Council, where there are limited water resources, but extremely high use rates. Qatar provides a unique case in terms of extreme water scarcity and excessive water use. To understand the intricate network, this paper establishes an updated and comprehensive qualitative model of the water system in the country with the help of a water balance and system dynamics (causal loop diagram) methodology. Regression estimates are then used to estimate future water and energy consumption in addition to carbon dioxide emissions until the year 2050. Finally, system dynamics (stock and flow diagram) is used to determine the supply impacts of efficiency policies including limiting of groundwater abstraction to only 50 million m3, reduction of water consumption in the household, commercial and industrial sector by 10%, and gradual increase in the share of reverse osmosis (RO)-produced desalinated water to 50% in order to assess the supply volume, electricity consumption and CO2 emissions. The efficient use of water in different sectors of the economy results in a combined saving of 1222 GWh (8.1%) or 594,000 tons CO2. Furthermore, by moving to membrane-based desalination technology energy consumption and carbon dioxide emissions can be reduced by 3672 GWh (24.3%) and 1.8 million tons CO2, respectively. Further results suggest that while replacing groundwater with desalinated water can increase the energy consumption significantly, reuse of treated wastewater has almost the same footprint as groundwater, but can increase the resilience of the system considerably as groundwater abstraction levels are lowered to their renewal rates.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4348/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4348/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Publisher:Elsevier BV Authors: Osama Massarweh; Ahmad S. Abushaikha;Currently, there is a widespread interest in the different methods of chemical enhanced oil recovery (EOR) as a result of the continuous decline in the conventional oil reserves and the accelerated increase in the global energy demand. Surfactant flooding is a well-established method of chemical EOR. This method has proven successful as it increases oil recovery through a combination of mechanisms. These include interfacial tension (IFT) reduction, wettability alteration, foam generation and emulsification. Despite its popularity, surfactant flooding is still challenged by issues including instability under harsh (or normal) reservoir conditions and excessive adsorption. These issues affect the expected oil recovery and thereby reduce the economic returns of EOR projects. Nevertheless, surfactants can be properly selected according to reservoir conditions and rock type. This is usually carried out using surfactant screening methods, which impose limits related to the IFT, surfactant adsorption and other factors under given temperature and salinity conditions. This paper reviews surfactant characterization and phase behavior, the role of surfactants in oil recovery, surfactant adsorption onto reservoir rock, and the application of surfactants in EOR on both laboratory and field scales. Finally, the review presents current research trends and future prospects based on recently published studies in the area of surfactant flooding.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 359 citations 359 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2020.11.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 China (People's Republic of)Publisher:Elsevier BV Kit Ying Yeung; Jiaxin Guo; Huaimin Wang; Pejman Hadi; Gordon McKay; Gordon McKay;pmid: 26775155
This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2016.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2016.01.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Rachit Srivastava; Mohammad Amir; Furkan Ahmad; Sushil Kumar Agrawal; Anurag Dwivedi; Arun Kumar Yadav;Besides being limited in quantity, conventional energy sources also emit toxic gases. The Photovoltaic (PV) Solar System is one of the most energizing green energy sources. Around the globe, solar panels are being installed on barren land as well as on the roofs of buildings to generate electricity. An education institute in northern India recently took a step in this direction by installing a grid-tied 100 kWp solar power plant. The installed PV panels are tilted at an angle of 30° and mounted on the roof of the building. The actual PV plant system’s performance differs from the performance under laboratory conditions. Hence, performance evaluation of real outdoor plants becomes essential, especially when the plant is commissioned in different situations, such as roof-mounted systems. Many softwares can estimate the plant’s performance evaluation, but their reliability is not yet proven. This paper examines the performance evaluation of grid-tied PV plants between January 2019 and December 2019 in accordance with the IEC 61724 standard. Moreover, the results of the actual plant have also been compared with the results from the PV*Syst software that simulates the real-time behavior of the plant. Further, in order to evaluate the power plant’s performance, this paper analyzes the various parameters of the PV plant, including reference yield, final yield, and performance ratio of the PV plant. An evaluation of the module’s performance indicates that it has produced 101.57 MWh of energy over 1 year, with a performance ratio of 0.60. It is evident from the comparative analysis that rooftop solar panels are an economically viable and technologically feasible means of providing electricity in the northern parts of India. By taking such measures, the institutes or offices can protect the environment and save money by becoming microgrids. The proposed project provides a roadmap for installing rooftop photovoltaic plants in populated cities without occupying additional land.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1044651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.1044651&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Muhammad Ayoub; Chaouki Ghenai; Muhammad Shahbaz; Zakir Khan; Abrar Inayat; Mohsin Raza; Muhammad Aslam;AbstractHydrogen production from biomass steam gasification is systematically reviewed. Equilibrium modeling and simulation studies using various techniques for effective hydrogen production are presented. Heat integration, economic analysis of the hydrogen production, and systematic design algorithms research publications are overviewed and discussed for energy‐efficient and economic hydrogen production from various biomass feedstocks. Comparison and analysis of the results strongly suggest the viable potential of biomass steam gasification for hydrogen production from small to large scales with applications for thermal heat, power generation, and many other industrial fields.
Chemical Engineering... arrow_drop_down Chemical Engineering & TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ceat.201900490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Chemical Engineering... arrow_drop_down Chemical Engineering & TechnologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ceat.201900490&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Springer Science and Business Media LLC Authors: Islam Safak Bayram; Ioannis Papapanagiotou;Electric vehicles (EVs) are becoming a more attractive transportation option, as they offer great cost savings, decrease foreign oil dependency, and reduce carbon emissions. However, varying temporal and spatial demand patterns of EVs threatens power grid operations and its physical components. Thus, the ability of the power grid to handle the potential extra load has become a major factor in the mainstream success. In order for this integration to occur seamlessly, the power grid and the consumers need to be coordinated in harmony. In this paper, we address the critical challenges introduced by the penetration of EVs, systematically categorize the proposed frameworks for demand management, and the role of information and communication technologies in the solution process. We provide a comprehensive survey on the communication requirements, the standards and the candidate technologies towards the Internet of electric vehicles (IoEV). This survey summarizes the current state of research efforts in electric vehicle demand management and aims to shed light on the continued studies.
EURASIP Journal on W... arrow_drop_down EURASIP Journal on Wireless Communications and NetworkingArticle . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: UnpayWallEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)EURASIP Journal on Wireless Communications and NetworkingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1687-1499-2014-223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert EURASIP Journal on W... arrow_drop_down EURASIP Journal on Wireless Communications and NetworkingArticle . 2014 . Peer-reviewedLicense: CC BYData sources: CrossrefEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: UnpayWallEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)EURASIP Journal on Wireless Communications and NetworkingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1687-1499-2014-223&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Mohammad Alherbawi; Gordon McKay; Hamish R. Mackey; Tareq Al-Ansari;Abstract Carbon emissions from the aviation sector are expected to double during the coming three decades as the sector expands rapidly. Besides, the fluctuation of conventional fuel prices continues to obstruct the establishment of stable commercial strategies for the airlines. Meanwhile, Jet Biofuel (JBF) has been identified as a reliable alternative to conventional Jet-A fuel. Amongst the tested promising feedstocks for JBF production, Jatropha oil has gained growing attention and is believed to play a key role in the JBF industry. Though, no in-depth reviews on Jatropha JBF are found in literature, it is believed that there is a need to evaluate Jatropha as feedstock for JBF production after over 10 years of intensive research. Therefore, this article presents a comprehensive state-of-the-art review of Jatropha JBF production. The article offers a thorough review of the hydroprocessing of Jatropha by investigating its optimum operating conditions, recent catalyst application developments, the feasibility of JBF, its performance and environmental impact. This study concludes that Jatropha JBF production by hydroprocessing can achieve up to a 75% reduction in greenhouse gas emissions relative to Jet-A. While Jatropha JBF can be produced with a levelised cost as low as $0.6/kg. The main challenges facing Jatropha JBF industry has been identified to be the availability of feedstock and achieving a competitively priced JBF. As such, alternative routes to utilise the remaining parts of the Jatropha fruit into JBF production are proposed to reduce the land footprint, enhance JBF yield and minimise its selling price. The proposed pathways are expected to achieve a significant fuel yield increment of 24–89% as compared to utilising Jatropha oil alone, which remain to be evaluated in terms of technical and economic aspects.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Ahmed AlNouss; Gordon McKay; Tareq Al-Ansari;Abstract Economically, fossil fuels remain the main source of energy despite their high emissions of greenhouse gases. However, biomass, a renewable fuel with CO2 neutrality, has experienced widespread attention as a potential contributor to sustainable development of the energy sector. Gasification is an important thermochemical process that converts biomass feedstock into H2-rich combustible gases, which are favoured by wide downstream applications. The use of pure steam or oxygen as a gasifying agent is preferred to increase the yield of combustible gases. Consequently, hydrogen is utilised as an important intermediary in the generation of value-added products such as urea, fuels and power. This study compares the biomass gasification using oxygen-only and steam-only gasifying agents. Moreover, the study examines a poly-generation system that consumes biomass feedstock of multiple sources to produce high grade Fisher-Tropsch liquids, methanol, urea, and power. To achieve this aim, four Aspen Plus simulation flowsheets are developed considering both gasifiying agents and compared utilising the built-in economic and environmental capabilities. The results obtained from the economic and environmental evaluation demonstrate the excellence of steam-only biomass gasification in providing profitable and cleaner products. The methanol production using steam gasification is the most economical solution with a net profit per input of $0.12 per kg of biomass input and the lowest emissions pathway with 0.68 kg of CO2-e per biomass input. The relative nature of the results can offer diverse perspectives depending on the market situation of the products. Consequently, analysing the results relative to production capacity, power generation using steam gasification achieves a net profit approximated at $0.80 per kg of product, whilst methanol production using steam gasification remains the lowest environmental impact solution with 2.32 kg of CO2-e per output product.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2020.112612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Christos Fountoukis; Luis Martín-Pomares; Daniel Perez-Astudillo; Dunia Bachour; +1 AuthorsChristos Fountoukis; Luis Martín-Pomares; Daniel Perez-Astudillo; Dunia Bachour; Ivan Gladich;Abstract Global horizontal irradiance (GHI) is simulated using a three-dimensional atmospheric meteorology-chemistry model and a triple-nesting configuration over the Middle East with a focus on the hot desert climate of Qatar. The model performance was assessed with measurement data of solar radiation from a ground monitoring station in Doha (Qatar) collected over a three-month period, of representative and distinct meteorological regimes. We have examined the ability of the model to reproduce GHI values under two different shortwave downward radiation parameterizations, and assessed the sensitivity of our results to the presence of aerosols. The introduction of an advanced treatment of aerosols greatly improves the model performance in predicting GHI. Explicitly including aerosol processes and its emissions in the model significantly reduces the relative root mean square error for GHI from 25% to 13% in May and from 20% to 12% in August. A significant improvement of the systematic bias was achieved (from up to 30% to approximately 2%) when aerosols are fully considered during all three seasons. The RRTM (Rapid Radiative Transfer Model) shortwave radiation scheme performs somewhat better than the Goddard scheme both with and without aerosols. This work suggests that GHI predictions in regions that experience high aerosol loadings can benefit significantly from a detailed and explicit treatment of aerosols and their physicochemical processes. This offers a novel approach to better manage the fluctuating nature of solar radiation originating from variable weather and air pollution conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Furqan Tahir; Sami G. Al-Ghamdi;The Persian Gulf hosts densely located desalination plants that represent 50% of the global seawater desalination. The salinity levels in this gulf, especially in Qatar, are very high because of constant brine discharge and the shallow seawater (∼35 m depth). With the growing population, more desalination plants need to be installed to meet freshwater demands. The rising salinity levels and the ambient and sweater temperature will raise the specific energy consumption to produce a unit distillate because of climate change. Furthermore, the brine discharge affects the marine ecosystem and deteriorates the soil and groundwater quality. Thus, it is imperative to design and innovate a low or zero liquid discharge (LLD or ZLD) desalination system to mitigate climate change impacts and guarantee a safe marine environment. One such ZLD system is proposed and assessed in this study. The multi-effect desalination (MED) with higher top brine temperature (75 °C) is integrated with humidification dehumidification (HDH) system for brine concentration. In the final stage, the salts are removed via an evaporative crystallizer using thermal energy. The performance ratio (PR) with top brine temperature and temperature difference across each evaporator is evaluated and discussed. Finally, the specific energy consumption of the ZLD system is analyzed for different operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu